首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
We identified two syntaxin-like SNARE genes, named GzSYN1 and GzSYN2, from the plant pathogenic ascomycete Gibberella zeae, and characterized the functions and cellular localization of these genes. The GzSYN1 deletion mutant (Δgzsyn1) had 71% reduced hyphal growth compared to the wild-type strain, but produced perithecia with normal ascospores. Δgzsyn2 had the same hyphal growth rate as the wild-type, but completely lost both self and female fertility. When Δgzsyn2 was spermatized for Δmat1-1 or Δmat1-2 strains, it retained its male fertility, but the ascus shape was abnormal and ascospore delimitation was delayed. The Δgzsyn1 and Δgzsyn2 virulence on barley was reduced by 67% and 75%, respectively, compared to the wild-type. The GFP::GzSYN1 fusion protein was localized in vesicles, vacuoles, plasma membranes, and septa, whereas GFP::GzSYN2 was found only in plasma membranes and septa. These results suggest that syntaxins have key roles in fungal development and virulence in G. zeae.  相似文献   

6.
7.
8.
9.
Autophagy is a complex degradative process in which cytosolic material, including organelles, is randomly sequestered within double‐membrane vesicles termed autophagosomes. In Saccharomyces cerevisiae, the autophagy genes ATG1 and ATG8 are crucial for autophagy induction and autophagosome assembly, respectively, and their deletion has an impact on the autophagic potential of the corresponding mutant strains. We were interested in the role of autophagy in the development and virulence of U. maydis. Using a reverse genetic approach, we showed that the U. maydis ATG8 orthologue, atg8, is associated with autophagy‐dependent processes. Deletion of atg8 abolished autophagosome accumulation in the vacuoles of carbon‐starved cells and drastically reduced the survival of U. maydisΔatg8 mutant strains during these conditions. In addition, atg8 deletion had an impact on the budding process during saprobic haploid growth. The infection of maize with compatible Δatg8 strains resulted in fewer galled plants, and fungal gall colonization was strongly reduced, as reflected by the very low hyphal density in these tissues. Δatg8 infections resulted in the formation of very few teliospores. To corroborate the role of autophagy in U. maydis development, we also deleted the ATG1 orthologue, atg1. Deletion of atg1 yielded phenotypes similar to the Δatg8 strains during saprobic growth, but of lower magnitude. The Δatg1 strains were only slightly less pathogenic than the wild‐type and teliospore production was not affected. Surprisingly, atg1 deletion in the Δatg8 background exacerbated those phenotypes already observed in the Δatg8 and Δatg1 single‐mutant strains, strongly suggesting an additive phenotype. In particular, the double mutant was completely suppressed for plant gall induction.  相似文献   

10.
C8‐desaturated and C9‐methylated glucosylceramide (GlcCer) is a fungal‐specific sphingolipid that plays an important role in the growth and virulence of many species. In this work, we investigated the contribution of Aspergillus nidulans sphingolipid Δ8‐desaturase (SdeA), sphingolipid C9‐methyltransferases (SmtA/SmtB) and glucosylceramide synthase (GcsA) to fungal phenotypes, sensitivity to Psd1 defensin and Galleria mellonella virulence. We showed that ΔsdeA accumulated C8‐saturated and unmethylated GlcCer, while gcsA deletion impaired GlcCer synthesis. Although increased levels of unmethylated GlcCer were observed in smtA and smtB mutants, ΔsmtA and wild‐type cells showed a similar 9,Me‐GlcCer content, reduced by 50% in the smtB disruptant. The compromised 9,Me‐GlcCer production in the ΔsmtB strain was not accompanied by reduced filamentation or defects in cell polarity. When combined with the smtA deletion, smtB repression significantly increased unmethylated GlcCer levels and compromised filamentous growth. Furthermore, sdeA and gcsA mutants displayed growth defects and raft mislocalization, which were accompanied by reduced neutral lipids levels and attenuated G. mellonella virulence in the ΔgcsA strain. Finally, ΔsdeA and ΔgcsA showed increased resistance to Psd1, suggesting that GlcCer synthesis and fungal sphingoid base structure specificities are relevant not only to differentiation but also to proper recognition by this antifungal defensin.  相似文献   

11.
Botrytis cinerea, the fungus causing gray mould disease, is usually controlled by cultural and chemical methods. It would be interesting to see if mycoviruses were a feasible method for reducing fungal virulence thus controlling the disease, but first more has to be understood of the RNA silencing mechanism and whether mycoviruses can combat such defences. Analysis of the B. cinerea genome data identified two Dicer genes: dcr1 and dcr2. In other fungi, mutation or deletion of dcr2 usually leads to impaired gene silencing. Targeted gene disruption created two independent B. cinerea Δdcr2 mutants in a ku70 background. When the Δdcr2 mutants were transformed with an argininosuccinate synthetase (bcass1) silencing cassette, many of these transformants displayed arginine auxotrophy, suggesting that silencing was still functional in a Δdcr2 mutant. Transfection of the wild-type and dcr2-disrupted B. cinerea lines with Botrytis virus F (BVF) gave no readily detectable alteration in fungal growth rate or virulence. Expression of dcr2, but not dcr1, was suppressed in the wild-type at 7 days post infection with BVF, whereas in a Δdcr2 mutant, dcr1 expression was suppressed. By 28 days post BVF-infection, dcr1 and dcr2 were expressed to the elevated levels typically observed when gene silencing is induced. This shows that whilst dcr2 is not essential for gene silencing or for controlling mycovirus such as BVF, it would appear that the mycovirus BVF is able to suppress the normal expression of genes involved in the silencing pathway, at least during early stages of infection of B. cinerea.  相似文献   

12.
The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana.  相似文献   

13.
Hypoxia is an environmental stress encountered by Aspergillus fumigatus during invasive pulmonary aspergillosis (IPA). The ability of this mold to adapt to hypoxia is important for fungal virulence and genetically regulated in part by the sterol regulatory element binding protein (SREBP) SrbA. SrbA is required for fungal growth in the murine lung and to ultimately cause lethal disease in murine models of IPA. Here we identified and partially characterized four genes (dscA, dscB, dscC, and dscD, here referred to as dscA-D) with previously unknown functions in A. fumigatus that are orthologs of the Schizosaccharomyces pombe genes dsc1, dsc2, dsc3, and dsc4 (dsc1-4), which encode a Golgi E3 ligase complex critical for SREBP activation by proteolytic cleavage. A. fumigatus null dscA-D mutants displayed remarkable defects in hypoxic growth and increased susceptibility to triazole antifungal drugs. Consistent with the confirmed role of these genes in S. pombe, both ΔdscA and ΔdscC resulted in reduced cleavage of the SrbA precursor protein in A. fumigatus. Inoculation of corticosteroid immunosuppressed mice with ΔdscA and ΔdscC strains revealed that these genes are critical for A. fumigatus virulence. Reintroduction of SrbA amino acids 1 to 425, encompassing the N terminus DNA binding domain, into the ΔdscA strain was able to partially restore virulence, further supporting a mechanistic link between DscA and SrbA function. Thus, we have shown for the first time the importance of a previously uncharacterized group of genes in A. fumigatus that mediate hypoxia adaptation, fungal virulence, and triazole drug susceptibility and that are likely linked to regulation of SrbA function.  相似文献   

14.
Macroautophagy is a highly conserved intracellular bulk degradation system of all eukaryotic cells. It is governed by a large number of autophagy proteins (ATGs) and is crucial for many cellular processes. Here, we describe the phenotypes of Dictyostelium discoideum ATG16 and ATG9/16 cells and compare them to the previously reported ATG9 mutant. ATG16 deficiency caused an increase in the expression of several core autophagy genes, among them atg9 and the two atg8 paralogues. The single and double ATG9 and ATG16 knock-out mutants had complex phenotypes and displayed severe and comparable defects in pinocytosis and phagocytosis. Uptake of Legionella pneumophila was reduced. In addition, ATG9 and ATG16 cells had dramatic defects in autophagy, development and proteasomal activity which were much more severe in the ATG9/16 double mutant. Mutant cells showed an increase in poly-ubiquitinated proteins and contained large ubiquitin-positive protein aggregates which partially co-localized with ATG16-GFP in ATG9/16 cells. The more severe autophagic, developmental and proteasomal phenotypes of ATG9/16 cells imply that ATG9 and ATG16 probably function in parallel in autophagy and have in addition autophagy-independent functions in further cellular processes.  相似文献   

15.
The contribution of cell surface proteins to plant pathogenicity of fungi is not well understood. As such, the objective of this study was to investigate the functions and importance of glycosylphosphatidylinositol-anchored proteins (GPI-APs) in the wheat pathogen F. graminearum. GPI-APs are surface proteins that are attached to either the membrane or cell wall. In order to simultaneously disrupt several GPI-APs, a phosphoethanolamine transferase-encoding gene gpi7 was deleted and the resultant mutant characterized in terms of growth, development, and virulence. The Δgpi7 mutants exhibited slower radial growth rates and aberrantly shaped macroconidia. Furthermore, virulence tests and microscopic analyses indicated that Gpi7 is required for ramification of the fungus throughout the rachis of wheat heads. In parallel, bioinformatics tools were utilized to predict and inventory GPI-APs within the proteome of F. graminearum. Two of the genes identified in this screen (FGSG_01588 and FGSG_08844) displayed isolate-specific length variability as observed for other fungal cell wall adhesion genes. Nevertheless, deletion of these genes failed to reveal obvious defects in growth, development, or virulence. This research demonstrates the global importance of GPI-APs to in planta proliferation in F. graminearum, and also highlights the potential of individual GPI-APs as diagnostic markers.  相似文献   

16.
The production of asexual spores plays a critical role in rice blast disease. However, the mechanisms of the genes involved in the conidiogenesis pathway are not well understood. F-box proteins are specific adaptors to E3 ubiquitin ligases that determine the fate of different substrates in ubiquitin-mediated protein degradation and play diverse roles in fungal growth regulation. Here, we identify a Saccharomyces cerevisiae Grr1 homolog, MoGrr1, in Magnaporthe oryzae. Targeted disruption of Mogrr1 resulted in defects in vegetative growth, melanin pigmentation, conidial production, and resistance to oxidative stress, and these mutants consequently exhibited attenuated virulence to host plants. Microscopy studies revealed that the inability to form conidiophores is responsible for the defect in conidiation. Although the Mogrr1 mutants could develop melanized appressoria from hyphal tips, the appressoria were unable to penetrate into plant tissues due to insufficient turgor pressure within the appressorium, thereby attenuating the virulence of the mutants. Quantitative RT-PCR results revealed significantly decreased expression of chitin synthase-encoding genes, which are involved in fungal cell wall integrity, in the Mogrr1 mutants. The Mogrr1 mutants also displayed reduced expression of central components of the MAP kinase and cAMP signaling pathways, which are required for appressorium differentiation. Furthermore, domain complementation analysis indicated that two putative protein-interacting domains in MoGrr1 play essential roles during fungal development and pathogenicity. Taken together, our results suggest that MoGrr1 plays essential roles in fungal development and is required for the full virulence of M. oryzae.  相似文献   

17.
18.
19.
The activity of protein O‐mannosyltransferases (Pmts) affects the morphogenesis and virulence of fungal pathogens. Recently, PMT genes have been shown to determine the sensitivity of Saccharomyces cerevisiae to the antifungal peptide PAF26. This study reports the identification and characterization of the three Pdpmt genes in the citrus post‐harvest pathogen Penicillium digitatum. The Pdpmt genes are expressed during fungal growth and fruit infection, with the highest induction for Pdpmt2. Pdpmt2 complemented the growth defect of the S. cerevisiae Δpmt2 strain. The Pdpmt2 gene mutation in P. digitatum caused pleiotropic effects, including a reduction in fungal growth and virulence, whereas its constitutive expression had no phenotypic effect. The Pdpmt2 null mutants also showed a distinctive colourless phenotype with a strong reduction in the number of conidia, which was associated with severe alterations in the development of conidiophores. Additional effects of the Pdpmt2 mutation were hyphal morphological alterations, increased sensitivity to cell wall‐interfering compounds and a blockage of invasive growth. In contrast, the Pdpmt2 mutation increased tolerance to oxidative stress and to the antifungal activity of PAF26. These data confirm the role of protein O‐glycosylation in the PAF26‐mediated antifungal mechanism present in distantly related fungal species. Important to future crop protection strategies, this study demonstrates that a mutation rendering fungi more resistant to an antifungal peptide results in severe deleterious effects on fungal growth and virulence.  相似文献   

20.
Calcineurin is highly conserved and regulates growth, conidiation, stress response, and pathogenicity in fungi. However, the functions of calcineurin and its regulatory network in entomopathogenic fungi are not clear. In this study, calcineurin was functionally analyzed by deleting the catalytic subunit MaCnA from the entomopathogenic fungus Metarhizium acridum. The ΔMaCnA mutant had aberrant, compact colonies and blunt, shortened hyphae. Conidia production was reduced, and phialide differentiation into conidiogenous cells was impaired in the ΔMaCnA mutant. ΔMaCnA had thinner cell walls and greatly reduced chitin and β-1,3-glucan content compared to the wild type. The ΔMaCnA mutant was more tolerant to cell wall-perturbing agents and elevated or decreased exogenous calcium but less tolerant to heat, ultraviolet irradiation, and caspofungin than the wild type. Bioassays showed that ΔMaCnA had decreased virulence. Digital gene expression profiling revealed that genes involved in cell wall construction, conidiation, stress tolerance, cell cycle control, and calcium transport were downregulated in ΔMaCnA. Calcineurin affected some components of small G proteins, mitogen-activated protein kinase, and cyclic AMP (cAMP)-protein kinase A signaling pathways in M. acridum. In conclusion, our results gave a global survey of the genes downstream of calcineurin in M. acridum, providing molecular explanations for the changes in phenotypes observed when calcineurin was deleted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号