首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The ganglioside composition of the brain of a patient with Tay-Sachs disease (TS-brain) was determined by a newly developed ganglioside-mapping procedure and compared with that of an age-matched control brain. GM2 ganglioside was the predominant component in TS-brain and the following gangliosides were also found, GM1, GD1a, GD1b and GT1 (major gangliosides in normal brain), and GM3, GD3, GD2 and GD1a-GAN (minor or undetectable components of normal brain). Individual gangliosides were isolated by column chromatography using a combination of DEAE-Sepharose, Iatrobeads and Silica Gel 60 and their structures were confirmed by comparing them with authentic standards using TLC, analysing their carbohydrate compositions by gas-liquid chromatography and cleaving them sequentially with glycosidases. The amounts of individual components were measured by quantitative densitometric scanning of the thin-layer plates. As a reflection of myelin breakdown, no sialosylgalactosyl ceramide was detectable in TS-brain. Although the total amounts of all gangliosides except GM2 in TS-brain were low, there were normal molar ratios of the main gangliosides in normal brain, that is, GM1, GD1a, GD1b and GT1. In comparison with the amount of GDla ganglioside, the amounts of GM2, GD2 and GD1a-GAN, which contain N-acetylgalactosamine as a terminal carbohydrate residue, were all elevated in TS-brain. The long chain bases of individual gangliosides contained both C-18 and C-20 sphingosine in different ratios and the ratio of C-20 to C-18 increased in the gangliosides in the order: GM2 < GM1 < GD1a < GD1a-GAN < GD1b < GT1 in both normal brain and TS-brain. In contrast, GD2 and GD3 gangliosides consisted mainly of C-18 sphingosine. The C-20 to C-18 ratios of individual gangliosides in the TS-brain were lower than those of age-matched control brain. Hexosaminidase from Turbo cornutus showed the same specific activity and Km value in catalysing the cleavage of terminal N-acetylgalactosaminyl residues from GM2, GD2 and GD1a-GAN, suggesting that the brain gangliosides that increase in Tay-Sachs disease may be cleaved by the same enzyme.  相似文献   

2.
A method for the detection of GM1b-type gangliosides in complex mixtures of gangliosides was developed. The procedure involves separation of gangliosides on high-performance thin-layer chromatography plates, fixation of the silica gel, treatment with neuraminidase from Vibrio cholerae in the absence of detergent, and incubation of the plates with GgOse4Cer-specific antibodies. Alkaline phosphatase-conjugated second antibodies are used to visualize bound first antibodies by generating a blue dye from 5-bromo-4-chloro-3-indolylphosphate. The procedure is capable of detecting as little as 30 ng of gangliosides. Gangliosides from murine T lymphocytes and from human brain served as examples. Besides GM1b, GD1 alpha is also detectable by this method, whereas the human brain gangliosides GM1a, GD1a, GD1b, and GT1b are not, because they are neuraminidase resistant. Since terminally sialylated gangliosides such as GM1b were described as virus receptors, and certain other terminally sialylated gangliosides are discussed as tumor markers, this method should be useful to screen gangliosides from different tissues or cell lines for the presence of such components, especially if only small amounts of material are available.  相似文献   

3.
The ganglioside composition of the brain from an individual with classical Tay-Sachs disease and from an individual with Sandhoff disease was examined using our new quantitative methods for ganglioside content determination and compared with that of age-matched control brains. The concentration of GM2 was found to be 12.2 and 13.0 mumol/g of fresh tissue in Tay-Sachs disease and in Sandhoff disease cerebral gray matter, respectively. GM2 was 86 and 87% respectively, of total gangliosides. The concentration of GM1 and, in particular, GM3 ganglioside was also found to be increased, whereas the concentration of the major di- and trisialogangliosides (GD1a, GD1b, and GT1b) had diminished markedly. There was no significant increase in level of any other ganglioside than lyso-GM2. Its concentration was 12 and 16 nmol/g in cerebral gray matter of two Tay-Sachs disease brains and 43 nmol/g in Sandhoff disease brain. The Sandhoff disease brain also differed from the classical Tay-Sachs disease brain by having a much higher concentration of gangliotriaosylceramide and globotetraosylceramide. The structures of relevant gangliosides and neutral glycolipids were established by fast atom bombardment-mass spectrometry and permethylation studies.  相似文献   

4.
We report here on the introduction of mass spectrometry (MS) for profiling of native gangliosides from an extracranial tumor. The analytical approach was based on a modern platform combining the superior sensitivity and reproducibility of fully automated chip-based nanoelectrospray ionization (nanoESI) with the high resolution and mass accuracy provided by a hybrid quadrupole time-of-flight (QTOF) instrument. The feasibility of the method for the analysis of gangliosides, which are much less expressed in extracranial tissues, was here tested using as the model substrate an adrenal neuroblastoma (NB) specimen located in the abdominal region of a 2-year-old infant. Under properly optimized conditions, MS profiling revealed information on at least 61 different gangliosides exhibiting heterogeneity of the glycan and lipid compositions. NB was found dominated by species bearing short-chain oligosaccharide cores with a reduced overall Neu5Ac content. By chip–nanoESI MS, preceding findings related to the GD2 role in NB were confirmed. Moreover, the screening experiments offered novel information supporting the possible biomarker role of GM4, GM3, and GM1 ganglioside classes. Structural analysis of GM1(d18:1/18:2) and GD1(d18:0/19:0) possibly tumor-associated markers, carried out by tandem MS (MS/MS) using collision-induced dissociation (CID) at low energies, indicated that both GM1a and GD1b isomers are present in NB.  相似文献   

5.
Composition of gangliosides from ovine testis and spermatozoa   总被引:1,自引:0,他引:1  
Gangliosides were extracted and purified from ovine testis and ejaculated spermatozoa which contained, respectively, 57 and 9 nmol lipid-bound sialic acid per gram wet weight. Fourteen gangliosides were resolved by thin-layer chromatography of testicular gangliosides, of which eleven were purified in sufficient quantity to enable a complete compositional analysis of the carbohydrate residues to be performed. None of the gangliosides contained fucose, but several contained N-glycolylneuraminic acid as a component of the sialic acid species. Relative migration on thin-layer chromatograms relative to known standards, compositional analysis, and selective degradation by specific enzymes were used as the basis for identification. Testis contained members of the ganglio series (GM1, GD1a, GD1b, GT1b, GQ1b), hematoside series (GM3, GD3), and sialosylparagloboside in the molar ratio of 54:40:6, respectively. Testicular GM3, GM1, GD3, GD1a, GD1b and GT1b ran as double bands on thin-layer chromatography which could be accounted for by observed differences in the fatty acid moiety. In addition, the slower migrating band of each pair contained some or all of its sialic acid residues as N-glycolylneuraminic acid, whereas the faster migrating band contained exclusively N-acetylneuraminic acid, except for GM3 where N-acetylneuraminic acid was the sole species in both bands. Thin-layer chromatography of sperm gangliosides revealed seven bands comigrating with equivalent testicular gangliosides. These coincided with the slower migrating bands of testicular GM3, GM1, GD3, GD1a, both bands of GD1b, and possibly both bands of GT1b. Sperm contained only trace amounts of sialosylparagloboside but, in addition, two unidentified bands which were absent from testis were also observed. The molar ratio of the ganglio series to the hematoside series in sperm was 42:58 with GM3 accounting for 42% of total gangliosides.  相似文献   

6.
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has been applied primarily to the analysis of glycosphingolipids separated from other complex mixtures by TLC, but it is difficult to obtain quantitative profiling of each glycosphingolipid among the different spots on TLC by MALDI-MS. Thus, the development of a convenient approach that utilizes liquid chromatography/electrospray ionization (LC/ESI)-MS has received interest. However, previously reported methods have been insufficient to separate and distinguish each ganglioside class. Here we report an effective method for the targeted analysis of theoretically expected ganglioside molecular species by LC/ESI tandem mass spectrometry (LC/ESI-MS/MS) in combination with multiple reaction monitoring (MRM). MRM detection specific for sialic acid enabled us to analyze ganglioside standards such as GM1, GM2, GM3, GD1, and GT1 at picomolar to femtomolar levels. Furthermore, other gangliosides, such as GD2, GD3, GT2, GT3, and GQ1, were also detected in glycosphingolipid standard mixtures from porcine brain and acidic glycolipid extract from mouse brain by theoretically expanded MRM. We found that this approach was also applicable to sulfatides contained in the glycosphingolipid mixtures. In addition, we established a method to separate and distinguish regioisomeric gangliosides, such as GM1a and -1b, GD1a, -1b, and -1c, and GT1a, -1b, and -1c with diagnostic sugar chains in the MRM.  相似文献   

7.
Mice genetically engineered to lack complex gangliosides are improved hosts for raising antibodies against those gangliosides. We report the generation and characterization of nine immunoglobulin G (IgG)-class monoclonal antibodies (mAbs) raised against the four major brain gangliosides in mammals. These include (designated as ganglioside specificity-IgG subclass) two anti-GM1 mAbs (GM1-1, GM1-2b), three anti-GD1a mAbs (GD1a-1, GD1a-2a, GD1a-2b), one anti-GD1b mAb (GD1b-1), and three anti-GT1b mAbs (GT1b-1, GT1b-2a, GT1b-2b). Each mAb demonstrated high specificity, with little or no cross-reactivity with other major brain gangliosides. Enzyme-linked immunosorbent assay (ELISA) screening against 14 closely related synthetic and purified gangliosides confirmed the high specificity, with no significant cross-reactivity except that of the anti-GD1a mAbs for the closely related minor ganglioside GT1a alpha. All of the mAbs were useful for ELISA, TLC immunooverlay, and immunocytochemistry. Neural cells from wild-type rats and mice were immunostained to differing levels with the anti-ganglioside antibodies, whereas neural cells from mice engineered to lack complex gangliosides (lacking the ganglioside-specific biosynthetic enzyme UDP-GalNAc:GM3/GD3 N-acetylgalactosaminyltransferase) remained unstained, demonstrating that most of the mAbs react only with gangliosides and not with related structures on glycoproteins. These mAbs may provide useful tools for delineation of the expression and function of the major brain gangliosides and for probing the pathology of anti-ganglioside autoimmune diseases.  相似文献   

8.
We systematically examined the effects of gangliosides on the plasma membrane Ca(2+)-ATPase (PMCA) from porcine brain synaptosomes. Our results showed that GD1b (two sialic acid residues) stimulated the activity, GM1 (one sialic acid residue) slightly reduced the activity, while asialo-GM1 (no sialic acid residue) markedly inhibited it, suggesting that sialic acid residues of gangliosides are important in the modulation of the PMCA. We also examined the oligosaccharide effects by using GM1, GM2, and GM3 whose only difference was in the length of their oligosaccharide chain. GM1, GM2, and GM3 reduced the enzyme activities, whereas GM2 and GM3 were potent inhibitors. Gangliosides affect both affinity for Ca(2+) and the Vmax of enzyme. It was observed that GD1b and GM2 increased the affinity of the enzyme for Ca(2+). GD1b, GM2 affected the Vmax with an increase of GD1b, but decreases of GM2. The study of the affinity for ATP and the Vmax of enzyme in the presence of gangliosides showed that GD1b and GM2 had little effect on the ATP binding to the enzyme, but the Vmax was apparently changed. Moreover, the effects of gangliosides are additive to that of calmodulin, suggesting that the modulation of PMCA by gangliosides should be through a different mechanism. The conformational changes induced by gangliosides were probed by fluorescence quenching. We found that fluorescent quenchers (I(-) and Cs(+)) with opposite charges had different accessibility to the IAEDANS binding to the PMCA in the presence of gangliosides. An apparent red shift (25nm) with increased maximum of fluorescence spectrum was also observed in the presence of GD1b.  相似文献   

9.
Two major gangliosides from pig spleen lymphocytes, accounting for 57% of the total lipid-bound sialic acids, were isolated and purified to homogeneity by column chromatography on DEAE-Sephadex and silica gel. They were identified as GM3 (II3Neu5GcLacCer), and GD3 (II3(Neu5Gc)2LacCer), by thin-layer chromatography in comparison with standards and by analysis of the constituent sugars. The major fatty acids of these gangliosides were stearic acid and myristic acid, respectively. In addition to these gangliosides, GD2 and bands comigrating on thin-layer chromatography with authentic GM2, GM1, GD1a and GD1b were found. These compounds also occur in pig peripheral blood lymphocytes, where, however, GD3 represents about 70% of the total lipid-bound sialic acid.  相似文献   

10.
Developmental changes in ganglioside composition and biosynthesis was studied in rat brain between embryonic day (E) 14 and birth. In E14 brains, GM3 and GD3 were predominant. At E16, "b" series gangliosides, such as GD1b, GT1b, and GQ1b, increased in content. After E18, "a" series gangliosides such as GM1, GD1a, and GT1a increased in content, and the content of GM3 and GD3 markedly decreased. Because of these changes in composition, we determined the activities, in homogenates of embryonic brains, of two key enzymes of ganglioside synthesis: sialyltransferase for the synthesis of GD3 from GM3 and N-acetylgalactosaminyltransferase for GM2 synthesis from GM3. The sialyltransferase activity (GM3----GD3) was constant between E14 and E18 but decreased rapidly from E18 to birth. In contrast, the N-acetylgalactosaminyltransferase activity (GM3----GM2) increased between E14 and E18 but was constant from E18 to birth. These changes in ganglioside composition and enzymatic activities indicate that during development there is a shift from synthesis of the simplest gangliosides of the "a" and "b" pathways to synthesis of the more complex gangliosides.  相似文献   

11.
The presence of ganglioside GD1b, in lactone form GD1b-L, was ascertained in rat brain. The possible formation of GD1b-L from GD1b in brain was explored by the intracisternal injection of GD1b, 3H-labelled at the level of the terminal galactose. This was followed by recognition of the radioactive gangliosides formed at different times (1, 3, and 7 days) after injection. Whereas at 0 time after injection the only radioactive ganglioside was GD1b, after 1, 3, and 7 days other radioactive gangliosides were also found, thus indicating GD1b penetration into the brain tissue, followed by metabolic processing. Besides GD1b, the following radioactive gangliosides were recognized: GM1 and GM2, derived from GD1b degradation; GT1b, formed by the direct sialylation of GD1b; and GD1b-L, produced by metabolic lactonization. The radioactivity carried by GD1b-L was maximal 3 days after injection; its time course was different from that of the other gangliosides, suggesting that the process of lactonization is separate from that of both degradation and glycosylation. Under the same experimental conditions, some radioactive gangliosides also appeared in the liver, although in much smaller amounts than in brain. Radioactive GD1b-L could not be detected in liver, thus indicating that metabolic lactonization is a tissue- or organ-specific process.  相似文献   

12.
GM1a [Gal beta1-3GalNAc beta1-4(NeuAc alpha2-3)Gal beta1-4Glc beta1-1Cer] is known to support and protect neuronal functions. However, we report that alpha-linolenic acid-containing GM1a (C18:3-GM1a), which was prepared using the reverse hydrolysis reaction of sphingolipid ceramide N-deacylase, induced apoptosis in neuronal cells. Intranucleosomal DNA fragmentation, chromatin condensation, and caspase activation, all typical features of apoptosis, were observed when mouse neuroblastoma Neuro2a cells were cultured with C18:3-GM1a but not GM1a containing stearic acid (C18:0) or oleic acid (C18:1). The phenotype of Neuro2a cells induced by C18:3-GM1a was similar to that evoked by lyso-GM1a. However, lyso-GM1a caused a complete disruption of lipid microdomains of Neuro2a cells and hemolysis of sheep erythrocytes, whereas C18:3-GM1a did neither. C18:3-GM1a, but not lyso-GM1a, was found to be abundant in lipid microdomains after the removal of loosely bound GM1a by BSA. The activation of stress-activated protein kinase/c-Jun N-terminal kinase in Neuro2a cells was observed with lyso-GM1a but not C18:3-GM1a. These results indicate that the mechanism of apoptosis induced by C18:3-GM1a is distinct from that caused by lyso-GM1a. This study also clearly shows that fatty acid composition of gangliosides significantly affected their pharmacological activities when added to the cell cultures and suggests why naturally occurring gangliosides do not possess polyunsaturated fatty acids as a major constituent.  相似文献   

13.
Ganglioside analysis of human motor and sensory nerves revealed that ceramide compositions of sensory nerve GD1a, GD1b, and GM1 differed apparently from those in the motor nerve. These gangliosides from sensory nerve contained a large amount of long-chain fatty acids and d18:1 as a major long chain base. On the contrary, the motor nerve gangliosides contained C16-18 fatty acids and a large amount of d20:1 besides d18:1. Furthermore, these gangliosides were enriched more in the axon fraction than in the myelin fraction. LM1, which was a major ganglioside in myelin from human peripheral nerve, was composed of similar ceramide compositions in the two nerves. The present findings suggest that the characteristic ceramide species of nerve gangliosides may reflect in part properties of their own neurons.  相似文献   

14.
In this study, age-related changes of GM1, GD1a, GT1b fractions of gangliosides were investigated in whole brain of male Wistar albino rats. Insignificant increases were detected in GM1 values from the third to the 24th month, whereas GD1a and GT1b concentrations of ganglioside in 24-month-old rats decreased significantly as compared to 6-month-old rats. Although there were no significant differences in the GD1a/GT1b ratio of any groups, GM1/GD1a and GM1/GT1b ratios were significantly increased as compared to 6-month-old rats. The increase in the ratios of gangliosides are not due to an increase of GM1 fractions; they result from a decrease of GD1a and GT1b fractions of gangliosides. In conclusion, the concentration of ganglioside decreased with ageing.  相似文献   

15.
Bovine brain microvascular endothelial cells (BMECs) express GM3 (NeuAc) and GM3 (NeuGc) as the major gangliosides, and GM1, GD1a, GD1b, GT1b as well as sialosylparagloboside and sialosyllactosaminylparagloboside as the minor species. To investigate the metabolic basis of this ganglioside pattern, the activities of eight glycosyltransferases (GM3-, GD1a-, GD3-, LM1-, GM2 (NeuAc)-, GM2 (NeuGc)-, LacCer-, and GM1-synthases) in cultured BMECs were studied. It was found that BMECs possessed high activities of GM3- and GD1a-synthases, and low activities of GM2-, GM1-, and GD3-synthases. Thus, the present study provides evidence that endothelial cells are capable of synthesizing gangliosides in situ and that the high content of GM3 in BMEC is closely associated with high activities of GM3-synthase and low activities of GM2-, GM1-, and GD3-synthases.  相似文献   

16.
To elucidate a relationship between the structural properties and hydration characteristic of gangliosides, time-resolved small-angle X-ray scattering measurements using synchrotron radiation have been performed on aqueous dispersions of various types of gangliosides (GM1, GD1a, GD1b and GM3) under a constant heating (5-65 degrees C) and cooling (65-5 degrees C) rate. In the case of GM3, they formed a vesicular aggregate with a high structural reversibility in the heating-and-cooling process. For the micelles of GM1, GD1a and GDlb, we found an evident thermal hysteresis in the structural changes of their headgroups and evaluated quantitatively the amounts of water molecules occluded in the micellar hydrophilic regions by using the shell modeling method reported previously. For all cases of GM1, GD1a and GD1b, the thickness of the hydrophilic region of the micelle shrunk after the heating process, and stayed mostly constant over the entire cooling range. On the other hand, the amounts of water molecules and the behavior of the GM1, GD1a and GD1b micelles in the heating-and-cooling process greatly depended on the number of sialic acid residues in the sugar chain, that is, the penetration of water molecules was much more reversible for the GM1 micelle compared with those for the GD1a and GD1b micelles. The observed clear hysteresis and the hydration characteristics of GD1 gangliosides would relate to their role in neuronal membranes, where GD1 gangliosides show the greatest concentrations.  相似文献   

17.
Gangliosides shed by tumors enhance tumor formation, possibly by suppressing host antitumor immune function, and gangliosides purified from animal tissues and cultured cells inhibit human cellular immune function in vitro. Determination of immunosuppressive activity of highly purified gangliosides, to uncover structure-activity relationships, is therefore important. Here we have studied a series of gangliosides obtained from human tissue and determined their effects on human natural killer (NK) activity. Total gangliosides from human brain tissue were moderately inhibitory; 100 nmol/ml reduced NK activity of human nonadherent PBMC by 43%. The influence of carbohydrate structure upon inhibitory activity was determined by study of eight highly (HPLC) purified individual gangliosides. Of these, we unexpectedly found that the two minor brain gangliosides with the simplest carbohydrate structures, GM2 and GM3, were very active inhibitors (75 and 47%, respectively, at 50 nmol/ml). In contrast, the structurally more complex major species, GM1, GD1a, GD1b, GT1b, and two other minor gangliosides, GD2 and GD3, were inactive. Reduced effector-target binding in a single-cell binding assay by GM2 but not GM3 suggests different mechanisms of inhibition by these two active gangliosides. Since GM2 and GM3 are present in high concentrations in, and are shed by, several common human tumors (e.g., neuroblastoma, melanoma, and glioma), their ability to inhibit NK cytotoxicity supports the hypothesis of a role of shed tumor gangliosides in the enhancement of tumor formation.  相似文献   

18.
The preferred conformation of gangliosides GM3, GM2, GM1, GD1a and GD1b have been studied by computing their potential energies. The conformation of NeuNAc in GM3 differs from that expected for the same residue in GM2 and GM1. The NeuNAc residues in GM2 and GM1 exhibit identical conformations. Theory predicts that the terminal NeuNAc of GD1a is conformationally similar to that of GM3 and that the internal one is similar in conformation to those present in GM2 and GM1 in agreement with NMR studies. The differences in chemical shifts of the C2 and C3 carbons of the internal and terminal NeuNAc of GD1a have been attributed to differences in orientation. The present studies suggest that the binding site of cholera toxin is much smaller than that of tetanus toxin. The preferred shape of these gangliosides correlate well with their biological properties.  相似文献   

19.
Ca(2+)-dependent ganglioside-binding protein was isolated from a soluble cytosol fraction of mouse brains using a ganglioside affinity column prepared with a mixture of bovine brain gangliosides. It was identified as calmodulin based on the following features identical with those of calmodulin: molecular weight, pI, chromatographic profile and amino acid sequences of lysyl-endopeptidase digests, and ability to activate cyclic nucleotide phosphodiesterase. Bovine brain calmodulin derivatized with 5-dimethylaminonaphthalene-1-sulfonyl (dansyl-calmodulin), tetramethylrhodamine isothiocyanate, or biotin was also shown to bind to the ganglioside affinity column Ca2+ dependently and elute with gangliosides GD1a, GD1b, GT1b, GQ1b, GM1, and GM2, melittin, and trifluoperazine but not with GgOse4Cer and oligosaccharides of GM1, GD1a, and GT1b. Modification of the Lys94 residue of calmodulin by biotinylation drastically reduced the capacity for ganglioside binding. Ganglioside GD1b caused a blue shift and increase in intensity of the fluorescence emission spectrum of dansyl-calmodulin in the presence of Ca2+. The increment in fluorescence was proportional to the amount of GD1b added and was maximal at the molar ratio of GD1b to calmodulin, approximately 7.8. Gangliosides are thus shown to specifically bind to calmodulin, and this binding may be a general mechanism for regulating calmodulin-dependent enzymes with consequent cellular response, such as cell differentiation.  相似文献   

20.
Quantification of gangliotetraose gangliosides with cholera toxin   总被引:5,自引:0,他引:5  
A procedure is described for assay of GM1 and other gangliotetraose-type gangliosides at the picomole level. The gangliosides are absorbed onto polystyrene microwells and treated with neuraminidase and then with cholera toxin B subunits conjugated to horseradish peroxidase. Color is developed and quantified spectrophotometrically. Omission of neuraminidase gives a measure of GM1 alone. Linearity was obtained between 0.5 and 3 pmol. This procedure was applied to ganglioside mixtures isolated fron neuro-2A neuroblastoma and PC12 pheochromocytoma cells. For the latter, an additional step involving reaction with fucosidase increased the yield of GM1 due to the presence of fucosylated gangliosides. Application of the same reagents as a TLC overlay procedure to the gangliosides from neuro-2A cells revealed the presence of GD1a, GD1b, and GT1b in addition to GM1, thus confirming the presence of a family of gangliotetraose gangliosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号