首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: What are the effects of fire in native shrubland communities and in pine plantations established in these shrublands? Location: Northern Patagonia, Argentina. Methods: We surveyed four sites in Chall‐Huaco valley, located in northwest Patagonia. Each site was a vegetation mosaic composed of an unburned Pinus ponderosa plantation, a plantation burned in 1996, and an unburned matorral and a matorral burned by the same fire. We recorded the cover of all vascular plant species. We also analysed species richness, total cover, proportion of exotic species, abundance of woody species and herb species, cover of exotic species, abundance of woody and herb species and differences in composition of species. For both shrubs and tree species we recorded the main strategy of regeneration (by resprouting or by seed). Results: We found that fire had different effects on native matorral and pine plantations. Five years after fire, plantations came to be dominated by herbs and exotic species, showing differences in floristic composition. In contrast, matorral communities remained very similar to unburned matorral in terms of species richness, proportion of woody species, and herb species and proportion of exotics. Also, pine plantations were primarily colonized by seedlings, while matorrals were primarily colonized by resprouting. Conclusions: Matorrals are highly fire resilient communities, and the practice of establishing plantations on matorrals produces a strong reduction in the capacity of matorral to return to its original state. The elimination of shrubs owing to the effect of plantations can hinder regeneration of native ecosystems. Burned plantations may slowly develop into ecosystems similar to the native ones, or they may produce a new ecosystem dominated by exotic herbs. This study shows that plantations of exotic conifers affect native vegetation even after they have been removed, as in this case by fire.  相似文献   

2.
南岭国家级自然保护区林下植物分布的地形相关性   总被引:3,自引:0,他引:3  
以南岭国家级自然保护区山地森林群落林下植物为研究对象,探讨地形因子对林下植物分布的影响。该区3个海拔高度下的山地常绿阔叶林林下植物组成丰富,但个体多度在样方中的分布存在很大的空间异质性。在9000m^2的样地中设置的450个4m^2小样方,共记录到林下维管植物255种,隶属于95科、181属,总的物种个体多度为18203株。多响应置换过程(MRPP)分析表明,坡向和海拔(p〈0.0001)及坡度(p〈0.05)这3个地形因子对林下植被分布有显著的影响,其影响程度大小排序为:海拔〉坡向〉坡度。指示种分析(ISA)进一步确定了不同地形条件下具有显著指示值(IV≥50)的指示种。本项研究表明林下植物的空间分布会同时受到多个地形因子的影响,因此需综合各因子间的相互作用全面考虑;同时,MRPP结合ISA对于揭示群落植物分布的空间异质性及其与环境因子作用的相互关系、生物多样性保育、森林恢复以及造林引种等方面均有着重要的理论意义和实践价值。  相似文献   

3.
胡相明  程积民  万惠娥  赵艳云 《生态学报》2006,26(10):3276-3285
在黄土丘陵区,地形因素和土壤水分是决定草地景观格局的主要因素,同时草地景观格局在不同尺度上影响着景观中的流.地形因素、土壤水分和草地结构在不同尺度上有着密切的联系,研究它们之间的关系对于了解生态系统的过程十分重要.针对黄土高原异质化的草地群落结构,选取黄土丘陵区经过20多年自然封育形成的天然草地,从坡面尺度对景观格局进行了调查研究,在地形因素、土壤水分和草地结构中选取了有代表性的指标14个,用多元统计分析对选取的指标进行了主成分分析和聚类分析.聚类分析将样方分成3种植被类型,不同植被类型的海拔、坡度、20~140cm土壤含水量以及物种丰富度和生物多样性存在显著性差异.相关分析表明:海拔对0~300cm土壤含水量影响显著;海拔对草地群落盖度,坡位、坡向对草地群落的物种丰富度和生物多样性有着重要影响;而草地群落的物种丰富度和生物多样性与0~100cm土层的含水量关系密切.  相似文献   

4.
外来物种入侵严重威胁着乡土植物多样性并削弱了生态系统服务功能。本文基于滇西北怒江河谷植被调查的样方数据, 从群落水平研究了乡土和入侵植物多样性的空间分布格局, 以及地形、气候、人类干扰等因子对两种格局的影响。本研究共记录到外来入侵植物26种, 隶属于13科21属; 乡土植物1,145种, 分属于158科628属。沿着怒江河谷, 入侵植物物种丰富度随纬度与海拔的增加而减少; 乡土物种丰富度则随纬度增加而增加, 并在海拔梯度上呈单峰格局。运用广义线性模型分析公路边缘效应(反映生境干扰)、气候、地形和土壤等环境因素对物种丰富度分布格局的影响。等级方差分离的结果显示, 公路两侧的生境干扰对入侵种和乡土种的丰富度格局均具有首要影响。在自然环境因子中, 降水量是入侵植物丰富度的主要限制因子, 而乡土物种丰富度则主要受到地形因子尤其是坡向的影响。结构方程模型的分析结果也表明, 乡土植物和入侵植物丰富度之间的负相关关系反映了二者对环境响应的差异。本文结果支持物种入侵的资源可利用性限制假说, 并强调了人类活动对生物多样性的负面影响; 乡土植物或已较好地适应了干旱河谷气候, 但并没有显示出对外来物种入侵的抵抗作用。  相似文献   

5.
生物多样性的空间分布及其相关机制一直是生态学、生物地理学和保护生物学研究的热点问题。山地生态系统生境异质性和生物多样性高, 适合研究生物多样性空间分布及其相关机制。喜马拉雅山脉位于青藏高原南缘, 是全球生态热点区域。其地形复杂, 海拔落差大(100-8,844 m), 具有明显的垂直气候带。本研究通过整合野外调查和文献资料, 系统地分析了10目23科160属313种喜马拉雅山地区哺乳动物物种多样性的垂直分布格局, 发现该区域哺乳动物总体及其子集的物种多样性垂直分布格局都为左偏倚的中峰格局, 物种多样性在海拔900-1,400 m之间最高, 不同物种子集的物种多样性垂直分布格局的模式有所不同。UPGMA聚类分析表明, 喜马拉雅山地区哺乳动物群落沿海拔梯度可以划分为5个聚类簇(海拔100-1,500 m、1,500-2,000 m、2,000-3,000 m、3,000-4,200 m以及4,200-6,000 m的地区), 大致与该地区植被的垂直带分布相吻合。喜马拉雅山地区哺乳动物物种多样性在中低海拔最为丰富, 可能跟东洋界与古北界生物群扩散后的交汇地带相关。喜马拉雅山区贯通南北的沟谷是生物扩散和迁移的通道, 沟谷内水热资源较好, 气候稳定性高, 为高山生态系统内各种生物创造了栖息条件。综上, 喜马拉雅山沟谷地区是生物多样性热点地区, 也是生物扩散和交流关键的“生态走廊”, 应加强对喜马拉雅山沟谷地区的保护, 以维系该区域较高的生物多样性。  相似文献   

6.
Diversity is mainly determined by climate and environment. In addition, topography is a complex factor, and the relationship between topography and biodiversity is still poorly understood. To understand the role of topography, i.e., altitude and slope, in biodiversity, we selected Jinggangshan Mountain (JGM), an area with unique topography, as the study area. We surveyed plant and animal species richness of JGM and compared the biodiversity and the main geographic characteristics of JGM with the adjacent 4 mountains. Gleason’s richness index was calculated to assess the diversity of species. In total, 2958 spermatophyte species, 418 bryophyte species, 355 pteridophyte species and 493 species of vertebrate animals were recorded in this survey. In general, the JGM biodiversity was higher than that of the adjacent mountains. Regarding topographic characteristics, 77% of JGM’s area was in the mid-altitude region and approximately 40% of JGM’s area was in the 10°–20° slope range, which may support more vegetation types in JGM area and make it a biodiversity hotspot. It should be noted that although the impact of topography on biodiversity was substantial, climate is still a more general factor driving the formation and maintenance of higher biodiversity. Topographic conditions can create microclimates, and both climatic and topographic conditions contribute to the formation of high biodiversity in JGM.  相似文献   

7.
中国黑戈壁植物多样性分布格局及其影响因素   总被引:10,自引:0,他引:10  
我国西北地区内陆分布着近20万km~2的黑戈壁,由于其环境的特殊性,使其具有独特的生态系统,境内分布着多样的植被,蕴藏着大量特有的自然资源。但由于自然环境苛刻与交通条件不便,目前我国关于黑戈壁区系统的植被与物种多样性的研究还很缺乏。针对黑戈壁区植物多样性组成与分布特点,基于遥感及实地调查,采用DCCA排序和半变异函数模型等分析方法,对黑戈壁区植物群落组成,植物多样性特点及影响因素进行分析。研究结果表明:研究区植物以藜科和蒺藜科灌木或半灌木为主,群落物种生活型具有逐渐趋于简单甚至单一的特性,重要值0.1的植物主要有梭梭、红砂、白刺等13种;群落物种多样性呈现区域性的斑块化分布,结构性因子引起的物种多样性空间异质性占主导地位;作为极端干旱区,该区植物群落类型具有贫乏化及单一化的趋势,群落结构简单,植被覆盖度低,植物生长随环境的变化具有明显的可塑性,群落空间分异明显,群落空间演变具有明显的水分及土壤结构梯度;DCCA结果显示气候、土壤、地形是群落物种及类型变化的主要原因,海拔、坡位、土壤机械组成、降水、温度等环境因子对群落有着显著的影响,水土条件的空间异质性是戈壁植物多样性维持的关键因素。  相似文献   

8.
This study examined the effects of topographic and edaphic conditions on alpine plant species distribution along a slope gradient on Mt. Norikura (3026 m a.s.l.), central Japan. Topographic and edaphic factors investigated at 40 plots were: slope inclination, ground surface texture, soil water content and soil inorganic nitrogen concentration (NO3-N, NH4-N). The topographic and edaphic factors changed with slope positions: slope inclination was steeper, soil texture was coarser, and soil water and inorganic nitrogen concentration decreased with increasing slope position. Five vegetation types were located along the slope gradient and related to two factor-groups: (1) changes in soil water, NH4-N, slope inclination along the slope gradient, and (2) ground surface texture. A tall herbaceous plant community developed at the low slope position, near tarns, with fine soil surface texture, high soil water and NH4-N, while Dicentra peregrina dominated on an unstable rubble slope near the ridge top. The distribution of each species was predictable from the two factor-groups. Although the five vegetation types were related to the two factor-groups, responses to the two factor-groups differed among species, even within the same vegetation type. Therefore, this study showed that the topography of the terrain largely regulated alpine plant distribution by affecting edaphic conditions, and that global warming may alter species composition by changing edaphic conditions.  相似文献   

9.
黄土残塬沟壑区流域次生植被物种分布的地形响应   总被引:1,自引:0,他引:1  
研究流域次生植被物种对地形因子的响应规律,识别影响次生植被物种分布的主要地形因子,是流域近自然植被生态恢复和重建的基础。采用ArcGIS空间分析模块和地形分析模块TauDEM,并与统计软件SPLUS2000中的GRASP工具相结合,建立了位于黄土高原残垣沟壑区山西省吉县蔡家川流域次生植被各个物种分布基于地形因子的广义相加模型(GAM)。模型中的地形因子包括:海拔、坡向、坡度、平面曲率、坡位指数(SPI)、地形湿度指数(TWI)、单宽汇水面积(SCA)等。受试者操作特征曲线(ROC)测试中AUC值表明:大部分测试物种(约62%)拟合模型效果较好,且模型较为稳定。总体来看,研究流域次生植被物种分布体现了水分限制的空间分异特征:阴坡各物种分布概率较大,且随海拔升高而减小。影响研究流域次生植被物种空间分布的潜在重要因子为海拔和坡向,而单宽汇水面积(SCA)和地形湿度指数(TWI)虽然是多个物种响应模型的预测因子,但受高一级尺度海拔的影响,SCA与TWI对物种分布的影响作用较小;坡度影响作用最小。据此,在流域植被恢复和防护林建设目标区选择及立地条件划分时应首先以海拔和坡向为依据,单宽汇水面积(SCA)和地形湿度指数(TWI)则可以作为次一级立地分类依据,而坡度则仅能作为最后一级的分类依据。  相似文献   

10.
In order to clarify how vegetation types change along the environmental gradients in a cool temperate to sub-alpine mountainous zone and the determinant factors that define plant species richness, we established 360 plots (each 4 × 10 m) within which the vegetation type, species richness, elevation, topographic position index (TPI), slope inclination, and ground light index (GLI) of the natural vegetation were surveyed. Mean elevation, TPI, slope inclination, and GLI differed across vegetation types. Tree species richness was negatively correlated with elevation, whereas fern and herb species richness were positively correlated. Tree species richness was greater in the upper slope area than the lower slope area, whereas fern and herb species richness were greater in the lower slope area. Ferns and trees species richness were smaller in the open canopy, whereas herb species richness was greater in the open canopy. Vegetation types were determined firstly by elevation and secondary by topographic configurations, such as topographic position, and slope inclination. Elevation and topography were the most important factors affecting plant richness, but the most influential variables differed among plant life-form groups. Moreover, the species richness responses to these environmental gradients greatly differed among ferns, herbs, and trees.  相似文献   

11.
放牧对内蒙古典型草原α、β和γ多样性的影响机制   总被引:2,自引:0,他引:2       下载免费PDF全文
人类活动干扰对生物多样性和生态系统功能的影响机制是近年来生态学研究的一个热点问题。该研究以内蒙古锡林郭勒草原生态系统国家野外科学观测研究站的大型放牧控制实验为平台, 系统地研究了不同降水(丰水年份和平水年份)和地形(平地和坡地)条件下, 放牧对典型草原不同空间尺度植物多样性(α、β和γ多样性)的影响。研究发现: (1)降水和地形条件及其交互效应对植物多样性有明显的影响, 丰水年份的α、β和γ多样性均高于平水年份; 降水和地形条件存在交互效应, 平水年份坡地系统的α多样性高于平地系统, 丰水年份平地系统的α和γ多样性高于坡地系统, 而地形对β多样性并没有显著影响; (2)随着放牧强度的增加, 平地和坡地的α多样性均呈逐渐下降的趋势, 不同植物群落成员型(优势种、常见种和稀有种)对放牧的响应及其对α多样性的贡献不同, 其中稀有种对α多样性的贡献最大, 常见种次之, 优势种最小; (3) γ多样性对放牧强度的响应受地形条件的影响, 随着放牧强度的增加, 平地γ多样性呈逐渐下降的趋势, 而坡地γ多样性呈现先减少后增加的趋势; (4)平地β多样性随放牧强度的增加而逐渐减小, 而坡地并没有明显的规律。该研究表明, 植物多样性对放牧的响应受降水和地形因素的调控, 平地对放牧的缓冲能力强于坡地, 干旱会加剧过度放牧对生物多样性的影响; 稀有种对于草地生态系统的多样性维持具有重要意义。因此, 在确定合理的放牧强度时, 应结合降水和地形条件。在平水年份需加强平地系统植物多样性的保护, 而在丰水年份需加强坡地系统植物多样性的保护, 从而实现草地资源的可持续性利用。  相似文献   

12.
丹江口水库水滨带植物群落空间分布及环境解释   总被引:1,自引:0,他引:1  
刘瑞雪  陈龙清  史志华 《生态学报》2015,35(4):1208-1216
探讨了环境因素对丹江口水库(南水北调中线水源地)水滨带植物群落空间分布的影响。通过对水滨带植物群落和环境因素的实地调查,用双向指示种分析(TWINSPAN)对201个水滨带植物群落进行分类;结合地形、土壤和水文因素用除趋势典范对应分析法(DCCA)分析环境因素对水滨带植物群落的影响;并对环境因素的解释能力进行定量分离。结果表明:(1)水滨带植物群落包括7种类型,分别是萹蓄群落、苘麻群落、细叶水芹+狗牙根群落、狗牙根群落、响叶杨-狗牙根群落、杜梨-白刺花-狗牙根群落和侧柏-牡荆-三穗苔草群落;(2)海拔和水淹影响对水滨带植物群落空间分布具有主导作用。海拔升高,水淹影响减弱,植物群落呈现由草本植物群落向木本植物群落变化的格局;(3)土壤因素的解释能力大于地形因素,水文因素的解释能力最小。各类环境因素之间存在交互作用,地形、水文和土壤因素三者间的交互作用最大,地形和土壤因素之间的交互作用最小。环境因素共解释水滨带植物群落空间分布的21.99%,未解释部分为78.01%。结果证明环境对植被的解释能力是由植被的复杂程度决定的,植被越复杂,环境的解释能力越低。  相似文献   

13.
At landscape and regional scales topography is recognized as one of the most important determinants of vascular plant diversity, primarily due to the influence of mountains. As temperature changes markedly over the elevation ranges in mountain areas, topography offers a wide variety of different habitats as well as buffering against climate change. However, for local vegetation, notably in lowland areas, the general importance of topography is less well recognized and the mechanisms by which it exerts influence on local vascular plant diversity are not comprehensively understood. In this review, we provide an overview of the evidence for the different mechanisms involved in topography’s control of local patterns in potential vegetation drivers, namely incident solar energy, wind exposure, hydrology, geochemistry, and biotic conditions. Furthermore, we review the processes through which these factors shape local terrestrial vascular plant diversity patterns and provide directions for future studies on this topic. We find that topography is an important factor for local vascular plant diversity patterns in a broad range of habitats throughout the world, even in relatively flat lowlands. However, the mechanisms involved are varied and complex. Local patterns in soil moisture seem to be affected by topography through more mechanisms than other topographically controlled factors and have a strong and consistent influence on local plant diversity. Hence, local hydrology is probably the main mechanistic factor through which topography influences local terrestrial vascular plant diversity patterns. Future research should focus on employing high‐coverage fine‐resolution topographic data to comprehensively explore the role of topography in controlling local dynamics over large areas. Moreover, we recommend including several different habitats, particularly those in which the role of topography is poorly understood. Finally, we propose to integrate relevant functional topographic variables such as topographic wetness indices instead of simple topographic measures into future investigations.  相似文献   

14.
The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300m neighbourhood) was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic predictors across the range of study mosaics, indicating that the same pattern of grass and forest seems to be generated by different sets of mechanisms across the region, depending on spatial scale and elevation.  相似文献   

15.
2000-2016年秦岭山地植被覆盖变化地形分异效应   总被引:5,自引:0,他引:5  
赵婷  白红英  邓晨晖  孟清  郭少壮  齐贵增 《生态学报》2019,39(12):4499-4509
利用2000-2016年MODIS NDVI数据,采用趋势分析及地形差异修正法,探讨秦岭山地植被覆盖变化在南北坡、不同海拔以及不同坡度坡向下的空间分异性。结果表明:近17年来,秦岭山地植被覆盖度良好,整体呈上升趋势,南北坡、不同海拔、不同坡度、不同坡向下植被覆盖度有所差异,植被变化趋势也不同。(1)就南北坡而言,近17年来秦岭南坡植被覆盖度上升趋势大于北坡,南坡植被覆盖以上升趋势为主,而北坡以稳定为主。(2)不同的海拔高度上秦岭山地植被覆盖变化在存在分异性:低海拔区域呈减少趋势,中海拔区呈明显的上升趋势,2000 m以上的高海拔区域北坡的植被覆盖度较为稳定,而南坡的2500到3100 m区域内有较明显的减小趋势。(3)从坡度来看,随着坡度的增加秦岭山地植被覆盖度由减少转为增加再转为稳定,南北坡植被变化分异性不明显。(4)不同坡向上,秦岭南北坡植被覆盖度变化差异明显,由阴坡转为阳坡时,北坡植被覆盖有明显的增长趋势,而南坡则不明显,植被覆盖度减小区在南北坡的分布呈相反趋势,分别分布在南坡的阳坡以及北坡的阴坡。  相似文献   

16.
Thirteen study sites were selected to cover the dominant vegetation types on the plateaux of three summits in the North Pennines, England The spider community of these sites were sampled by pitfall trapping between April and October 1991 Several environmental variables were collected for each site, including local topography, soil characteristics and vegetation structure Multivariate methods were used to classify the sites based on their spider species composition Canonical correspondence analysis was used to assess the influence of the external factors on the distribution of the species The results suggest that vegetation density is the major factor influencing spider distribution on the summit plateaux with slope and soil depth also contributing to the variation Three spider associations for the plateaux are proposed based on their common species composition Two short Festuca grassland assemblages and a Nardus/ Ertophorum spp assemblage associated with higher vegetation density The habitat preferences of some species common to the plateaux are discussed in light of the results, and compatisons are made with studies from other upland areas  相似文献   

17.
基于中国科学院亚热带农业生态研究所在木论国家级自然保护区借鉴CTFS标准建立的2hm2喀斯特常绿落叶阔叶混交林动态监测样地(50个20m×20m样方),选取代表木本植物群落、土壤性质和地形因子的22个指标,对其总体特征及三者之间的相互关系进行了经典统计分析、主成分分析、聚类分析与典型相关分析。结果表明,喀斯特常绿落叶阔叶混交林生态系统的景观异质性强、土壤养分含量高、物种丰富且结构合理,除海拔、Simpson指数、均匀度、pH之外的18个指标均呈中、强变异;综合土壤因子是影响生态系统的主要因子群,其次是综合群落多样性因子和结构性因子,综合地形因子的作用相对较弱;4种不同类型真实而直观地表征了群落类型、土壤肥力和地形的差异,相对优化的第3种类型主要分布在海拔较高、裸石率较大、坡度较高的阴坡中上部;植被、土壤、地形两两之间均存在着较高的相关性,植被与土壤因子之间,有机质、氮、磷起较大的作用,主要影响群落结构,植被和地形之间,坡向和岩石裸露率影响群落结构和物种丰富度,而坡向和坡位直接导致了土壤有机质、全氮、有效磷和pH的变化。  相似文献   

18.
Tropical arid to semi‐arid ecosystems are nearly as diverse as more humid forests and occupy large parts of the tropics. In comparison, however, they are vastly understudied. For instance, fog precipitation alone supports a unique vegetation formation, locally termed lomas, on coastal mountains in the Peruvian desert. To effectively protect these highly endemic and threatened ecosystems, we must increase our understanding of their diversity patterns in relation to environmental factors. Consequently, we recorded all vascular species from 100 random 4 × 4 m plots on the fog‐exposed southern slope of the mountain Mongón. We used topographic and remotely sensed covariates in statistical models to generate spatial predictions of alpha diversity and plant species' distribution probabilities. Altitude was the most important predictor in all models and may represent fog moisture levels. Other significant covariates in the models most likely refer also to water availability but on a finer spatial scale. Additionally, model‐based clustering revealed five altitudinal vegetation zones. This study contributes to a better spatial understanding of the biodiversity and spatial arrangement of vegetation belts of the largely unknown but highly unique lomas formations. Furthermore, mapping species richness and plant species' distributions could support a long‐needed lomas strategic conservation scheme.  相似文献   

19.
大别山地区植物资源丰富,区系组成复杂且起源古老,为连接华东、华北和华中三大植物区系的纽带,也是我国重要的生物多样性保护和水源涵养生态功能区。采用样方法,在大别山南坡的多枝尖、庵基坪和麒麟沟3个地区,沿着不同海拔高度选取了具有代表性的森林植物群落进行研究,从不同植物群落类型和层次的物种多样性、均匀度和丰富度及其与海拔因子的关系等方面,对大别山南坡的森林植物群落物种多样性进行综合分析。结果表明:1. 共记录有植物108科270属449种,划分为20个森林植物群落类型;2. 森林植物群落各层次物种丰富度表现为草本>乔木>灌木;Shannon-Wiener多样性指数和Simpson多样性指数呈现出乔木>灌木>草本;Pielou均匀度指数变化较为复杂;3. 森林植物群落各层次的物种丰富度随海拔升高而下降;Shannon-Wiener指数和Simpson指数也表现为随着海拔升高而下降,但草本层在1400m之后有上升的趋势。Pielou指数在乔木层中表现为随着海拔的升高而下降,在草本层中表现为先下降后出现上升,在灌木层中则随着海拔的升高而上升,但其波动更为剧烈。本研究对大别山南坡森林植被大范围的采样观测研究,能够全面的展现大别山南坡森林植物的种类分布、空间组成等整体概况及其与海拔因子的关系,能为以后大别山南坡生物多样性的保护提供较为全面真实的数据,从而为大别山地区生物多样性的保护和可持续利用提供理论依据和实践意义。  相似文献   

20.
Restored grasslands and shrublands are integral parts of the semi-natural landscape and are of major importance for biodiversity in the northern Loess Plateau. Determining the underlying factors that control the richness and composition of herbaceous species in restored grasslands and shrublands is urgently needed. Thus, the specific objective of this study was to evaluate the relative importance of soil, plant, and topographic explanatory variables affecting the richness and composition of herbaceous species in restored shrubland and grassland ecosystems in a typical watershed within the northern Loess Plateau. In this study, 27 restored grassland sites and 16 restored shrubland sites were sampled during September 2009. Using variation partitioning (partial canonical correspondence analysis), we determined the individual and shared effects of these three sets of explanatory variables on herbaceous biodiversity in the two restored habitats. Most of the explained variation in plant diversity was related to the pure effect of soil, plant, and topographic variables. Restored shrublands had significantly more species than grasslands, and abandoned dam farmlands had significantly more species than other grassland sites. Moreover, botanical diversity responded differently to the explanatory variables in different plant communities. The pure effects of soil properties, soil moisture in particular, accounted for the largest fractions of explained variation in species diversity in restored grasslands. Both plant and topographic variables had balancing pure effects on species diversity in restored shrublands, in particular the shrub density and slope angle. We conclude that the maintenance of a moderate density of shrubs (less than 3600 shrubs per ha), construction of check-dams, and grazing at a low stocking rate, taking conditions of soil and topographic site into account, may help to conserve biodiversity in the northern Loess Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号