首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Sexually selected traits are often highly variable in size within populations due to their close link with the physical condition of individuals. Nutrition has a large impact on physical condition, and thus, any seasonal changes in nutritional quality are predicted to alter the average size of sexually selected traits as well as the degree of sexual dimorphism in populations. However, although traits affected by mate choice are well studied, we have a surprising lack of knowledge of how natural variation in nutrition affects the expression of sexually selected weapons and sexual dimorphism. Further, few studies explicitly test for differences in the heritability and mean‐scaled evolvability of sexually selected traits across conditions. We studied Narnia femorata (Hemiptera: Coreidae), an insect where males use their hind legs as weapons and the femurs are enlarged, to understand the extent to which weapon expression, sexual dimorphism and evolvability change across the actual range of nutrition available in the wild. We found that insects raised on a poor diet (cactus without fruit) are nearly monomorphic, whereas those raised on a high‐quality diet (cactus with ripe fruit) are distinctly sexually dimorphic via the expression of large hind leg weapons in males. Contrary to our expectations, we found little evidence of a potential for evolutionary change for any trait measured. Thus, although we show weapons are highly condition dependent, and changes in weapon expression and dimorphism could alter evolutionary dynamics, our populations are unlikely to experience further evolutionary changes under current conditions.  相似文献   

2.
Species across the tree of life can switch between asexual and sexual reproduction. In facultatively sexual species, the ability to switch between reproductive modes is often environmentally dependent and subject to local adaptation. However, the ecological and evolutionary factors that influence the maintenance and turnover of polymorphism associated with facultative sex remain unclear. We studied the ecological and evolutionary dynamics of reproductive investment in the facultatively sexual model species, Daphnia pulex. We found that patterns of clonal diversity, but not genetic diversity varied among ponds consistent with the predicted relationship between ephemerality and clonal structure. Reconstruction of a multi-year pedigree demonstrated the coexistence of clones that differ in their investment into male production. Mapping of quantitative variation in male production using lab-generated and field-collected individuals identified multiple putative quantitative trait loci (QTL) underlying this trait, and we identified a plausible candidate gene. The evolutionary history of these QTL suggests that they are relatively young, and male limitation in this system is a rapidly evolving trait. Our work highlights the dynamic nature of the genetic structure and composition of facultative sex across space and time and suggests that quantitative genetic variation in reproductive strategy can undergo rapid evolutionary turnover.  相似文献   

3.
Mating causes many changes in physiology, behavior, and gene expression in a wide range of organisms. These changes are predicted to be sex specific, influenced by the divergent reproductive roles of the sexes. In female insects, mating is associated with an increase in egg production which requires high levels of nutritional input with direct consequences for the physiological needs of individual females. Consequently, females alter their nutritional acquisition in line with the physiological demands imposed by mating. Although much is known about the female mating‐induced nutritional response, far less is known about changes in males. In addition, it is unknown whether variation between genotypes translates into variation in dietary behavioral responses. Here we examine mating‐induced shifts in male and female dietary preferences across genotypes of Drosophila melanogaster. We find sex‐ and genotype‐specific effects on both the quantity and quality of the chosen diet. These results contribute to our understanding of sex‐specific metabolism and reveal genotypic variation that influences responses to physiological demands.  相似文献   

4.
In sexual species, phenotypic divergence between males and females, or sexual dimorphism, is often the source of the most staggering examples of phenotypic variation in nature. Theory suggests that exaggerated sexual traits should drive sex-specific nutritional demands. Advances in spectrometry enable rapid quantification of the elements that make up individuals and traits, which can be used to assess patterns of intraspecific variation and the contribution of nutritionally-demanding sexual traits to these patterns. We measured dimorphism in the whole body stoichiometry of Hyalella amphipods and examined whether nutritional demands of exaggerated sexual traits differ from those of similar traits not under sexual selection. We found striking sexual dimorphism in multivariate whole body elemental composition (i.e., the ionome), including elements important for organismal growth and performance. In males, the exaggerated, sexually-selected claw-like appendage (posterior gnathopod) differed significantly in mass-specific stoichiometry from a similarly sized and serially homologous non-sexual trait (fifth pereopod), indicating that there are fundamental differences in the construction of sexual traits in relation to similar traits that are not under sexual selection. While sexually selected traits do differ from non-sexual traits in their ionomes, we found that possessing an exaggerated trait does not change organismal stoichiometry, indicating that trait exaggeration may not be directly driving ionomic sexual dimorphism. Finally, we found that larger traits are not comparatively larger resource sinks for any element, suggesting that the possession of larger traits is not a function of greater allocation of resources. Together, we discovered substantial sexual dimorphism at the lowest level of organization, chemical elements. Such information illuminates predictions about dimorphisms in foraging behavior, nutritional physiology, and sex-specific selection on the underlying loci. High throughput, multidimensional data on sexual divergence in stoichiometric composition is a powerful tool in understanding the evolutionary ecology of sexual dimorphisms.  相似文献   

5.
6.
Sex-limited mutations and the evolution of sexual dimorphism   总被引:4,自引:0,他引:4  
Abstract.— Although the developmental and genetic mechanisms underlying sex differences are being elucidated in great detail in a number of species, there remains a breach between proximate and evolutionary studies of sexual dimorphism. More precisely, the evolution of sex-limited gene expression at autosomal loci has not been well reasoned using either theoretical or empirical methods. Here, I show that a Mendelian genetic model including elementary details of sexual differentiation provides novel insight into the evolution of sex differences via sex limitation. This model indicates that the nature of allelic effects and the pattern of selection must be known in both sexes to predict the evolution of sex differences. That is, selection interacts with genetic variation for sexual dimorphism to produce unanticipated patterns of trait divergence or convergence between the sexes. Ultimately, this model may explain why previous models for the evolution of sexual dimorphism do not predict the erratic behavior of the sex difference during artificial selection experiments.  相似文献   

7.
Temperature changes in the environment, which realistically include environmental fluctuations, can create both plastic and evolutionary responses of traits. Sexes might differ in either or both of these responses for homologous traits, which in turn has consequences for sexual dimorphism and its evolution. Here, we investigate both immediate changes in and the evolution of sexual dimorphism in response to a changing environment (with and without fluctuations) using the seed beetle Callosobruchus maculatus. We investigate sex differences in plasticity and also the genetic architecture of body mass and developmental time dimorphism to test two existing hypotheses on sex differences in plasticity (adaptive canalization hypothesis and condition dependence hypothesis). We found a decreased sexual size dimorphism in higher temperature and that females responded more plastically than males, supporting the condition dependence hypothesis. However, selection in a fluctuating environment altered sex-specific patterns of genetic and environmental variation, indicating support for the adaptive canalization hypothesis. Genetic correlations between sexes (r(MF) ) were affected by fluctuating selection, suggesting facilitated independent evolution of the sexes. Thus, the selective past of a population is highly important for the understanding of the evolutionary dynamics of sexual dimorphism.  相似文献   

8.
9.
It is now clear that sex chromosomes differ from autosomes in many aspects of genome biology, such as organization, gene content and gene expression. Moreover, sex linkage has numerous evolutionary genetic implications. Here, I provide a coherent overview of sex-chromosome evolution and function based on recent data. Heteromorphic sex chromosomes are almost as widespread across the animal and plant kingdoms as sexual reproduction itself and an accumulating body of genetic data reveals interesting similarities, as well as dissimilarities, between organisms with XY or ZW sex-determination systems. Therefore, I discuss how patterns and processes associated with sex linkage in male- and female-heterogametic systems offer a useful contrast in the study of sex-chromosome evolution.  相似文献   

10.
How selection pressures acting within species interact with developmental constraints to shape macro‐evolutionary patterns of species divergence is still poorly understood. In particular, whether or not sexual selection affects evolutionary allometry, the increase in trait size with body size across species, of secondary sexual characters, remains largely unknown. In this context, bovid horn size is an especially relevant trait to study because horns are present in both sexes, but the intensity of sexual selection acting on them is expected to vary both among species and between sexes. Using a unique data set of sex‐specific horn size and body mass including 91 species of bovids, we compared the evolutionary allometry between horn size and body mass between sexes while accounting for both the intensity of sexual selection and phylogenetic relationship among species. We found a nonlinear evolutionary allometry where the allometric slope decreased with increasing species body mass. This pattern, much more pronounced in males than in females, suggests either that horn size is limited by some constraints in the largest bovids or is no longer the direct target of sexual selection in very large species.  相似文献   

11.
12.
Allen DE  Lynch M 《Genetics》2008,179(3):1497-1502
Sexual reproduction is generally believed to yield beneficial effects via the expansion of expressed genetic variation, which increases the efficiency of selection and the adaptive potential of a population. However, when nonadditive gene action is involved, sex can actually impede the adaptive progress of a population. If selection promotes coupling disequilibria between genes of similar effect, recombination and segregation can result in a decrease in expressed genetic variance in the offspring population. In addition, when nonadditive gene action underlies a quantitative trait, sex can produce a change in trait means in a direction opposite to that favored by selection. In this study we measured the change in genotypic trait means and genetic variances across a sexual generation in four populations of the cyclical parthenogen Daphnia pulicaria, which vary predictably in their incidence of sexual reproduction. We show that both the costs and benefits of sex, as measured by changes in means and variances in life-history traits, increase substantially with decreasing frequency of sex.  相似文献   

13.
As the evolutionary interests of males and females are frequently divergent, a trait value that is optimal for the fitness of one sex is often not optimal for the other. A shared genome also means that the same genes may underlie the same trait in both sexes. This can give rise to a form of sexual antagonism, known as intralocus sexual conflict (IASC). Here, a tug‐of‐war over allelic expression can occur, preventing the sexes from reaching optimal trait values, thereby causing sex‐specific reductions in fitness. For some traits, it appears that IASC can be resolved via sex‐specific regulation of genes that subsequently permits sexual dimorphism; however, it seems that whole‐genome resolution may be impossible, due to the genetic architecture of certain traits, and possibly due to the changing dynamics of selection. In this review, we explore the evolutionary mechanisms of, and barriers to, IASC resolution. We also address the broader consequences of this evolutionary feud, the possible interactions between intra‐ and interlocus sexual conflict (IRSC: a form of sexual antagonism involving different loci in each sex), and draw attention to issues that arise from using proxies as measurements of conflict. In particular, it is clear that the sex‐specific fitness consequences of sexual dimorphism require characterization before making assumptions concerning how this relates to IASC. Although empirical data have shown consistent evidence of the fitness effects of IASC, it is essential that we identify the alleles mediating these effects in order to show IASC in its true sense, which is a “conflict over shared genes.”  相似文献   

14.
Understanding how phenotypic diversity evolves is a major interest of evolutionary biology. Habitat use is an important factor in the evolution of phenotypic diversity of many animal species. Interestingly, male and female phenotypes have been frequently shown to respond differently to environmental variation. At the macroevolutionary level, this difference between the sexes is frequently analysed using phylogenetic comparative tools to assess variation in sexual dimorphism (SD) across taxa in relation to habitat. A shortcoming of such analyses is that they evaluate the degree of dimorphism itself and therefore they do not provide access to the evolutionary trajectories of each sex. As such, the relative contribution of male and female phenotypes on macroevolutionary patterns of sexual dimorphism cannot be directly assessed. Here, we investigate how habitat use shapes phenotypic diversity in wall lizards using phylogenetic comparative tools to simultaneously assess the tempo and mode of evolution in males, females and the degree of sexual dimorphism. We find that both sexes have globally diversified under similar, but not identical, processes, where habitat use seems to drive macroevolutionary variation in head shape, but not in body size or relative limb length. However, we also observe small differences in the evolutionary dynamics of male and female phenotypes that have a marked impact on macroevolutionary patterns of SD, with important implications for our interpretation of what drives phenotypic diversification within and between the sexes.  相似文献   

15.
16.
The maintenance of genetic variation in traits under strong sexual selection is a longstanding problem in evolutionary biology. The genic capture model proposes that this problem can be explained by the evolution of condition dependence in exaggerated male traits. We tested the predictions that condition dependence should be more pronounced in male sexual traits and that genetic variance in expression of these traits should increase under stress as among‐genotype variation in overall condition is exposed. Genetic variance in female and nonsexual traits should, by contrast, be similar across environments as a result of stabilizing selection on trait expression. The relationship between the degree of sexual dimorphism, condition dependence and additive genetic variance (Va) was assessed for two morphological traits (body size and relative fore femur width) affecting male mating success in the black scavenger fly Sepsis punctum (Diptera: Sepsidae) and for development time (a nonsexual trait often correlated with body size). We compared trait expression between the sexes for two cross‐continental populations that differ in degree of sexual dimorphism (Ottawa and Zurich). Condition dependence was indeed most pronounced in males of the strongly dimorphic Zurich population (males larger), and Va was similar for males and females unless the trait was strongly sex specific and condition dependent. Contrary to prediction, however, Va primarily increased under food limitation in both sexes, and genetic variance in fore femur width was low to nil, perhaps depleted by putatively strong sexual selection. Solely for body size of Zurich males, Va increased more in males than females at limited food, in accordance with the predictions of the genic capture model. Overall therefore, quantitative genetic evidence in support of the model was inconsistent and weak at best.  相似文献   

17.
Conservation plans can be greatly improved when information on the evolutionary and demographic consequences of habitat fragmentation is available for several codistributed species. Here, we study spatial patterns of phenotypic and genetic variation among five grasshopper species that are codistributed across a network of microreserves but show remarkable differences in dispersal‐related morphology (body size and wing length), degree of habitat specialization and extent of fragmentation of their respective habitats in the study region. In particular, we tested the hypothesis that species with preferences for highly fragmented microhabitats show stronger genetic and phenotypic structure than codistributed generalist taxa inhabiting a continuous matrix of suitable habitat. We also hypothesized a higher resemblance of spatial patterns of genetic and phenotypic variability among species that have experienced a higher degree of habitat fragmentation due to their more similar responses to the parallel large‐scale destruction of their natural habitats. In partial agreement with our first hypothesis, we found that genetic structure, but not phenotypic differentiation, was higher in species linked to highly fragmented habitats. We did not find support for congruent patterns of phenotypic and genetic variability among any studied species, indicating that they show idiosyncratic evolutionary trajectories and distinctive demographic responses to habitat fragmentation across a common landscape. This suggests that conservation practices in networks of protected areas require detailed ecological and evolutionary information on target species to focus management efforts on those taxa that are more sensitive to the effects of habitat fragmentation.  相似文献   

18.
Sexual traits are subject to evolutionary forces that maximize reproductive benefits and minimize survival costs, both of which can depend on environmental conditions. Latitude explains substantial variation in environmental conditions. However, little is known about the relationship between sexual trait variation and latitude, although body size often correlates with latitude. We examined latitudinal variation in male and female sexual traits in 22 populations of the false blister beetle Oedemera sexualis in the Japanese Archipelago. Males possess massive hind legs that function as a female‐grasping apparatus, while females possess slender hind legs that are used to dislodge mounting males. Morphometric analyses revealed that male and female body size (elytron length), length and width of the hind femur and tibia, and allometric slopes of these four hind leg dimensions differed significantly among populations. Of these, three traits showed latitudinal variation, namely, male hind femur was stouter; female hind tibia was slenderer, and female body was smaller at lower latitudes than at higher latitudes. Hind leg sizes and shapes, as measured by principal component analysis of these four hind leg dimensions in each sex, covaried significantly between sexes, suggesting coevolutionary diversification in sexual traits. Covariation between sexes was weaker when variation in these traits with latitude was removed. These results suggest that coevolutionary diversification between male and female sexual traits is mediated by environmental conditions that vary with latitude.  相似文献   

19.
Debates about how coevolution of sexual traits and preferences might promote evolutionary diversification have permeated speciation research for over a century. Recent work demonstrates that the expression of such traits can be sensitive to variation in the social environment. Here, we examined social flexibility in a sexually selected male trait—cuticular hydrocarbon (CHC) profiles—in the field cricket Teleogryllus oceanicus and tested whether population genetic divergence predicts the extent or direction of social flexibility in allopatric populations. We manipulated male crickets’ social environments during rearing and then characterized CHC profiles. CHC signatures varied considerably across populations and also in response to the social environment, but our prediction that increased social flexibility would be selected in more recently founded populations exposed to fluctuating demographic environments was unsupported. Furthermore, models examining the influence of drift and selection failed to support a role of sexual selection in driving population divergence in CHC profiles. Variation in social environments might alter the dynamics of sexual selection, but our results align with theoretical predictions that the role social flexibility plays in modulating evolutionary divergence depends critically on whether responses to variation in the social environment are homogeneous across populations, or whether gene by social environment interactions occur.  相似文献   

20.
Understanding the evolution of sexually dimorphic traits requires knowledge of the genetic and environmental sources of variation. However, we know surprisingly little about how the sexes differ in their responses to environmental nutrient supply. Here, we investigated how phosphorus (P) availability, a key metric of eutrophication, affects body composition in each sex of two Hyalella amphipod species. We also examined whether differences in food preference and acquisition are responsible for observed variation in body P. We discovered environmentally-driven changes in body P that were dependent on both species and sex. In both species, males contained less P when raised in low-P laboratory conditions compared to high-P field environments, while females exhibited no significant differences. Importantly, this difference was greater in the species that is known to have larger sexual traits and higher growth rates. Variation in P content was not due to differences in acquisition of P because both sexes preferred high-P food and consumed it at a similar rate. Our study illuminates potentially important sex- and species-specific evolutionary consequences of rapid alterations to P availability due to cultural eutrophication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号