首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is widely accepted that functional ATP-binding cassette transporter A1 (ABCA1) is critical for the formation of nascent high density lipoprotein particles. However, the cholesterol pool(s) and the cellular signaling processes utilized by the ABCA1-mediated pathway remain unclear. Sphingomyelin maintains a preferential interaction with cholesterol in membranes, and its catabolites, especially ceramide, are potent signaling molecules that could play a role in ABCA1 regulation or function. To study the potential role of ceramide in this process, we treated a variety of cell lines with 20 microM C2-ceramide and examined apolipoprotein-mediated cholesterol efflux to lipid-free apoA-I. We found that cell lines expressing ABCA1 displayed 2-3-fold increases in cholesterol efflux to apoA-I. Cell lines not expressing ABCA1 were unaffected by ceramide. We further characterized the cholesterol efflux effect in Chinese hamster ovary cells. Ceramide treatment did not cause significant cytotoxicity or apoptosis and did not affect cholesterol efflux to non-apolipoprotein acceptors. Raising endogenous ceramide levels increased cholesterol efflux to apoA-I. Using a cell surface biotinylation method, we found that the total cellular ABCA1 and that at the plasma membrane were increased with ceramide treatment. Also ceramide enhanced the binding of fluorescently labeled apoA-I to Chinese hamster ovary cells. These data suggest that ceramide may increase the plasma membrane content of ABCA1, leading to increased apoA-I binding and cholesterol efflux.  相似文献   

2.
PURPOSE OF REVIEW: The removal of cellular cholesterol and phospholipids to apolipoprotein A-I (apoA-I), facilitated by the membrane transporter ATP-binding cassette transporter A1 (ABCA1), is the rate-limiting step in the formation of high density lipoprotein particles. This review summarizes recent literature concerning the relative contributions of different cellular pools of cholesterol used by ABCA1 in the initial lipidation of apoA-I for high density lipoprotein particle formation. RECENT FINDINGS: Cell culture studies have shown that apart from lipidating apoA-I directly, ABCA1 can also mediate cholesterol delivery indirectly to apoA-I in the plasma membrane. Moreover, it is now clear that the late endosome/lysosome pool of cholesterol is a critical part of the total cholesterol substrate pool for ABCA1. Internalization of ABCA1 appears to be a requirement for maximum ABCA1-mediated cholesterol mobilization for high density lipoprotein formation. SUMMARY: Current evidence suggests that ABCA1-mediated cholesterol efflux to apoA-I involves mobilization of cholesterol from plasma membrane, endoplasmic reticulum, trans-Golgi network, late endocytic and lysosomal compartments, and cholesteryl ester droplets. Apart from lipidating apoA-I directly, ABCA1 has also been found to efflux cholesterol indirectly to apoA-I in plasma membranes.  相似文献   

3.
Efflux of excess cellular cholesterol mediated by lipid-poor apolipoproteins occurs by an active mechanism distinct from passive diffusion and is controlled by the ATP-binding cassette transporter ABCA1. Here we examined whether ABCA1-mediated lipid efflux involves the selective removal of lipids associated with membrane rafts, plasma membrane domains enriched in cholesterol and sphingomyelin. ABCA1 was not associated with cholesterol and sphingolipid-rich membrane raft domains based on detergent solubility and lack of colocalization with marker proteins associated with raft domains. Lipid efflux to apoA-I was accounted for by decreases in cellular lipids not associated with cholesterol/sphingomyelin-rich membranes. Treating cells with filipin, to disrupt raft structure, or with sphingomyelinase, to digest plasma membrane sphingomyelin, did not impair apoA-I-mediated cholesterol or phosphatidylcholine efflux. In contrast, efflux of cholesterol to high density lipoproteins (HDL) or plasma was partially accounted for by depletion of cholesterol from membrane rafts. Additionally, HDL-mediated cholesterol efflux was partially inhibited by filipin and sphingomyelinase treatment. Apo-A-I-mediated cholesterol efflux was absent from fibroblasts with nonfunctional ABCA1 (Tangier disease cells), despite near normal amounts of cholesterol associated with raft domains and normal abilities of plasma and HDL to deplete cholesterol from these domains. Thus, the involvement of membrane rafts in cholesterol efflux applies to lipidated HDL particles but not to lipid-free apoA-I. We conclude that cholesterol and sphingomyelin-rich membrane rafts do not provide lipid for efflux promoted by apolipoproteins through the ABCA1-mediated lipid secretory pathway and that ABCA1 is not associated with these domains.  相似文献   

4.
5.
ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-poor apolipoprotein A-I (apoA-I) and generates HDL. Here, we demonstrate that ABCA1 also directly mediates the production of apoA-I free microparticles. In baby hamster kidney (BHK) cells and RAW macrophages, ABCA1 expression led to lipid efflux in the absence of apoA-I and released large microparticles devoid of apoB and apoE. We provide evidence that these microparticles are an integral component of the classical cholesterol efflux pathway when apoA-I is present and accounted for approximately 30% of the total cholesterol released to the medium. Furthermore, microparticle release required similar ABCA1 activities as was required for HDL production. For instance, a nucleotide binding domain mutation in ABCA1 (A937V) that impaired HDL generation also abolished microparticle release. Similarly, inhibition of protein kinase A (PKA) prevented the release of both types of particles. Interestingly, physical modulation of membrane dynamics affected HDL and microparticle production, rigidifying the plasma membrane with wheat germ agglutinin inhibited HDL and microparticle release, whereas increasing the fluidity promoted the production of these particles. Given the established role of ABCA1 in expending nonraft or more fluid-like membrane domains, our results suggest that both HDL and microparticle release is favored by a more fluid plasma membrane. We speculate that ABCA1 enhances the dynamic movement of the plasma membrane, which is required for apoA-I lipidation and microparticle formation.  相似文献   

6.
ATP-binding cassette transporter A1 (ABCA1) promotes the efflux of cellular cholesterol and phospholipids to apoA-I. We described previously a cytoplasmic PEST sequence in ABCA1 and showed that deletion of the PEST sequence results in a prominent increase in the cell surface concentration of ABCA1. In the current study we evaluated the hypothesis that the PEST sequence-deleted ABCA1 might display defective internalization and trafficking to the late endosomes/lysosomes. As assessed by monensin treatment and cell surface biotinylation, the internalization rate of PEST sequence-deleted ABCA1 (ABCA1-dPEST) was markedly decreased compared with wild-type ABCA1 (ABCA1-wt). Immunofluorescence confocal microscopy of ABCA1-wt showed both plasma membrane localization and substantial co-localization with LAMP2 in late endosomes. In contrast, ABCA1-dPEST showed more prominent plasma membrane localization but little co-localization with LAMP2. To assess cholesterol efflux from late endosomes, HEK293 cells were transiently co-transfected with scavenger receptor A (SR-A) and incubated with [3H]cholesterol/acetyl low density lipoprotein (acLDL). Although ABCA1-dPEST showed higher cholesterol efflux than did ABCA1-wt following cell surface labeling ([3H]cholesterol/acLDL in the absence of SR-A co-transfection), it showed impaired cholesterol efflux after late endosomal labeling ([3H]cholesterol/acLDL in the presence of SR-A). Thus, deletion of the PEST sequence leads to a decrease in the internalization of ABCA1 and decreased cholesterol efflux from late endosomal cholesterol pools, providing evidence that the internalization and trafficking of ABCA1 is functionally important in mediating cholesterol efflux from intracellular cholesterol pools.  相似文献   

7.
ATP binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high density lipoprotein (HDL) metabolism. It is proposed that ABCA1 reorganizes the plasma membrane and generates more loosely packed domains that facilitate apoA-I-dependent cholesterol efflux. In this study, we examined the effects of the cellular sphingomyelin level on HDL formation by ABCA1 by using a Chinese hamster ovary-K1 mutant cell line, LY-A, which has a missense mutation in the ceramide transfer protein CERT. When LY-A cells were cultured in Nutridoma-BO medium and sphingomyelin content was reduced, apoA-I-dependent cholesterol efflux by ABCA1 from LY-A cells increased 1.65-fold compared with that from LY-A/CERT cells stably transfected with human CERT cDNA. Exogenously added sphingomyelin significantly reduced the apoA-I-dependent efflux of cholesterol from LY-A cells, confirming that the decrease in sphingomyelin content in the plasma membrane stimulates cholesterol efflux by ABCA1. The amount of cholesterol available to cold methyl-beta-cyclodextrin (MbetaCD) extraction from LY-A cells was increased by 40% by the expression of ABCA1 and was 1.6-fold higher than that from LY-A/CERT cells. This step in ABCA1 function, making cholesterol available to cold MbetaCD, was independent of apoA-I. These results suggest that the function of ABCA1 could be divided into two steps: (i) a flopping step to move phosphatidylcholine and cholesterol from the inner to outer leaflet of the plasma membrane, where cholesterol becomes available to cold MbetaCD extraction, and (ii) a loading step to load phosphatidylcholine and cholesterol onto apoA-I to generate HDL.  相似文献   

8.
9.
The cholesterol trafficking defect in Niemann-Pick type C (NPC) disease leads to impaired regulation of cholesterol esterification, cholesterol synthesis, and low density lipoprotein receptor activity. The ATP-binding cassette transporter A1 (ABCA1), which mediates the rate-limiting step in high density lipoprotein (HDL) particle formation, is also regulated by cell cholesterol content. To determine whether the Niemann-Pick C1 protein alters the expression and activity of ABCA1, we determined the ability of apolipoprotein A-I (apoA-I) to deplete pools of cellular cholesterol and phospholipids in human fibroblasts derived from NPC1+/+, NPC1+/-, and NPC1-/- subjects. Efflux of low density lipoprotein-derived, non-lipoprotein, plasma membrane, and newly synthesized pools of cell cholesterol by apoA-I was diminished in NPC1-/- cells, as was efflux of phosphatidylcholine and sphingomyelin. NPC1+/- cells showed intermediate levels of lipid efflux compared with NPC1+/+ and NPC1-/- cells. Binding of apoA-I to cholesterol-loaded and non-cholesterol-loaded cells was highest for NPC1+/- cells, with NPC1+/+ and NPC1-/- cells showing similar levels of binding. ABCA1 mRNA and protein levels increased in response to cholesterol loading in NPC1+/+ and NPC1+/- cells but showed low levels at base line and in response to cholesterol loading in NPC1-/- cells. Consistent with impaired ABCA1-dependent lipid mobilization to apoA-I for HDL particle formation, we demonstrate for the first time decreased plasma HDL-cholesterol levels in 17 of 21 (81%) NPC1-/- subjects studied. These results indicate that the cholesterol trafficking defect in NPC disease results in reduced activity of ABCA1, which we suggest is responsible for the low HDL-cholesterol in the majority of NPC subjects and partially responsible for the overaccumulation of cellular lipids in this disorder.  相似文献   

10.
Involvement of Cdc42 signaling in apoA-I-induced cholesterol efflux   总被引:2,自引:0,他引:2  
Cholesterol efflux, an important mechanism by which high density lipoproteins (HDL) protect against atherosclerosis, is initiated by docking of apolipoprotein A-I (apoA-I), a major HDL protein, to specific binding sites followed by activation of ATP-binding cassette transporter A1 (ABCA1) and translocation of cholesterol from intracellular compartments to the exofacial monolayer of the plasma membrane where it is accessible to HDL. In this report, we investigated potential signal transduction pathways that may link apoA-I binding to cholesterol translocation to the plasma membrane and cholesterol efflux. By using pull-down assays we found that apoA-I substantially increased the amount of activated Cdc42, Rac1, and Rho in human fibroblasts. Moreover, apoA-I induced actin polymerization, which is known to be controlled by Rho family G proteins. Inhibition of Cdc42 and Rac1 with Clostridium difficile toxin B inhibited apoA-I-induced cholesterol efflux, whereas inhibition of Rho with Clostridium botulinum C3-exoenzyme exerted opposite effects. Adenoviral expression of a Cdc42(T17N) dominant negative mutant substantially reduced apoA-I-induced cholesterol efflux, whereas dominant negative Rac1(T17N) had no effect. We further found that two downstream effectors of Cdc42/Rac1 signaling, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), are activated by apoA-I. Pharmacological inhibition of JNK but not p38 MAPK decreased apoA-I-induced cholesterol efflux, whereas anisomycin and hydrogen peroxide, two direct JNK activators, could partially substitute for apoA-I in its ability to induce cholesterol efflux. These results for the first time demonstrate activation of Rho family G proteins and stress kinases by apoA-I and implicate the involvement of Cdc42 and JNK in the apoA-I-induced cholesterol efflux.  相似文献   

11.
Apolipoprotein AI (apoAI)-mediated cholesterol efflux is a process by which cells export excess cellular cholesterol to apoAI to form high density lipoprotein. ATP-binding cassette protein A1 (ABCA1) has recently been identified as the key regulator of this process. The pathways of intracellular cholesterol transport during efflux are largely unknown nor is the molecular mechanism by which ABCA1 governs cholesterol efflux well understood. Here, we report that, in both macrophages and fibroblasts, the secretory vesicular transport changes in response to apoAI-mediated cholesterol efflux. Vesicular transport from the Golgi to the plasma membrane increased 2-fold during efflux. This increase in vesicular transport during efflux was observed in both raft-poor and raft-rich vesicle populations originated from the Golgi. Importantly, enhanced vesicular transport in response to apoAI is absent in Tangier fibroblasts, a cell type with deficient cholesterol efflux due to functional ABCA1 mutations. These findings are consistent with an efflux model whereby cholesterol is transported from the storage site to the plasma membrane via the Golgi. ABCA1 may influence cholesterol efflux in part by enhancing vesicular trafficking from the Golgi to the plasma membrane.  相似文献   

12.
A key cardioprotective effect of high-density lipoprotein involves the interaction of its major protein, apolipoprotein A-I (apoA-I) with ATP-binding cassette transporter A1 (ABCA1), a macrophage cholesterol exporter. ApoA-I is thought to remove cholesterol from macrophages by a cascade of events. First it binds directly to ABCA1, activating signaling pathways, and then it binds to and solubilizes lipid domains generated by ABCA1. HDL isolated from human atherosclerotic lesions and blood of subjects with established coronary artery disease contains elevated levels of 3-chlorotyrosine and 3-nitrotyrosine, two characteristic products of myeloperoxidase (MPO), a heme protein secreted by macrophages. Here we show that chlorination (but not nitration) of apoA-I by the MPO pathway impairs its ability to interact directly with ABCA1, to activate the Janus kinase 2 signaling pathway, and to promote efflux of cellular cholesterol. In contrast, oxidation of apoA-I has little effect on its ability to stabilize ABCA1 protein or to solubilize phospholipids. Our results indicate that chlorination of apoA-I by the MPO pathway selectively inhibits two critical early events in cholesterol efflux: (1) the binding of apoA-I to ABCA1 and (2) the activation of a key signaling pathway. Therefore, oxidation of apoA-I in the artery wall by MPO-generated chlorinating intermediates may contribute to atherogenesis by impairing cholesterol efflux from macrophages.  相似文献   

13.
ATP-binding cassette transporter A1 (ABCA1) mediates transport of cellular cholesterol and phospholipids to high density lipoprotein (HDL) apolipoproteins, such as apoA-I. ABCA1 mutations can cause a severe HDL deficiency and atherosclerosis. Here we show that the protein-tyrosine kinase (TK) Janus kinase 2 (JAK2) modulates the apolipoprotein interactions with ABCA1 required for removing cellular lipids. The protein kinase A (PKA) inhibitor H89, the TK inhibitor genistein, and the JAK2 inhibitor AG490 suppressed apoA-I-mediated cholesterol and phospholipid efflux from ABCA1-expressing cells without altering the membrane ABCA1 content. Whereas PKA inhibition had no effect on apoA-I binding to cells or to ABCA1, TK and JAK2 inhibition greatly reduced these activities. Conversely, PKA but not JAK2 inhibition significantly reduced the intrinsic cholesterol translocase activity of ABCA1. Mutant cells lacking JAK2 had a severely impaired apoA-I-mediated cholesterol and phospholipid efflux and apoA-I binding despite normal ABCA1 protein levels and near normal cholesterol translocase activity. Thus, although PKA modulates ABCA1 lipid transport activity, JAK2 appears to selectively modulate apolipoprotein interactions with ABCA1. TK-mediated phosphorylation of ABCA1 was undetectable, implicating the involvement of another JAK2-targeted protein. Acute incubation of ABCA1-expressing cells with apoA-I had no effect on ABCA1 phosphorylation but stimulated JAK2 autophosphorylation. These results suggest that the interaction of apolipoproteins with ABCA1-expressing cells activates JAK2, which in turn activates a process that enhances apolipoprotein interactions with ABCA1 and lipid removal from cells.  相似文献   

14.
ABCA1, an ATP-binding cassette transporter mutated in Tangier disease, promotes cellular phospholipid and cholesterol efflux by loading free apoA-I with these lipids. This process involves binding of apoA-I to the cell surface and phospholipid translocation by ABCA1. The goals of this study were to examine the relationship between ABCA1-mediated lipid efflux and apolipoprotein binding and to determine whether phospholipid and cholesterol efflux are coupled. Inhibition of lipid efflux by glybenclamide treatment or by mutation of the ATP-binding cassette of ABCA1 showed a close correlation between lipid efflux, the binding of apoA-I to cells, and cross-linking of apoA-I to ABCA1. The data suggest that a functionally important apoA-I binding site exists on ABCA1 and that the binding site could also involve lipids. After using cyclodextrin preincubation to deplete cellular cholesterol, ABCA1-mediated cholesterol efflux was abolished but phospholipid efflux and the binding of apoA-I were unaffected. The conditioned media from cyclodextrin-pretreated, ABCA1-expressing cells readily promoted cholesterol efflux when added to fresh cells not expressing ABCA1, indicating that cholesterol efflux can be dissociated from phospholipid efflux. Further, using a photoactivatable cholesterol analog, we showed that ABCA1 did not bind cholesterol directly, even though several other cholesterol-binding proteins specifically bound the cholesterol analog. The data suggest that the binding of apoA-I to ABCA1 leads to the formation of phospholipid-apoA-I complexes, which subsequently promote cholesterol efflux in an autocrine or paracrine fashion.  相似文献   

15.
Recently, ATP-binding cassette transporter A1 (ABCA1), the defective molecule in Tangier disease, has been shown to stimulate phospholipid and cholesterol efflux to apolipoprotein A-I (apoA-I); however, little is known concerning the cellular cholesterol pools that act as the source of cholesterol for ABCA1-mediated efflux. We observed a higher level of isotopic and mass cholesterol efflux from mouse peritoneal macrophages labeled with [(3)H]cholesterol/acetyl low density lipoprotein (where cholesterol accumulates in late endosomes and lysosomes) compared with cells labeled with [(3)H]cholesterol with 10% fetal bovine serum, suggesting that late endosomes/lysosomes act as a preferential source of cholesterol for ABCA1-mediated efflux. Consistent with this idea, macrophages from Niemann-Pick C1 mice that have an inability to exit cholesterol from late endosomes/lysosomes showed a profound defect in cholesterol efflux to apoA-I. In contrast, phospholipid efflux to apoA-I was normal in Niemann-Pick C1 macrophages, as was cholesterol efflux following plasma membrane cholesterol labeling. These results suggest that cholesterol deposited in late endosomes/lysosomes preferentially acts as a source of cholesterol for ABCA1-mediated cholesterol efflux.  相似文献   

16.
ATP-binding cassette protein A1 (ABCA1) is a key plasma membrane protein required for the efflux of cellular cholesterol to extracellular acceptors, particularly to apolipoprotein A-I (apoA-I). This process is essential to maintain cholesterol homeostasis in the body. The detailed molecular mechanisms, however, are still insufficiently understood. Also, the molecular identity of ABCA1, i.e., channel, pump, or flippase, remains unknown. In this study we analyzed extracellular ATP levels in the medium of ABCA1-expressing BHK cells and RAW macrophages and compared them to the medium of nonexpressing cells. We found that extracellular ATP concentrations are significantly elevated when cells express ABCA1. Importantly, a dysfunctional ABCA1 mutant (A937V), when expressed similarly as wild-type ABCA1, is unable to raise extracellular ATP concentration, which suggests a casual relationship between functional ABCA1 and elevated extracellular ATP. To explore the physiological role of extracellular ATP, we analyzed ABCA1-mediated cholesterol efflux under conditions where extracellular ATP levels were modulated. We found that increasing extracellular ATP within the physiological range, i.e., <μM, promotes cholesterol efflux to apoA-I. On the other hand, removing extracellular ATP, either by adding apyrase to the medium or by expressing a plasma membrane-bound ectonucleotidase, CD39, abolishes cholesterol efflux to apoA-I. On the basis of these results, we conclude that, through direct or indirect mechanisms, ABCA1 functions to raise ATP levels in the medium. This elevated extracellular ATP is required for ABCA1-mediated cholesterol efflux to apoA-I.  相似文献   

17.
Expression of caveolin-1 enhances cholesterol efflux in hepatic cells   总被引:7,自引:0,他引:7  
HepG2 cells were stably transfected with human caveolin-1 (HepG2/cav cells). Transfection resulted in expression of caveolin-1 mRNA, a high abundance of caveolin-1 protein, and the formation of caveolae on the plasma membrane. Cholesterol efflux from HepG2/cav cells was 280 and 45% higher than that from parent HepG2 cells when human plasma and human apoA-I, respectively, were used as acceptors. The difference in efflux was eliminated by treatment of cells with progesterone. There was no difference in cholesterol efflux to cyclodextrin. Cholesterol efflux from plasma membrane vesicles was similar for the two cell types. Transfection led to a 40% increase in the amount of plasma membrane cholesterol in cholesterol-rich domains (caveolae and/or rafts) and a 67% increase in the rate of cholesterol trafficking from intracellular compartments to these domains. Cholesterol biosynthesis in HepG2/cav cells was increased by 2-fold, and cholesterol esterification was reduced by 50% compared with parent HepG2 cells. The proliferation rate of transfected cells was significantly lower than that of non-transfected cells. Transfection did not affect expression of ABCA1 or the abundance of ABCA1 protein, but decreased secretion of apoA-I. We conclude that overexpression of caveolin-1 in hepatic cells stimulates cholesterol efflux by enhancing transfer of cholesterol to cholesterol-rich domains in the plasma membrane.  相似文献   

18.
Caveolin-1 (Cav1), a structural protein required for the formation of invaginated membrane domains known as caveolae, has been implicated in cholesterol trafficking and homeostasis. Here we investigated the contribution of Cav1 to apolipoprotein A-I (apoA-I) cell surface binding and intracellular processing using mouse embryonic fibroblasts (MEFs) derived from wild type (WT) or Cav1-deficient (Cav1(-/-)) animals. We found that cells expressing Cav1 have 2.6-fold more apoA-I binding sites than Cav1(-/-) cells although these additional binding sites are not associated with detergent-free lipid rafts. Further, Cav1-mediated binding targets apoA-I for internalization and degradation and these processes are not correlated to cholesterol efflux. Despite lower apoA-I binding, cholesterol efflux from Cav1(-/-) MEFs is 1.7-fold higher than from WT MEFs. Stimulation of ABCA1 expression with an LXR agonist enhances cholesterol efflux from both WT and Cav1(-/-) cells without increasing apoA-I surface binding or affecting apoA-I processing. Our results indicate that there are at least two independent lipid binding sites for apoA-I; Cav1-mediated apoA-I surface binding and uptake is not linked to cholesterol efflux, indicating that membrane domains other than caveolae regulate ABCA1-mediated cholesterol efflux.  相似文献   

19.
Serum amyloid A (SAA) is an acute phase protein that associates with HDL. In order to examine the role of SAA in reverse-cholesterol transport, lipid efflux was tested to SAA from HeLa cells before and after transfection with the ABCA1 transporter. ABCA1 expression increased efflux of cholesterol and phospholipid to SAA by 3-fold and 2-fold, respectively. In contrast to apoA-I, SAA also removed lipid without ABCA1; cholesterol efflux from control cells to SAA was 10-fold higher than for apoA-I. Furthermore, SAA effluxed cholesterol from Tangier disease fibroblasts and from cells after inhibition of ABCA1 by fixation with paraformaldehyde. In summary, SAA can act as a lipid acceptor for ABCA1, but unlike apoA-I, it can also efflux lipid without ABCA1, by most likely a detergent-like extraction process. These results suggest that SAA may play a unique role as an auxiliary lipid acceptor in the removal of lipid from sites of inflammation.  相似文献   

20.
Adipose tissue is a major reservoir of cholesterol and, as such, it may play a significant role in cholesterol homeostasis. The aims of this study were to obtain a quantitative characterization of apolipoprotein A-I (apoA-I)-dependent lipid efflux from adipocytes and examine the role of ATP-binding cassette transporter A1 (ABCA1) in this process. The rates of apoA-I-induced cholesterol and phospholipid efflux were determined and normalized by cellular protein or ABCA1 levels. In order to allow a comparative analysis, parallel experiments were also performed in macrophages. These studies showed that apoA-I induces cholesterol efflux from adipocytes at similar rates as from macrophages. Enhancement of the expression of ABCA1 increased the rates of cholesterol efflux from both adipocytes and macrophages. The results also suggested that a non-ABCA1-dependent mechanism could make significant contributions to the rate of apoA-I-dependent cholesterol efflux when the expression levels of ABCA1 are low. Furthermore, the study of the effect of inhibitors of lipid efflux showed that glyburide and brefeldin A, which affect ABCA1 function, exerted strong and similar inhibitory effects on lipid efflux from both adipocytes and macrophages, whereas BLT1, an SRB-I inhibitor, only exerted a moderate inhibition. Overall these studies suggest that ABCA1 plays a major role in apoA-I-dependent lipid efflux from adipocytes and showed high similarities between the abilities of adipocytes and macrophages to release cholesterol in an apoA-I-dependent fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号