首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The long‐term use of tenofovir, a commonly used anti‐HIV drug, can result in renal damage. The mechanism of tenofovir disoproxil fumarate (TDF) nephrotoxicity is not clear, although it has been shown to target proximal tubular mitochondria. In the present study, the effects of chronic TDF treatment on the proximal tubular function, renal mitochondrial function, and the activities of the electron transport chain (ETC) complexes were studied in rats. Damage to proximal tubular mitochondria and proximal tubular dysfunction was observed. The impaired mitochondrial function such as the respiratory control ratio, 2‐(4,5‐dimethyl‐2‐thiazolyl)‐3,5‐diphenyl‐2H‐tetrazolium bromide (MTT) reduction, and mitochondrial swelling was observed. The activities of the electron chain complexes I, II, IV, and V were decreased by 46%, 20%, 26%, and 21%, respectively, in the TDF‐treated rat kidneys. It is suggested that TDF induced proximal tubular mitochondrial dysfunction and ETC defects may impair ATP production, resulting in proximal tubular damage and dysfunction.  相似文献   

3.
Mitochondria are cytoplasmic organelles that have a primary role in cellular metabolism and homeostasis, regulation of the cell signaling network, and programmed cell death. Mitochondria produce ATP, regulate the cytoplasmic redox state and Ca2+ balance, catabolize fatty acids, synthesize heme, nucleotides, steroid hormones, amino acids, and help assemble iron-sulfur clusters in proteins. Mitochondria also have an essential role in heat production. Mutations of the mitochondrial genome cause several types of human disorder. The accumulation of mtDNA mutations correlates with aging and is suspected to have an important role in the development of cancer. Due to their vitally important role in all cell types, the function of mitochondria must also be critical for stem cells. Key advances have been made in our understanding of stem cell viability, proliferation, and differentiation capacity. But the functional activity of stem cells, in particular their energy status, was not yet been studied in detail. Almost nothing is known about the mitochondrial properties of human embryonic stem cells (hESCs) and their differentiated precursor progeny. One way to understand and evaluate the role of mitochondria in hESC function and developmental potential is to directly measure the activity of mitochondrial respiratory complexes. Here, we describe high resolution clear native gel electrophoresis and subsequent in gel activity visualization as a method for analyzing the five respiratory chain complexes of hESCs.Download video file.(236M, mov)  相似文献   

4.

Background

The lipophilic positively charged moiety of triphenylphosphonium (TPP+) has been used to target a range of biologically active compounds including antioxidants, spin-traps and other probes into mitochondria. The moiety itself, while often considered biologically inert, appears to influence mitochondrial metabolism.

Methodology/Principal Findings

We used the Seahorse XF flux analyzer to measure the effect of a range of alkylTPP+ on cellular respiration and further analyzed their effect on mitochondrial membrane potential and the activity of respiratory complexes. We found that the ability of alkylTPP+ to inhibit the respiratory chain and decrease the mitochondrial membrane potential increases with the length of the alkyl chain suggesting that hydrophobicity is an important determinant of toxicity.

Conclusions/Significance

More hydrophobic TPP+ derivatives can be expected to have a negative impact on mitochondrial membrane potential and respiratory chain activity in addition to the effect of the biologically active moiety attached to them. Using shorter linker chains or adding hydrophilic functional groups may provide a means to decrease this negative effect.  相似文献   

5.
The mitochondrial inner membrane contains two non-bilayer‐forming phospholipids, phosphatidylethanolamine (PE) and cardiolipin (CL). Lack of CL leads to destabilization of respiratory chain supercomplexes, a reduced activity of cytochrome c oxidase, and a reduced inner membrane potential Δψ. Although PE is more abundant than CL in the mitochondrial inner membrane, its role in biogenesis and assembly of inner membrane complexes is unknown. We report that similar to the lack of CL, PE depletion resulted in a decrease of Δψ and thus in an impaired import of preproteins into and across the inner membrane. The respiratory capacity and in particular the activity of cytochrome c oxidase were impaired in PE-depleted mitochondria, leading to the decrease of Δψ. In contrast to depletion of CL, depletion of PE did not destabilize respiratory chain supercomplexes but favored the formation of larger supercomplexes (megacomplexes) between the cytochrome bc1 complex and the cytochrome c oxidase. We conclude that both PE and CL are required for a full activity of the mitochondrial respiratory chain and the efficient generation of the inner membrane potential. The mechanisms, however, are different since these non-bilayer‐forming phospholipids exert opposite effects on the stability of respiratory chain supercomplexes.  相似文献   

6.
Mitochondrial dysfunction is considered crucial for NLRP3 inflammasome activation partly through its release of mitochondrial toxic products, such as mitochondrial reactive oxygen species (mROS)2 and mitochondrial DNA (mtDNA). Although previous studies have shown that classical NLRP3-activating stimulations lead to mROS generation and mtDNA release, it remains poorly understood whether and how mitochondrial damage-derived factors may contribute to NLRP3 inflammasome activation. Here, we demonstrate that impairment of the mitochondrial electron transport chain by rotenone primes NLRP3 inflammasome activation only upon costimulation with ATP and not with nigericin or alum. Rotenone-induced priming of NLRP3 in the presence of ATP triggered the formation of specklike NLRP3 or ASC aggregates and the association of NLRP3 with ASC, resulting in NLRP3-dependent caspase-1 activation. Mechanistically, rotenone confers a priming signal for NLRP3 inflammasome activation only in the context of aberrant high-grade, but not low-grade, mROS production and mitochondrial hyperpolarization. By contrast, rotenone/ATP-mediated mtDNA release and mitochondrial depolarization are likely to be merely an indication of mitochondrial damage rather than triggering factors for NLRP3 inflammasome activation. Our results provide a molecular insight into the selective contribution made by mitochondrial dysfunction to the NLRP3 inflammasome pathway.  相似文献   

7.
Journal of Plant Growth Regulation - In the present study, seedlings of indica rice (Oryza sativa L.) cultivars were subjected to 100 and 200 µM Cd(NO3)2 treatment in hydroponics for...  相似文献   

8.
SYNOPSIS. Mitochondria isolated from the soil ameba Acanthamoeba castellanii growing exponentially on complex medium have rotenone-insensitive oxygen uptake and ADP:O ratios which indicate the presence of only 2 phosphorylation sites in the electron transport chain. Stationary phase amebae yield mitochondria which are sensitive to inhibition by rotenone when respiring NAD+-Minked substrates and have 3 sites of phosphorylation. The levels of cytochromes (a + a 3), b , and c are similar in mitochondria isolated from log or stationary phase amebae, and, with the exception of succinate, the respiratory rates obtained with different substrates do not change significantly from log to stationary growth phase.  相似文献   

9.
Temozolomide (TMZ) is an oral alkylating agent used for the treatment of high-grade gliomas. Acquired chemoresistance is a severe limitation to this therapy with more than 90% of recurrent gliomas showing no response to a second cycle of chemotherapy. Efforts to better understand the underlying mechanisms of acquired chemoresistance to TMZ and potential strategies to overcome chemoresistance are, therefore, critically needed. TMZ methylates nuclear DNA and induces cell death; however, the impact on mitochondria DNA (mtDNA) and mitochondrial bioenergetics is not known. Herein, we tested the hypothesis that TMZ-mediated alterations in mtDNA and respiratory function contribute to TMZ-dependent acquired chemoresistance. Using an in vitro model of TMZ-mediated acquired chemoresistance, we report 1) a decrease in mtDNA copy number and the presence of large heteroplasmic mtDNA deletions in TMZ-resistant glioma cells, 2) remodeling of the entire electron transport chain with significant decreases of complexes I and V and increases of complexes II/III and IV, and 3) pharmacologic and genetic manipulation of cytochrome c oxidase, which restores sensitivity to TMZ-dependent apoptosis in resistant glioma cells. Importantly, human primary and recurrent pairs of glioblastoma multiforme (GBM) biopsies as well as primary and TMZ-resistant GBM xenograft lines exhibit similar remodeling of the ETC. Overall these results suggest that TMZ-dependent acquired chemoresistance may be due to a mitochondrial adaptive response to TMZ genotoxic stress with a major contribution from cytochrome c oxidase. Thus, abrogation of this adaptive response may reverse chemoresistance and restore sensitivity to TMZ, providing a strategy for improved therapeutic outcomes in GBM patients.  相似文献   

10.
Defective complex I activity has been linked to Parkinson's disease and Huntington's disease, but little is known of the regional distribution of this enzyme in the brain. We have developed a quantitative autoradiographic assay using [3H]dihydrorotenone ([3H]DHR) to label and localize complex I in brain tissue sections. Binding was specific and saturable and in the cerebellar molecular layer had a KD of 11.5 +/- 1.3 nM and a Bmax of 11.0 +/- 0.4 nCi/mg of tissue. Unlabeled rotenone and 1-methyl-4-phenylpyridinium ion competed effectively for DHR binding sites. Binding was markedly enhanced by 100 microM NADH. The distribution of complex I in brain, as revealed by DHR autoradiography, is unique but somewhat similar to that of cytochrome oxidase (complex IV). This assay may provide new insight into the roles of complex I in brain function and neurodegeneration.  相似文献   

11.
12.

Background

Methanogenesis can indicate the fermentation activity of the gastrointestinal anaerobic flora. Methane also has a demonstrated anti-inflammatory potential. We hypothesized that enriched methane inhalation can influence the respiratory activity of the liver mitochondria after an ischemia-reperfusion (IR) challenge.

Methods

The activity of oxidative phosphorylation system complexes was determined after in vitro methane treatment of intact liver mitochondria. Anesthetized Sprague-Dawley rats subjected to standardized 60-min warm hepatic ischemia inhaled normoxic air (n = 6) or normoxic air containing 2.2% methane, from 50 min of ischemia and throughout the 60-min reperfusion period (n = 6). Measurement data were compared with those on sham-operated animals (n = 6 each). Liver biopsy samples were subjected to high-resolution respirometry; whole-blood superoxide and hydrogen peroxide production was measured; hepatocyte apoptosis was detected with TUNEL staining and in vivo fluorescence laser scanning microscopy.

Results

Significantly decreased complex II-linked basal respiration was found in the normoxic IR group at 55 min of ischemia and a lower respiratory capacity (~60%) and after 5 min of reperfusion. Methane inhalation preserved the maximal respiratory capacity at 55 min of ischemia and significantly improved the basal respiration during the first 30 min of reperfusion. The IR-induced cytochrome c activity, reactive oxygen species (ROS) production and hepatocyte apoptosis were also significantly reduced.

Conclusions

The normoxic IR injury was accompanied by significant functional damage of the inner mitochondrial membrane, increased cytochrome c activity, enhanced ROS production and apoptosis. An elevated methane intake confers significant protection against mitochondrial dysfunction and reduces the oxidative damage of the hepatocytes.  相似文献   

13.
The oxidative phosphorylation system contains four respiratory chain complexes that connect the transport of electrons to oxygen with the establishment of an electrochemical gradient over the inner membrane for ATP synthesis. Due to the dual genetic source of the respiratory chain subunits, its assembly requires a tight coordination between nuclear and mitochondrial gene expression machineries. In addition, dedicated assembly factors support the step-by-step addition of catalytic and accessory subunits as well as the acquisition of redox cofactors. Studies in yeast have revealed the basic principles underlying the assembly pathways. In this review, we summarize work on the biogenesis of the bc1 complex or complex III, a central component of the mitochondrial energy conversion system.  相似文献   

14.
NDUFA4 Is a Subunit of Complex IV of the Mammalian Electron Transport Chain   总被引:1,自引:0,他引:1  
The oxidative phosphorylation system is one of the best-characterized metabolic pathways. In mammals, the protein components and X-ray structures are defined for all complexes except complex I. Here, we show that NDUFA4, formerly considered?a constituent of NADH Dehydrogenase (CI), is instead a component of the cytochrome c oxidase (CIV). Deletion of NDUFA4 does not perturb CI. Rather, proteomic, genetic, evolutionary, and biochemical analyses reveal that NDUFA4 plays a role in CIV function and biogenesis. The change in the attribution of the NDUFA4 protein requires renaming of the gene and reconsideration of the structure of CIV. Furthermore, NDUFA4 should be considered a candidate gene for CIV rather than CI deficiencies in humans.  相似文献   

15.
Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 (sdh1Δ, sdh2Δ, sdh4Δ, cor1Δ, cyt1Δ, qcr7Δ, qcr8Δ, rip1Δ, cox6Δ, cox7Δ, cox9Δ, atp4Δ, atp7Δ, and atp17Δ) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-F1F0-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency.  相似文献   

16.
17.
Fulminant hepatic failure (FHF) is an acute form of hepatic encephalopathy resulting from severe inflammatory or necrotic liver damage without any previously established liver damage. This develops as a complication due to viral infections, and drug abuse. FHF also occurs in acute disorders like Reye’s syndrome. Although the exact mechanisms in the etiology of FHF are not understood, elevated levels of brain ammonia have been consistently reported. Such increased ammonia levels are suggested to alter neurotransmission signals and impair cerebral energy metabolism due to mitochondrial dysfunctions. In the present study we have examined the role of cerebral electron transport chain complexes, including complex I, II, III IV, and pyruvate dehydrogenase in the non-synaptic mitochondria isolated from the cortex of the thioacetamide-induced FHF rats. Further, we have examined if the structure of mitochondria is altered. The results of the current study demonstrated a decrease in the activity of the complex I by 31 and 48% at 18 and 24 h respectively after the thioacetamide injection. Similarly, the activity of electron transport chain complex III was inhibited by 35 and 52% respectively, at 18 and 24 h, respectively. The complex II and complex IV, on the other hand, revealed unaltered activity. Further the activity of pyruvate dehydrogenase at 18 and 24 h after the induction of FHF was inhibited by 29 and 43%, respectively. Our results also suggest mitochondrial swelling in FHF induced rats. The inhibition of the respiratory complexes III and I and pyruvate dehydrogenase might lead to the increased production of free radical resulting in oxidative stress and cerebral energy disturbances thereby leading to mitochondrial swelling and further contributing to the pathogenesis of FHF.  相似文献   

18.
Interaction of Amaranthin with the Electron Transport Chain of Chloroplasts   总被引:1,自引:0,他引:1  
The electron paramagnetic resonance method was used to study the interactions of amaranthin with isolated class B chloroplasts from broad bean (Vicia faba L.) and amaranth (Amaranthus tricolor L.) during the light-driven electron and proton transport. Amaranthin was shown to interact with electron transport chain of chloroplasts at the PS II level; it also affects the electron transport near PS I. At the same time, amaranthin had no significant inhibitory effect on the light-dependent formation of the transmembrane pH gradient.  相似文献   

19.
目的研究鱼藤酮帕金森模型大鼠呼吸链复合酶Ⅰ、Ⅳ的变化。方法雄性Wistar大鼠每日颈背部皮下注射鱼藤酮葵花油乳化液2 mg/(kg.d)连续3~5周制备鱼藤酮帕金森模型大鼠;按行为学评分标准记分。模型动物分成高分组、低分组、模型4周组。分光光度法测定呼吸链复合酶Ⅰ、Ⅳ。结果模型低分组肌肉呼吸链复合酶Ⅰ受到明显抑制,停给鱼藤酮4周后肌肉和黑质呼吸链复合酶Ⅰ显著低于正常。而模型高分组肌肉呼吸链复合酶Ⅰ升高,模型各组肌肉呼吸链复合酶Ⅳ均见升高,但黑质未见升高。结论鱼藤酮帕金森模型大鼠肌肉和黑质呼吸链复合酶Ⅰ明显抑制。肌肉见呼吸链复合酶Ⅳ代偿性升高而黑质未见。  相似文献   

20.
Abstract: l -3,4-Dihydroxyphenylalanine ( l -DOPA) is toxic for human neuroblastoma cells NB69 and its toxicity is related to several mechanisms including quinone formation and enhanced production of free radicals related to the metabolism of dopamine via monoamine oxidase type B. We studied the effect of l -DOPA on activities of enzyme complexes in the electron transport chain (ETC) in homogenate preparations from the human neuroblastoma cell line NB69. As a preliminary step we compared the activity of ETC in cellular homogenates with that of purified mitochondria from NB69 cells and rat brain. Specific activities for complex I, complex II–III, and complex IV in NB69 cells were, respectively, 65, 96, and 32% of those in brain mitochondria. Complex I activity was inhibited in a dose-dependent way by 1-methyl-4-phenylpyridinium ion with an EC50 of ∼150 µ M . Treatment with 0.25 m M l -DOPA for 5 days reduces complex IV activity to 74% of control values but does not change either complex I or citrate synthase. Ascorbic acid (1 m M ), which protects NB69 cells from l -DOPA-induced neurotoxicity, increases complex IV activity to 133% of the control and does not change other ETC complexes. Ascorbic acid also reverses l -DOPA-induced reduction of complex IV activity in NB69 cells. This observation might indicate that the protection observed with ascorbic acid is related to complex IV activation. In vitro incubation with l -DOPA (0.125–4 m M ) for 2 min produced a dose-dependent reduction of complex IV without change in complex I and II–III activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号