首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huntington’s disease (HD) is a genetic neurodegenerative disorder characterized by striatal neurodegeneration, involving apoptosis. FK506, an inhibitor of calcineurin (or protein phosphatase 3, formerly known as protein phosphatase 2B), has shown neuroprotective effects in several cellular and animal models of HD. In the present study, we show the protective effects of FK506 in two striatal HD models, primary rat striatal neurons treated with 3-nitropropionic acid (3-NP) and immortalized striatal STHdh cells derived from HD knock-in mice expressing normal (STHdh7/7) or full-length mutant huntingtin (FL-mHtt) with 111 glutamines (STHdh111/111), under basal conditions and after exposure to 3-NP or staurosporine (STS). In rat striatal neurons, FK506 abolished 3-NP-induced increase in caspase-3 activation, DNA fragmentation/condensation and necrosis. Nevertheless, in STHdh111/111 cells under basal conditions, FK506 did not prevent, in a significant manner, the release of cytochrome c and apoptosis inducing factor (AIF) from mitochondria, or alter Bax/Bcl-2 ratio, but significantly reverted caspase-3 activation. In STHdh111/111 cells treated with 0.3 mM 3-NP or 25 nM STS, linked to high necrosis, exposure to FK506 exerted no significant effects on caspase-3 activation. However, treatment of STHdh111/111 cells exposed to 10 nM STS with FK506 effectively prevented cell death by apoptosis and moderate necrosis. The results suggest that FK506 may be neuroprotective against apoptosis and necrosis under mild cell death stimulus in the presence of FLmHtt.  相似文献   

2.
Huntington's disease (HD) is an autosomal dominant neurological disorder that is induced by a CAG trinucleotide expansion in exon 1 of the Huntingtin (HTT) gene. We previously reported that the abnormal activation of an important energy sensor, AMP-activated protein kinase α1 (AMPK-α1), occurs in the brains of mice and patients with HD, which suggests that this abnormal activation may contribute to neuronal degeneration in HD. In the present study, we demonstrated that the elevated oxidative stress that was evoked by a polyQ-expanded mutant HTT (mHTT) caused the abnormal activation of AMPK-α1 and, subsequently, resulted in neurotoxicity in a striatal progenitor cell line (STHdhQ109) and in the striatum of a transgenic mouse model of HD (R6/2). The systematic administration of an antioxidant (N-acetyl-cysteine, NAC) to R6/2 mice suppressed the activation of AMPK-α1, reduced neuronal toxicity, which was assessed by the activation of caspases, increased neuronal density, ameliorated ventricle enlargement, and improved motor dysfunction. This beneficial effect of NAC in vivo appears to be direct because NAC also reduced the activation of AMPK-α1 and the death of STHdhQ109 cells upon elevated oxidative stress. Moreover, the activation of AMPK enhanced the level of oxidative stress in STHdhQ109 cells, in primary neurons of R6/2 mice, and in the striatum of two different HD mouse models (R6/2 and Hdh150Q/+), whereas the inhibition of AMPK reduced the level of oxidative stress. Collectively, our findings suggest that positive feedback regulation between the elevated oxidative stress and the activation of AMPK-α1 contributes to the progression of HD.  相似文献   

3.
4.
5.
6.
Huntington’s disease is the result of a long polyglutamine tract in the gene encoding huntingtin protein, which in turn causes a large number of cellular changes and ultimately results in neurodegeneration of striatal neurons. Although many theories have been proposed, the precise mechanism by which the polyglutamine expansion causes cellular changes is not certain. Some evidence supports the hypothesis that the long polyglutamine tract inhibits the proteasome, a multiprotein complex involved in protein degradation. However, other studies report normal proteasome function in cells expressing long polyglutamine tracts. The controversy may be due to the methods used to examine proteasome activity in each of the previous studies. In the present study, we measured proteasome function by examining levels of endogenous peptides that are products of proteasome cleavage. Peptide levels were compared among mouse striatal cell lines expressing either 7 glutamines (STHdh Q7/Q7) or 111 glutamines in the huntingtin protein, either heterozygous (STHdh Q7/Q111) or homozygous (STHdh Q111/Q111). Both of the cell lines expressing huntingtin with 111 glutamines showed a large reduction in nearly all of the peptides detected in the cells, relative to levels of these peptides in cells homozygous for 7 glutamines. Treatment of STHdh Q7/Q7 cells with proteasome inhibitors epoxomicin or bortezomib also caused a large reduction in most of these peptides, suggesting that they are products of proteasome-mediated cleavage of cellular proteins. Taken together, these results support the hypothesis that proteasome function is impaired by the expression of huntingtin protein containing long polyglutamine tracts.  相似文献   

7.
8.
9.
10.
We studied expression of 90 miRNAs in STHdhQ111/HdhQ111 cells, a model for Huntington’s disease and compared with that obtained in STHdhQ7/HdhQ7 cells. Fifteen miRNAs were down regulated and 12 miRNAs were up regulated more than 2-fold. Such changes were statistically significant. One hundred and forty-two genes are experimentally known targets of these altered miRNAs. It has been predicted that miR-146a may target Tata Binding Protein (TBP). Using luciferase reporter assays with 3′-UTRs of TBP, over-expression and inhibition of miR-146a, we showed that miR-146a targets TBP. Regulation of TBP by miR-146a may contribute to HD pathogenesis.  相似文献   

11.
The Huntington's disease (HD) CAG repeat, encoding a polymorphic glutamine tract in huntingtin, is inversely correlated with cellular energy level, with alleles over ~37 repeats leading to the loss of striatal neurons. This early HD neuronal specificity can be modeled by respiratory chain inhibitor 3-nitropropionic acid (3-NP) and, like 3-NP, mutant huntingtin has been proposed to directly influence the mitochondrion, via interaction or decreased PGC-1α expression. We have tested this hypothesis by comparing the gene expression changes due to mutant huntingtin accurately expressed in STHdhQ111/Q111 cells with the changes produced by 3-NP treatment of wild-type striatal cells. In general, the HD mutation did not mimic 3-NP, although both produced a state of energy collapse that was mildly alleviated by the PGC-1α-coregulated nuclear respiratory factor 1 (Nrf-1). Moreover, unlike 3-NP, the HD CAG repeat did not significantly alter mitochondrial pathways in STHdhQ111/Q111 cells, despite decreased Ppargc1a expression. Instead, the HD mutation enriched for processes linked to huntingtin normal function and Nf-κB signaling. Thus, rather than a direct impact on the mitochondrion, the polyglutamine tract may modulate some aspect of huntingtin's activity in extra-mitochondrial energy metabolism. Elucidation of this HD CAG-dependent pathway would spur efforts to achieve energy-based therapeutics in HD.  相似文献   

12.
13.
14.
Mitochondrial dysfunction is believed to participate in Huntington's disease (HD) pathogenesis. Here we compare the bioenergetic behavior of forebrain mitochondria isolated from different transgenic HD mice (R6/2, YAC128 and Hdh150 knock-in) and wild-type littermates with the first determination of in situ respiratory parameters in intact HD striatal neurons. We assess the Ca2+-loading capacity of isolated mitochondria by steady Ca2+-infusion. Mitochondria from R6/2 mice (12-13 weeks) and 12 months YAC128, but not homozygous or heterozygous Hdh150 knock-in mice (15-17 weeks), exhibit increased Ca2+-loading capacity when compared with respective wild-type littermates. In situ mitochondria in intact striatal neurons show high respiratory control. Moreover, moderate expression of full-length mutant huntingtin (in Hdh150 knock-in heterozygotes) does not significantly impair mitochondrial respiration in unstimulated neurons. However, when challenged with energy-demanding stimuli (NMDA-receptor activation in pyruvate-based media to accentuate the mitochondria role in Ca2+-handling), Hdh150 neurons are more vulnerable to Ca2+-deregulation than neurons from their wild-type littermates. These results stress the importance of assessing HD mitochondrial function in the cellular context.  相似文献   

15.

Background

Mitochondrial impairment has been implicated in the pathogenesis of Huntington’s disease (HD). However, how mutant huntingtin impairs mitochondrial function and thus contributes to HD has not been fully elucidated. In this study, we used striatal cells expressing wild type (STHdhQ7/Q7) or mutant (STHdhQ111/Q111) huntingtin protein, and cortical neurons expressing the exon 1 of the huntingtin protein with physiological or pathological polyglutamine domains, to examine the interrelationship among specific mitochondrial functions.

Results

Depolarization induced by KCl resulted in similar changes in calcium levels without compromising mitochondrial function, both in wild type and mutant cells. However, treatment of mutant cells with thapsigargin (a SERCA antagonist that raises cytosolic calcium levels), resulted in a pronounced decrease in mitochondrial calcium uptake, increased production of reactive oxygen species (ROS), mitochondrial depolarization and fragmentation, and cell viability loss. The mitochondrial dysfunction in mutant cells was also observed in cortical neurons expressing exon 1 of the huntingtin protein with 104 Gln residues (Q104-GFP) when they were exposed to calcium stress. In addition, calcium overload induced opening of the mitochondrial permeability transition pore (mPTP) in mutant striatal cells. The mitochondrial impairment observed in mutant cells and cortical neurons expressing Q104-GFP was prevented by pre-treatment with cyclosporine A (CsA) but not by FK506 (an inhibitor of calcineurin), indicating a potential role for mPTP opening in the mitochondrial dysfunction induced by calcium stress in mutant huntingtin cells.

Conclusions

Expression of mutant huntingtin alters mitochondrial and cell viability through mPTP opening in striatal cells and cortical neurons.
  相似文献   

16.
17.
18.
19.
Huntington disease (HD) is a dominantly inherited neurodegenerative disease caused by a polyglutamine expansion in the protein huntingtin (Htt). Striatal and cortical neuronal loss are prominent features of this disease. No disease-modifying treatments have been discovered for HD. To identify new therapeutic targets in HD, we screened a kinase inhibitor library for molecules that block mutant Htt cellular toxicity in a mouse HD striatal cell model, Hdh(111Q/111Q) cells. We found that diacylglycerol kinase (DGK) inhibitor II (R59949) decreased caspase-3/7 activity after serum withdrawal in striatal Hdh(111Q/111Q) cells. In addition, R59949 decreased the accumulation of a 513-amino acid N-terminal Htt fragment processed by caspase-3 and blocked alterations in lipid metabolism during serum withdrawal. To identify the diacylglycerol kinase mediating this effect, we knocked down all four DGK isoforms expressed in the brain (β, γ, ε, and ζ) using siRNA. Only the knockdown of the family member, DGKε, blocked striatal Hdh(111Q/111Q)-mediated toxicity. We also investigated the significance of these findings in vivo. First, we found that reduced function of the Drosophila DGKε homolog significantly improves Htt-induced motor dysfunction in a fly model of HD. In addition, we find that the levels of DGKε are increased in the striatum of R6/2 HD transgenic mice when compared with littermate controls. Together, these findings indicate that increased levels of kinase DGKε contribute to HD pathogenesis and suggest that reducing its levels or activity is a potential therapy for HD.  相似文献   

20.
FOXO转录因子是Forkhead蛋白大家族的一个亚群,在人类的4个同源基因中包括FoxO1、FoxO2、FoxO3a和FoxO4。FoxO蛋白质通过丝氨酸或苏氨酸以及赖氨酸残基的磷酸化和乙酰化等后转录修饰后而发挥作用。其中Foxo1是含有高度保守DNA结合位点的核转录蛋白,其主要功能是磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(Akt)的底物,在胰岛素信号转导中起负性调节作用,Foxo1通过介导胰岛素依赖性微粒体甘油三酯转运蛋白(MTP)的表达,影响肝脏装配和分泌极低密度脂蛋白(VLDL),维持脂代谢稳定。在胰岛素抵抗和脂肪肝状态下,肝细胞核内Foxo1表达明显升高,引起高甘油三酯血症和脂肪肝。有针对性的干预PI3K/Akt及Foxo1的表达,可能从分子机制上为非酒精性脂肪肝的防治提供广阔前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号