首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor cells use broad spectrum proteolytic activity of plasmin to invade tissue and form metastatic foci. Cell surface-associated enolase-1 (ENO-1) enhances plasmin formation and thus participates in the regulation of pericellular proteolysis. Although increased levels of cell surface bound ENO-1 have been described in different types of cancer, the molecular mechanism responsible for ENO-1 exteriorization remains elusive. In the present study, increased ENO-1 protein levels were found in ductal breast carcinoma and on the cell surface of highly metastatic breast cancer cell line MDA-MB-231. Elevated cell surface-associated ENO-1 expression correlated with augmented MDA-MB-231 cell migratory and invasive properties. Exposure of MDA-MB-231 cells to LPS potentiated translocation of ENO-1 to the cell surface and its release into the extracellular space in the form of exosomes. These effects were independent of de novo protein synthesis and did not require the classical endoplasmic reticulum/Golgi pathway. LPS-triggered ENO-1 exteriorization was suppressed by pretreatment of MDA-MB-231 cells with the Ca2+ chelator BAPTA or an inhibitor of endoplasmic reticulum Ca2+-ATPase pump, cyclopiazonic acid. In line with these observations, the stromal interaction molecule (STIM) 1 and the calcium release-activated calcium modulator (ORAI) 1-mediated store-operated Ca2+ entry were found to regulate LPS-induced ENO-1 exteriorization. Pharmacological blockage or knockdown of STIM1 or ORAI1 reduced ENO-1-dependent migration of MDA-MB-231 cells. Collectively, our results demonstrate the pivotal role of store-operated Ca2+ channel-mediated Ca2+ influx in the regulation of ENO-1 exteriorization and thus in the modulation of cancer cell migratory and invasive properties.  相似文献   

2.
We have investigated the molecular basis of intracellular Ca2+ handling in human colon carcinoma cells (HT29) versus normal human mucosa cells (NCM460) and its contribution to cancer features. We found that Ca2+ stores in colon carcinoma cells are partially depleted relative to normal cells. However, resting Ca2+ levels, agonist-induced Ca2+ increases, store-operated Ca2+ entry (SOCE), and store-operated currents (ISOC) are largely enhanced in tumor cells. Enhanced SOCE and depleted Ca2+ stores correlate with increased cell proliferation, invasion, and survival characteristic of tumor cells. Normal mucosa cells displayed small, inward Ca2+ release-activated Ca2+ currents (ICRAC) mediated by ORAI1. In contrast, colon carcinoma cells showed mixed currents composed of enhanced ICRAC plus a nonselective ISOC mediated by TRPC1. Tumor cells display increased expression of TRPC1, ORAI1, ORAI2, ORAI3, and STIM1. In contrast, STIM2 protein was nearly depleted in tumor cells. Silencing data suggest that enhanced ORAI1 and TRPC1 contribute to enhanced SOCE and differential store-operated currents in tumor cells, whereas ORAI2 and -3 are seemingly less important. In addition, STIM2 knockdown decreases SOCE and Ca2+ store content in normal cells while promoting apoptosis resistance. These data suggest that loss of STIM2 may underlie Ca2+ store depletion and apoptosis resistance in tumor cells. We conclude that a reciprocal shift in TRPC1 and STIM2 contributes to Ca2+ remodeling and tumor features in colon cancer.  相似文献   

3.
The ubiquitous Ca2+ release-activated Ca2+ (CRAC) channel is crucial to many physiological functions. Both gain and loss of CRAC function is linked to disease. While ORAI1 is a crucial subunit of CRAC channels, recent evidence suggests that ORAI2 and ORAI3 heteromerize with ORAI1 to form native CRAC channels. Furthermore, ORAI2 and ORAI3 can form CRAC channels independently of ORAI1, suggesting diverse native CRAC stoichiometries. Yet, most available CRAC modifiers are presumed to target ORAI1 with little knowledge of their effects on ORAI2/3 or heteromers of ORAIs. Here, we used ORAI1/2/3 triple-null cells to express individual ORAI1, ORAI2, ORAI3 or ORAI1/2/3 concatemers. We reveal that GSK-7975A and BTP2 essentially abrogate ORAI1 and ORAI2 activity while causing only a partial inhibition of ORAI3. Interestingly, Synta66 abrogated ORAI1 channel function, while potentiating ORAI2 with no effect on ORAI3. CRAC channel activities mediated by concatenated ORAI1-1, ORAI1-2 and ORAI1-3 dimers were inhibited by Synta66, while ORAI2-3 dimers were unaffected. The CRAC enhancer IA65 significantly potentiated ORAI1 and ORAI1-1 activity with marginal effects on other ORAIs. Further, we characterized the profiles of individual ORAI isoforms in the presence of Gd3+ (5μM), 2-APB (5 μM and 50 μM), as well as changes in intracellular and extracellular pH. Our data reveal unique pharmacological features of ORAI isoforms expressed in an ORAI-null background and provide new insights into ORAI isoform selectivity of widely used CRAC pharmacological compounds.  相似文献   

4.
We describe an improved immunohistochemical procedure for detecting regions of hypoxia in normal organs and tumors in mice. The method employs a primary fluorescein-conjugated mouse monoclonal antibody directed against pimonidazole protein adducts that are created in hypoxic tissues and a secondary mouse anti-fluorescein antibody that is conjugated to horseradish peroxidase. Using these reagents, we clearly visualized the regions of relative hypoxia in implanted tumors in mice as well as in normal organs such as liver and kidney. Significantly, the resulting tissue sections were remarkably free of the background staining that is characteristically observed when rodent antibodies are used to detect antigens in rodent tissues.  相似文献   

5.
The mammalian transient receptor potential melastatin channel 8 (TRPM8) is highly expressed in trigeminal and dorsal root ganglia. TRPM8 is activated by cold temperature or compounds that cause a cooling sensation, such as menthol or icilin. TRPM8 may play a role in cold hypersensitivity and hyperalgesia in various pain syndromes. Therefore, TRPM8 antagonists are pursued as therapeutics. In this study we explored the feasibility of blocking TRPM8 activation with antibodies. We report the functional characterization of a rabbit polyclonal antibody, ACC-049, directed against the third extracellular loop near the pore region of the human TRPM8 channel. ACC-049 acted as a full antagonist at recombinantly expressed human and rodent TRPM8 channels in cell based agonist-induced 45Ca2+ uptake assays. Further, several poly-and monoclonal antibodies that recognize the same region also blocked icilin activation of not only recombinantly expressed TRPM8, but also endogenous TRPM8 expressed in rat dorsal root ganglion neurons revealing the feasibility of generating monoclonal antibody antagonists. We conclude that antagonist antibodies are valuable tools to investigate TRPM8 function and may ultimately pave the way for development of therapeutic antibodies.  相似文献   

6.
The mammalian reoviruses have provided a valuable model for studying the pathogenesis of viral infections of the central nervous system (CNS). We have used this model to study the effect of antibody on disease produced by the neurally spreading reovirus type 3 (Dearing) (T3). Polyclonal and monoclonal antibodies protect mice from fatal infection with T3 after either footpad or intracerebral virus challenge. Protection occurs with monoclonal antibodies directed against the viral cell attachment protein sigma 1, and with polyclonal antisera without T3 sigma 1 binding activity. In vivo protection occurs with both neutralizing and nonneutralizing monoclonal antibodies. Antibody-mediated protection does not require serum complement and, under specific circumstances, can occur via Fc-independent mechanisms. Antibody can protect mice when transferred up to 5 days after intracerebral challenge and up to 7 days after footpad challenge, times when high titers of virus are present in the CNS. Thus, antibody mediated protection against this neurally spreading virus does not require neutralizing antibody or serum complement and occurs even in the face of established CNS infection.  相似文献   

7.
The crystalline lens is an attractive system to study the biology of intercellular communication; however, the identity of the structural components of gap junctions in the lens has been controversial. We have cloned a novel member of the connexin family of gap junction proteins, Cx50, and have shown that it is likely to correspond to the previously described lens fiber protein MP70. The N-terminal amino acid sequence of MP70 closely matches the sequence predicted by the clone. Cx50 mRNA is detected only in the lens, among the 12 organs tested, and this distribution is indistinguishable from that of MP70 protein. A monoclonal antibody directed against MP70 and an anti-Cx50 antibody produced against a synthetic peptide identify the same proteins on western blots and produce identical patterns of immunofluorescence on frozen sections of rodent lens. We also show that expression of Cx50 in paired Xenopus oocytes induces high levels of voltage-dependent conductance. This indicates that Cx50 is a functional member of the connexin family with unique physiological properties. With the cloning of Cx50, all known participants in gap junction formation between various cell types in the lens are available for study and reconstitution in experimental systems.  相似文献   

8.
Cartilage intermediate layer protein (CILP) is an extracellular matrix protein abundant in cartilaginous tissues. CILP is implicated in common musculoskeletal disorders, including osteoarthritis and lumbar disc disease. Regulation of the CILP gene is largely unknown, however. We have found that CILP mRNA expression is induced by TGF-β1 and dependent upon signaling via TGF-β receptors. TGF-β1 induction of CILP is mediated by Smad3, which acts directly through cis-elements in the CILP promoter region. Pathways other than Smad3 also are involved in TGF-β1 induction of CILP. These observations, together with the finding that CILP protein binds and inhibits TGF-β1, suggest that CILP and TGF-β1 may form a functional feedback loop that controls chondrocyte metabolism.  相似文献   

9.
Yang XF  Yang Y  Lian YT  Wang ZH  Li XW  Cheng LX  Liu JP  Wang YF  Gao X  Liao YH  Wang M  Zeng QT  Liu K 《PloS one》2012,7(4):e36379
Selective blockade of Kv1.3 channels in effector memory T (T(EM)) cells was validated to ameliorate autoimmune or autoimmune-associated diseases. We generated the antibody directed against one peptide of human Kv1.3 (hKv1.3) extracellular loop as a novel and possible Kv1.3 blocker. One peptide of hKv1.3 extracellular loop E3 containing 14 amino acids (E314) was chosen as an antigenic determinant to generate the E314 antibody. The E314 antibody specifically recognized 63.8KD protein stably expressed in hKv1.3-HEK 293 cell lines, whereas it did not recognize or cross-react to human Kv1.1(hKv1.1), Kv1.2(hKv1.2), Kv1.4(hKv1.4), Kv1.5(hKv1.5), KCa3.1(hKCa3.1), HERG, hKCNQ1/hKCNE1, Nav1.5 and Cav1.2 proteins stably expressed in HEK 293 cell lines or in human atrial or ventricular myocytes by Western blotting analysis and immunostaining detection. By the technique of whole-cell patch clamp, the E314 antibody was shown to have a directly inhibitory effect on hKv1.3 currents expressed in HEK 293 or Jurkat T cells and the inhibition showed a concentration-dependence. However, it exerted no significant difference on hKv1.1, hKv1.2, hKv1.4, hKv1.5, hKCa3.1, HERG, hKCNQ1/hKCNE1, L-type Ca(2+) or voltage-gated Na(+) currents. The present study demonstrates that the antibody targeting the E314 peptide of hKv1.3 pore region could be a novel, potent and specific hKv1.3 blocker without affecting a variety of closely related K(v)1 channels, KCa3.1 channels and functional cardiac ion channels underlying central nervous system (CNS) disorders or drug-acquired arrhythmias, which is required as a safe clinic-promising channel blocker.  相似文献   

10.
Histamine, an important chemical mediator, has been shown to regulate inflammation and allergic responses. Stimulation of histamine receptors results in a significant increase in cytoplasmic Ca2+, which could be mediated by inositol trisphosphate (IP3)-dependent store-operated Ca2+ channels (SOC). However, the link between histamine-mediated signaling and activation of inflammatory genes such as cyclooxygenase 2 (COX-2) is still unknown. Our study indicated that the COX-2 protein was highly expressed in human lung cancer cells. Following stimulation with 10 μM of histamine, both store-operated Ca2+ entry (SOCE) and COX-2 gene expression were evoked. Histamine-mediated COX-2 activation can be prevented by 2-APB and SKF-96365, SOC channel inhibitors. In addition, deletion analysis of the COX-2 promoter suggested that the region between −80 bp and −250 bp, which contains NFκB binding sites, is the key element for histamine-mediated signaling. Knocking down ORAI1, one of the essential molecules of store-operated calcium channels, attenuated histamine-mediated COX-2 expression and NFκB activation. These results indicated that ORAI1-mediated NFκB activation was an important signaling pathway, responsible for transmitting histamine signals that trigger inflammatory reactions.  相似文献   

11.
The membrane topology and quaternary structure of rat cardiac gap junction ion channels containing alpha 1 connexin (i.e. Cx43) have been examined using anti-peptide antibodies directed to seven different sites in the protein sequence, cleavage by an endogenous protease in heart tissue and electron microscopic image analysis of native and protease-cleaved two-dimensional membrane crystals of isolated cardiac gap junctions. Specificity of the peptide antibodies was established using dot immunoblotting, Western immunoblotting, immunofluorescence and immunoelectron microscopy. Based on the folding predicted by hydropathy analysis, five antibodies were directed to sites in cytoplasmic domains and two antibodies were directed to the two extracellular loop domains. Isolated gap junctions could not be labeled by the two extracellular loop antibodies using thin-section immunogold electron microscopy. This is consistent with the known narrowness of the extracellular gap region that presumably precludes penetration of antibody probes. However, cryo-sectioning rendered the extracellular domains accessible for immunolabeling. A cytoplasmic "loop" domain of at least Mr = 5100 (residues (101 to 142) is readily accessible to peptide antibody labeling. The native Mr = 43,000 protein can be protease-cleaved on the cytoplasmic side of the membrane, resulting in an Mr approximately 30,000 membrane-bound fragment. Western immunoblots showed that protease cleavage occurs at the carboxy tail of the protein, and the cleavage site resides between amino acid residues 252-271. Immunoelectron microscopy demonstrated that the Mr approximately 13,000 carboxy-terminal peptide(s) is released after protease cleavage and does not remain attached to the Mr approximately 30,000 membrane-bound fragment via non-covalent interactions. Electron microscopic image analysis of two-dimensional membrane crystals of cardiac gap junctions revealed that the ion channels are formed by a hexagonal arrangement of protein subunits. This quaternary arrangement is not detectably altered by protease cleavage of the alpha 1 polypeptide. Therefore, the Mr approximately 13,000 carboxyterminal domain is not involved in forming the transmembrane ion channel. The similar hexameric architecture of cardiac and liver gap junction connexins indicates conservation in the molecular design of the gap junction channels formed by alpha or beta connexins.  相似文献   

12.
The Na,K-stimulated ATPase is inhibited by extracellular cardiac glycosides, which bind to the enzyme's alpha subunit. We used a monoclonal antibody, VG4, as a probe of the extracellular surface. The antibody was specific for Na,K-ATPase and bound to intact cells. The epitope was mapped to the first extracellular loop (H1-H2) of alpha, using a combination of techniques including trypsinolysis, N-terminal sequence of a fragment containing the determinant, and analysis of the effects of species-specific sequence differences. The antibody inhibited Na,K-ATPase activity under certain circumstances, indicating that the H1-H2 loop participates in conformational changes that are transmitted to the active site. Mutations in the H1-H2 loop have been shown by others to affect ouabain affinity. Ouabain and the antibody acted synergistically to inhibit the enzyme, which seemingly supported the hypothesis that the H1-H2 loop is an essential part of the cardiac glycoside binding site. Direct measurements of the binding of [3H]ouabain, however, indicated that VG4 enhanced rather than inhibited binding, presumably by promoting favorable conformation changes. The data suggest the possibility that the cardiac glycoside binding site may be intramembrane rather than extracellular.  相似文献   

13.
We have adapted an in vitro model of the human blood-brain barrier, the immortalized human cerebral microvascular endothelial cells (hCMEC/D3), to quantitatively measure protein transcytosis. After validating the receptor-mediated transport using transferrin, the system was used to measure transcytosis rates of antibodies directed against potential brain shuttle receptors. While an antibody to the insulin-like growth factor 1 receptor (IGF1R) was exclusively recycled to the apical compartment, the fate of antibodies to the transferrin receptor (TfR) was determined by their relative affinities at extracellular and endosomal pH. An antibody with reduced affinity at pH5.5 showed significant transcytosis, while pH-independent antibodies of comparable affinities at pH 7.4 remained associated with intracellular vesicular compartments and were finally targeted for degradation.  相似文献   

14.
A panel of ten monoclonal antibodies against aflatoxins B1, B2, and G2 was produced and comprehensively characterized. The affinity and cross reactivity of these antibodies were determined using the methods of direct, indirect, and competitive ELISA. The structures of monoclonal antibody genes were comprehensively studied and the variable and constant regions of the antibody genes were cloned and sequenced. Sequencing analysis confirmed the results of isotyping the light and heavy antibody chains obtained by ELISA. Variable and constant fragments of the antibody genes were cloned into a bicistron expression vector for the recombinant Fab-fragment for one of the antibodies expressed in Escherichia coli and purified. Thus, data were obtained that can be useful for the development of an aflatoxin detection system on the basis of the described monoclonal antibodies and the creation of recombinant antibodies with changed parameters of specificity using protein engineering methods.  相似文献   

15.
To reexamine the existing predictions about the general membrane topology of the high-affinity Na+/glucose cotransporter (SGLT1) and in particular of the large loop at the C-terminal region, a small 6 × Histidine-tag was introduced at different positions of the SGLT1 sequence by site-directed mutagenesis. Eleven His-SGLT1 mutants were constructed and were transiently transfected into COS-7 cells. As demonstrated by immunofluorescent labeling with antipeptide antibodies against SGLT1, all mutants were expressed and inserted into the plasma membrane. Only mutants with the tag in the N-terminal region and the C-terminal region retained Na+/glucose cotransport activity at 0.1 mm d-glucose. The arrangement of the His-tag in the membrane was analyzed by indirect immunofluorescence, using a monoclonal antihistidine antibody. In nonpermeabilized cells the His-tag could be detected at the N-terminal end (insertion at aa 5) and at the C-terminal end (replacement between aa 584-589 and between aa 622-627), suggesting that these portions of the polypeptide are accessible from the extracellular space. Furthermore, an epitope-specific antibody directed against aa 606-630 reacted strongly with the cell surface. To support this topology intact stably transfected SGLT1 competent CHO cells were partially digested with an immobilized trypsin and subsequently subjected to electrophoresis and Western blot analysis. The size of the digestion product suggests that extravesicular trypsin removed the extracellular loop that contains the amino acid residues 549-664. Thus our results indicate that the last large loop (about aa 541–aa 639) towards the C-terminal end faces the cell exterior where it might be involved in substrate recognition. Received: 29 January 1999/Revised: 26 February 1999  相似文献   

16.
17.
The mouse hippocampal cell line HT22 is an excellent model for studying the consequences of endogenous oxidative stress. Addition of extracellular glutamate depletes the cells of glutathione (GSH) by blocking the glutamate−cystine antiporter system xc. GSH is the main antioxidant in neurons and its depletion induces a well-defined program of cell death called oxytosis, which is probably synonymous with the iron-dependent form of non-apoptotic cell death termed ferroptosis. Oxytosis is characterized by an increase of reactive oxygen species and a strong calcium influx preceding cell death. We found a significant reduction in store-operated calcium entry (SOCE) in glutamate-resistant HT22 cells caused by downregulation of the Ca2+ channel ORAI1, but not the Ca2+ sensors STIM1 or STIM2. Pharmacological inhibition of SOCE mimicked this protection similarly to knockdown of ORAI1 by small interfering RNAs. Long-term calcium live-cell imaging after induction of the cell death program showed a specific reduction in Ca2+-positive cells by ORAI1 knockdown. These results suggest that dysregulated Ca2+ entry through ORAI1 mediates the detrimental Ca2+ entry in programmed cell death induced by GSH depletion. As this detrimental Ca2+ influx occurs late in the course of the cell death program, it might be amenable to therapeutic intervention in diseases caused by oxidative stress.  相似文献   

18.
Calcium release-activated calcium modulator 1(ORAI1) is an integral component of the calcium release-activated calcium channel (CRAC) channel complex and plays a central role in regulating Ca2?+?concentrations in T-lymphocytes. It is critical for many physiological processes, including cell-proliferation, cytokine production and activation of the immune system. Loss of ORAI1 function is linked with rheumatoid arthritis (RA) and hence pharmacological blockers of ORAI1 could be potential therapeutic agents for the treatment of RA. In this study, we have used a high-throughput screening approach to inhibit the binding of Ca2+?toward ORAI1 and the interactions are verified through induced fit docking. The results hint that these compounds act by possibly binding with, and thereby blocking Ca2+-binding with ORAI1 (E106). The molecular dynamics (MD) simulations shows strong support toward the hit compounds by showing the ligand potency throughout the simulation timescale of 30?ns. We have thus identified a novel class of highly stable, potential lead compounds that directly bind with the selectivity filter region E106 and block Ca2+ binding on ORAI1. This resulting alteration in the pore geometry of ORAI1 due to the strong blocking mechanism of lead compounds will greatly diminish its function and the downstream activities that result from the same including decreased production of cytokines in autoimmune disorders. This study may lay the foundation for finding novel lead compounds for clinical trials that could positively modulate the course of autoimmune disorders with ORAI1 as its specific target.  相似文献   

19.
We describe protein synthesis, folding and assembly of antibody fragments and full-length aglycosylated antibodies using an Escherichia coli-based open cell-free synthesis (OCFS) system. We use DNA template design and high throughput screening at microliter scale to rapidly optimize production of single-chain Fv (scFv) and Fab antibody fragments that bind to human IL-23 and IL-13α1R, respectively. In addition we demonstrate production of aglycosylated immunoglobulin G (IgG1) trastuzumab. These antibodies are produced rapidly over several hours in batch mode in standard bioreactors with linear scalable yields of hundreds of milligrams/L over a 1 million-fold change in scales up to pilot scale production. We demonstrate protein expression optimization of translation initiation region (TIR) libraries from gene synthesized linear DNA templates, optimization of the temporal assembly of a Fab from independent heavy chain and light chain plasmids and optimized expression of fully assembled trastuzumab that is equivalent to mammalian expressed material in biophysical and affinity based assays. These results illustrate how the open nature of the cell-free system can be used as a seamless antibody engineering platform from discovery to preclinical development of aglycosylated monoclonal antibodies and antibody fragments as potential therapeutics.Key words: cell-free protein synthesis, Fab antibody, aglycosylated antibodies, HER2, trastuzumab  相似文献   

20.
We have characterized a monoclonal antibody, called UC45, that reacts with both monocytes and neurons. It was derived from a fusion of the NS-1 plasmacytoma cell line with spleen cells from a mouse immunized with human acute monoblastic leukemia cells. The antibody reacts weakly with viable monocytes in suspension but has specificity for fibrous projections, which are found on monocytes that have adhered to a substrate. Other hemopoietically derived cells such as granulocytes and lymphocytes, and many tissue-culture lines, do not react with UC45 by cell-surface immunofluorescence. Similarly, UC45 reacts with the processes of both viable CNS and PNS neurons in tissue culture but with no other neural-tissue-derived cells. The monoclonal antibody has interspecies reactivity, in that it reacts with human, rat and mouse monocytes and neurons. The monocyte and neuronal antigen is present predominantly on a protein of 45 kd. Attempts to identify this protein on monocytes with conventional heteroantisera directed against fibronectin, complement components, fibrinogen, collagen, tubulin and actin have failed. A monoclonal antibody has therefore allowed identification of an antigen, unexpectedly shared by monocytes and neurons. The fact that it is found on cell processes of both cell types suggests that it may be performing some similar function for these cells, whose other activities differ substantially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号