首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fungal biology》2021,125(10):806-814
Filamentous fungi maintain hyphal growth to continually internalize membrane proteins related to cell wall synthesis, transporting them to the hyphal tips. Endocytosis mediates protein internalization via target recognition by the adaptor protein 2 complex (AP-2 complex). The AP-2 complex specifically promotes the internalization of proteins important for hyphal growth, and loss of AP-2 complex function results in abnormal hyphal growth. In this study, deletion mutants of the genes encoding the subunits of the AP-2 complex (α, β2, μ2, or σ2) in the filamentous fungus Aspergillus nidulans resulted in the formation of conidiophores with abnormal morphology, fewer conidia, and activated the cell wall integrity pathway. We also investigated the localization of ChsB, which plays pivotal roles in hyphal growth in A. nidulans, in the Δμ2 strain. Quantitative analysis suggested that the AP-2 complex is involved in ChsB internalization at subapical collar regions. The absence of the AP-2 complex reduced ChsB localization at the hyphal tips. Our findings suggest that the AP-2 complex contributes to cell wall integrity by properly localizing ChsB to the hyphal tips.  相似文献   

2.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   

3.
Ascorbate peroxidase (APEX)-based proximity labeling coupled with mass spectrometry has a great potential for spatiotemporal identification of proteins proximal to a protein complex of interest. Using this approach is feasible to define the proteome neighborhood of important protein complexes in a popular photosynthetic model cyanobacterium Synechocystis sp. PCC6803 (hereafter named as Synechocystis). To this end, we developed a robust workflow for APEX2-based proximity labeling in Synechocystis and used the workflow to identify proteins proximal to the photosystem II (PS II) oxygen evolution complex (OEC) through fusion APEX2 with a luminal OEC subunit, PsbO. In total, 38 integral membrane proteins (IMPs) and 93 luminal proteins were identified as proximal to the OEC. A significant portion of these proteins are involved in PS II assembly, maturation, and repair, while the majority of the rest were not previously implicated with PS II. The IMPs include subunits of PS II and cytochrome b6/f, but not of photosystem I (except for PsaL) and ATP synthases, suggesting that the latter two complexes are spatially separated from the OEC with a distance longer than the APEX2 labeling radius. Besides, the topologies of six IMPs were successfully predicted because their lumen-facing regions exclusively contain potential APEX2 labeling sites. The luminal proteins include 66 proteins with a predicted signal peptide and 57 proteins localized also in periplasm, providing important targets to study the regulation and selectivity of protein translocation. Together, we not only developed a robust workflow for the application of APEX2-based proximity labeling in Synechocystis and showcased the feasibility to define the neighborhood proteome of an important protein complex with a short radius but also discovered a set of the proteins that potentially interact with and regulate PS II structure and function.  相似文献   

4.
Legionella pneumophila, an environmental bacterium that parasitizes protozoa, causes Legionnaires’ disease in humans that is characterized by severe pneumonia. This bacterium adopts a distinct biphasic life cycle consisting of a nonvirulent replicative phase and a virulent transmissive phase in response to different environmental conditions. Hence, the timely and fine-tuned expression of growth and virulence factors in a life cycle–dependent manner is crucial for survival and replication. Here, we report that the completion of the biphasic life cycle and bacterial pathogenesis is greatly dependent on the protein homeostasis regulated by caseinolytic protease P (ClpP)-dependent proteolysis. We characterized the ClpP-dependent dynamic profiles of the regulatory and substrate proteins during the biphasic life cycle of L. pneumophila using proteomic approaches and discovered that ClpP-dependent proteolysis specifically and conditionally degraded the substrate proteins, thereby directly playing a regulatory role or indirectly controlling cellular events via the regulatory proteins. We further observed that ClpP-dependent proteolysis is required to monitor the abundance of fatty acid biosynthesis–related protein Lpg0102/Lpg0361/Lpg0362 and SpoT for the normal regulation of L. pneumophila differentiation. We also found that the control of the biphasic life cycle and bacterial virulence is independent. Furthermore, the ClpP-dependent proteolysis of Dot/Icm (defect in organelle trafficking/intracellular multiplication) type IVB secretion system and effector proteins at a specific phase of the life cycle is essential for bacterial pathogenesis. Therefore, our findings provide novel insights on ClpP-dependent proteolysis, which spans a broad physiological spectrum involving key metabolic pathways that regulate the transition of the biphasic life cycle and bacterial virulence of L. pneumophila, facilitating adaptation to aquatic and intracellular niches.  相似文献   

5.
《Fungal biology》2020,124(2):91-101
Arbuscular Mycorrhizal fungi (AMF, Glomeromycota) form obligate symbiotic associations with the roots of most terrestrial plants. Our understanding of the molecular mechanisms enabling AMF propagation and AMF-host interaction is currently incomplete. Analysis of AMF proteomes could yield important insights and generate hypotheses on the nature and mechanism of AMF-plant symbiosis. Here, we examined the extraradical mycelium proteomic profile of the arbuscular mycorrhizal fungus Rhizophagus irregularis grown on Ri T-DNA transformed Chicory roots in a root organ culture setting. Our analysis detected 529 different peptides that mapped to 474 translated proteins in the R. irregularis genome. R. irregularis proteome was characterized by a high proportion of proteins (9.9 % of total, 21.4 % of proteins with functional prediction) mediating a wide range of signal transduction processes, e.g. Rho1 and Bmh2, Ca-signaling (calmodulin, and Ca channel protein), mTOR signaling (MAP3K7, and MAPKAP1), and phosphatidate signaling (phospholipase D1/2) proteins, as well as members of the Ras signaling pathway. In addition, the proteome contained an unusually large proportion (53.6 %) of hypothetical proteins, the majority of which (85.8 %) were Glomeromycota-specific. Forty-eight proteins were predicted to be surface/membrane associated, including multiple hypothetical proteins of yet-unrecognized functions. However, no evidence for the overproduction of specific proteins, previously implicated in promoting soil health and aggregation was obtained. Finally, the comparison of R. irregularis proteome to previously published AMF proteomes identified a core set of pathways and processes involved in AMF growth. We conclude that R. irregularis growth on chicory roots requires the activation of a wide range of signal transduction pathways, the secretion of multiple novel hitherto unrecognized Glomeromycota-specific proteins, and the expression of a wide array of surface-membrane associated proteins for cross kingdom cell-to-cell communications.  相似文献   

6.
《Fungal biology》2022,126(8):528-533
The entomopathogenic fungus Beauveria bassiana is widely used for insect pest control and can produce three distinct infective unit types under different nutritional and environmental conditions: aerial conidia, blastospores, and submerged conidia. Here, we identified endophytic colonization ability and existing forms of the three types of B. bassiana infective units after inoculating Arabidopsis plants via soil drenching, and tested their effects on their presence mold disease caused by Botrytis cinerea. We found that all B. bassiana infective unit types colonized Arabidopsis leaves, with germinating and producing hyphae by hydrophilic blastopores and submerged conidia; further, we showed that blastospores were more effective in defending against B. cinerea, compared with aerial conidia. These findings suggest that in addition to aerial conidia, the colonization of other two types of entomopathogenic fungal infective units could also have important impacts on plant resistance. This study contributes to better understanding on the function of B. bassiana as fungal endophytes, which could lead to a new paradigm for how to successfully use these organisms in biological control against plant diseases.  相似文献   

7.
Fusarium oxysporum is one of the most abundant and diverse fungal species found in soils and includes nonpathogenic, endophytic, and pathogenic strains affecting a broad range of plant and animal hosts. Conidiation is the major mode of reproduction in many filamentous fungi, but the regulation of this process is largely unknown. Lysine acetylation (Kac) is an evolutionarily conserved and widespread posttranslational modification implicated in regulation of multiple metabolic processes. A total of 62 upregulated and 49 downregulated Kac proteins were identified in sporulating mycelia versus nonsporulating mycelia of F. oxysporum. Diverse cellular proteins, including glycolytic enzymes, ribosomal proteins, and endoplasmic reticulum–resident molecular chaperones, were differentially acetylated in the sporulation process. Altered Kac levels of three endoplasmic reticulum–resident molecular chaperones, PDIK70, HSP70K604, and HSP40K32 were identified that with important roles in F. oxysporum conidiation. Specifically, K70 acetylation (K70ac) was found to be crucial for maintaining stability and activity of protein disulphide isomerase and the K604ac of HSP70 and K32ac of HSP40 suppressed the detoxification ability of these heat shock proteins, resulting in higher levels of protein aggregation. During conidial formation, an increased level of PDIK70ac and decreased levels of HSP70K604ac and HSP40K32ac contributed to the proper processing of unfolded proteins and eliminated protein aggregation, which is beneficial for dramatic cell biological remodeling during conidiation in F. oxysporum.  相似文献   

8.
Co-infections with pathogens and secondary bacterial infections play significant roles during the pandemic coronavirus disease 2019 (COVID-19) pathogenetic process, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Notably, co-infections with Streptococcus pneumoniae (S. pneumoniae), as a major Gram-positive pathogen causing pneumonia or meningitis, severely threaten the diagnosis, therapy, and prognosis of COVID-19 worldwide. Accumulating evidences have emerged indicating that S. pneumoniae evolves multiple virulence factors, including pneumolysin (PLY) and sortase A (SrtA), which have been extensively explored as alternative anti-infection targets. In our study, natural flavonoid kaempferol was identified as a potential candidate drug for infection therapeutics via anti-virulence mechanisms. We found that kaempferol could interfere with the pore-forming activity of PLY by engaging with catalytic active sites and consequently inhibit PLY-mediated cytotoxicity. Additionally, exposed to kaempferol significantly reduced the SrtA peptidase activity by occupying the active sites of SrtA. Further, the biofilms formation and bacterial adhesion to the host cells could be significantly thwarted by kaempferol incubation. In vivo infection model by S. pneumoniae highlighted that kaempferol oral administration exhibited notable treatment benefits, as evidenced by decreased bacterial burden, suggesting that kaempferol has tremendous potential to attenuate S. pneumoniae pathogenicity. Scientifically, our study implies that kaempferol is a promising therapeutic option by targeting bacterial virulence factors.  相似文献   

9.
MYCN amplification is an independent risk factor for poor prognosis in neuroblastoma (NB), but its protein product cannot be directly targeted because of protein structure. Thus, this study aimed to explore novel ways to indirectly target N-Myc by regulating its post-translational modifications (PTMs) and therefore protein stability. N-Myc coimmunoprecipitation combined with HPLC–MS/MS identified 16 PTM residues and 114 potential N-Myc-interacting proteins. Notably, both acetylation and ubiquitination were identified on lysine 199 of N-Myc. We then discovered that p300, which can interact with N-Myc, modulated the protein stability of N-Myc in MYCN-amplified NB cell lines and simultaneously regulated the acetylation level and ubiquitination level on lysine-199 of N-Myc protein in vitro. Furthermore, p300 correlated with poor prognosis in NB patients. Taken together, p300 can be considered as a potential therapeutic target to treat MYCN-amplified NB patients, and other identified PTMs and interacting proteins also provide potential targets for further study.  相似文献   

10.
11.
The lysosome represents a central degradative compartment of eukaryote cells, yet little is known about the biogenesis and function of this organelle in parasitic protists. Whereas the mannose 6-phosphate (M6P)-dependent system is dominant for lysosomal targeting in metazoans, oligosaccharide-independent sorting has been reported in other eukaryotes. In this study, we investigated the phagolysosomal proteome of the human parasite Trichomonas vaginalis, its protein targeting and the involvement of lysosomes in hydrolase secretion. The organelles were purified using Percoll and OptiPrep gradient centrifugation and a novel purification protocol based on the phagocytosis of lactoferrin-covered magnetic nanoparticles. The analysis resulted in a lysosomal proteome of 462 proteins, which were sorted into 21 classes. Hydrolases represented the largest functional class and included proteases, lipases, phosphatases, and glycosidases. Identification of a large set of proteins involved in vesicular trafficking (80) and turnover of actin cytoskeleton rearrangement (29) indicate a dynamic phagolysosomal compartment. Several cysteine proteases such as TvCP2 were previously shown to be secreted. Our experiments showed that secretion of TvCP2 was strongly inhibited by chloroquine, which increases intralysosomal pH, thus indicating that TvCP2 secretion occurs through lysosomes rather than the classical secretory pathway. Unexpectedly, we identified divergent homologues of the M6P receptor TvMPR in the phagolysosomal proteome, although T. vaginalis lacks enzymes for M6P formation. To test whether oligosaccharides are involved in lysosomal targeting, we selected the lysosome-resident cysteine protease CLCP, which possesses two glycosylation sites. Mutation of any of the sites redirected CLCP to the secretory pathway. Similarly, the introduction of glycosylation sites to secreted β-amylase redirected this protein to lysosomes. Thus, unlike other parasitic protists, T. vaginalis seems to utilize glycosylation as a recognition marker for lysosomal hydrolases. Our findings provide the first insight into the complexity of T. vaginalis phagolysosomes, their biogenesis, and role in the unconventional secretion of cysteine peptidases.  相似文献   

12.
13.
《Fungal biology》2020,124(9):814-820
Green mould disease of mushroom, Agaricus bisporus,is caused by Trichodermaspecies and can result in substantial crop losses.Label free proteomic analysis of changes in the abundance of A. bisporusproteins following exposure to T. aggressivumsupernatantin vitroindicated increased abundance of proteins associated with an oxidative stress response (zinc ion binding (+6.6 fold); peroxidase activity (5.3-fold); carboxylic ester hydrolase (+2.4 fold); dipeptidase (+3.2 fold); [2Fe-2S] cluster assembly (+3.3 fold)). Proteins that decreased in relative abundance were associated with growth: structural constituent of ribosome, translation (-12 fold), deadenylation-dependent decapping of nuclear-transcribed mRNA (-3.4 fold), and small GTPase mediated signal transduction (-2.6 fold). In vivoanalysis revealed that 10-4 T. aggressivuminoculum decreased the mushroom yield by 29% to 56% and 10-3 T. aggressivuminoculum decreased the mushroom yield by 68% to 100%. Proteins that increased in abundance in A. bisporusin vivofollowing exposure to T. aggressivumindicated an oxidative stress response and included proteins with pyruvate kinase activity (+2.6 fold) and hydrolase activity (+2.1 fold)). The results indicate that exposure of A. bisporusmycelium to T. aggressivum in vitroand in vivoresulted in an oxidative stress response and reduction in growth.  相似文献   

14.
The molecular chaperone heat shock protein 90 (HSP90) works in concert with co-chaperones to stabilize its client proteins, which include multiple drivers of oncogenesis and malignant progression. Pharmacologic inhibitors of HSP90 have been observed to exert a wide range of effects on the proteome, including depletion of client proteins, induction of heat shock proteins, dissociation of co-chaperones from HSP90, disruption of client protein signaling networks, and recruitment of the protein ubiquitylation and degradation machinery—suggesting widespread remodeling of cellular protein complexes. However, proteomics studies to date have focused on inhibitor-induced changes in total protein levels, often overlooking protein complex alterations. Here, we use size-exclusion chromatography in combination with mass spectrometry (SEC-MS) to characterize the early changes in native protein complexes following treatment with the HSP90 inhibitor tanespimycin (17-AAG) for 8 h in the HT29 colon adenocarcinoma cell line. After confirming the signature cellular response to HSP90 inhibition (e.g., induction of heat shock proteins, decreased total levels of client proteins), we were surprised to find only modest perturbations to the global distribution of protein elution profiles in inhibitor-treated HT29 cells at this relatively early time-point. Similarly, co-chaperones that co-eluted with HSP90 displayed no clear difference between control and treated conditions. However, two distinct analysis strategies identified multiple inhibitor-induced changes, including known and unknown components of the HSP90-dependent proteome. We validate two of these—the actin-binding protein Anillin and the mitochondrial isocitrate dehydrogenase 3 complex—as novel HSP90 inhibitor-modulated proteins. We present this dataset as a resource for the HSP90, proteostasis, and cancer communities (https://www.bioinformatics.babraham.ac.uk/shiny/HSP90/SEC-MS/), laying the groundwork for future mechanistic and therapeutic studies related to HSP90 pharmacology. Data are available via ProteomeXchange with identifier PXD033459.  相似文献   

15.
16.
《Fungal biology》2020,124(1):15-23
Metabolons are dynamic associations of enzymes catalyzing consecutive reactions within a given pathway. Association results in enzyme stabilization and increased metabolic efficiency. Metabolons may use cytoskeletal elements, membranes and membrane proteins as scaffolds. The effects of glucose withdrawal on a putative glycolytic metabolon/F-actin system were evaluated in three Saccharomyces cerevisiae strains: a WT and two different obligate fermentative (OxPhos-deficient) strains, which obtained most ATP from glycolysis. Carbon source withdrawal led to inhibition of fermentation, decrease in ATP concentration and dissociation of glycolytic enzymes from F-actin. Depending on the strain, inactivation/reactivation transitions of fermentation took place in seconds. In addition, when ATP was very low, green fluorescent protein-labeled F-actin reorganized from highly dynamic patches to large, non-motile actin bodies containing proteins and enzymes. Glucose addition restored fermentation and cytoskeleton dynamics, suggesting that in addition to ATP concentration, at least in one of the tested strains, metabolon assembly/disassembly is a factor in the control of the rate of fermentation.  相似文献   

17.
Heat stress (HS) is the most potent environmental stressors for livestock in tropical and subtropical regions. HS induced splanchnic tissue hypoxia and intestinal oxidative damage, leading to endotoxemia and systemic inflammation. The present study evaluated and compared the modulatory effects of feeding Barki male sheep (Ovis aries) on a standard concentrated diet containing 2% or 4% of the brown seaweed (Sargassum latifolium) followed by roughage for 40 consecutive days on the toxicity-induced by exposure to severe environmental HS (temperature-humidity index = 28.55 ± 1.62). The present study showed that the diet containing Sargassum latifolium (especially 4%) modulated significantly (P < 0.05–0.001) almost all changes shown in the HS-exposed sheep including the increase in the thermo-respiratory responses (skin and rectal temperatures, and respiration rate) and the resulted dyslipidemia, anemia, and systemic inflammation (blood leukocytosis, the elevation in the erythrocyte sedimentation rate, and the increase in serum proinflammatory cytokines and heat shock protein-70 concentrations). In addition, Sargassum latifolium improved significantly (P < 0.05–0.001) the body-weight gain, kidney functions (especially at the high dose), and blood antioxidant defense system (total antioxidant capacity, and the activities of catalase and superoxide dismutase) in the HS-exposed sheep, as well as protected the animals from oxidative tissue damage and the risk of atherosclerosis. In conclusion, feeding sheep with the diet containing 4% of Sargassum latifolium was safe and suitable for animal nutrition, as well as efficiently alleviated the harmful effects of the environmental HS in Barki sheep through improving the animal antioxidant defense system, and regulating the thermo-respiratory and inflammatory responses.  相似文献   

18.
《Fungal biology》2021,125(8):637-645
Impatiens glandulifera, or Himalayan balsam, is a prolific invader of riverine habitats. Introduced from the Himalayas for ornamental purposes in 1839, this annual species has naturalised across Great Britain (GB) forming dense monocultures with negative affects across whole ecosystems. In 2006 a programme exploring biocontrol as an alternative control method was initiated and to date, two strains of the rust fungus Puccinia komarovii var. glanduliferae have been released. To better understand the observed differences in susceptibility of GB Himalayan balsam stands to the two rust strains, inoculation studies were conducted using urediniospores and basidiospores. Experiments revealed large variation in the susceptibility of stands to urediniospores of the two rust strains, with some resistant to both. Furthermore, the infectivity of basidiospores was found to differ, with some stands fully susceptible to the urediniospore stage, being immune to basidiospore infection. Therefore, before further rust releases at new sites, it is necessary to ensure complete compatibility of the invasive stands with both urediniospores and basidiospores. However, for successful control across GB it is essential that plant biotypes are matched to the most virulent rust strains. This will involve additional strains from the native range to tackle those biotypes resistant to the strains currently released.  相似文献   

19.
Pancreatic adenocarcinoma (PDAC) is highly refractory to treatment. Standard-of-care gemcitabine (Gem) provides only modest survival benefits, and development of Gem resistance (GemR) compromises its efficacy. Highly GemR clones of Gem-sensitive MIAPaCa-2 cells were developed to investigate the molecular mechanisms of GemR and implemented global quantitative differential proteomics analysis with a comprehensive, reproducible ion-current–based MS1 workflow to quantify ~6000 proteins in all samples. In GemR clone MIA-GR8, cellular metabolism, proliferation, migration, and ‘drug response’ mechanisms were the predominant biological processes altered, consistent with cell phenotypic alterations in cell cycle and motility. S100 calcium binding protein A4 was the most downregulated protein, as were proteins associated with glycolytic and oxidative energy production. Both responses would reduce tumor proliferation. Upregulation of mesenchymal markers was prominent, and cellular invasiveness increased. Key enzymes in Gem metabolism pathways were altered such that intracellular utilization of Gem would decrease. Ribonucleoside-diphosphate reductase large subunit was the most elevated Gem metabolizing protein, supporting its critical role in GemR. Lower Ribonucleoside-diphosphate reductase large subunit expression is associated with better clinical outcomes in PDAC, and its downregulation paralleled reduced MIAPaCa-2 proliferation and migration and increased Gem sensitivity. Temporal protein-level Gem responses of MIAPaCa-2 versus GemR cell lines (intrinsically GemR PANC-1 and acquired GemR MIA-GR8) implicate adaptive changes in cellular response systems for cell proliferation and drug transport and metabolism, which reduce cytotoxic Gem metabolites, in DNA repair, and additional responses, as key contributors to the complexity of GemR in PDAC. These findings additionally suggest targetable therapeutic vulnerabilities for GemR PDAC patients.  相似文献   

20.
The cancer/testis antigen lactate dehydrogenase-C4 (LDHC) is a specific isoenzyme of the LDH family that regulates invasion and metastasis in some malignancies; however, little is known regarding its role in progression of lung adenocarcinoma (LUAD). Thus, we investigated LDHC expression by immunohistochemistry, and analyzed its clinical significance in 88 LUAD specimens. The role and molecular mechanisms subserving LDHC in cellular proliferation, migration, and invasion were explored both in vitro and in vivo. As a result, we found that high LDHC expression was significantly correlated with clinicopathological features of aggressive LUAD and a poor prognosis. Overexpression of LDHC induced LUAD cells to produce lactate and ATP, increased their metastatic and invasive potential—, and accelerated xenograft tumor growth. We further demonstrated that overexpression of LDHC affected the expression of cell proliferation-related proteins (cyclin D1 and c-Myc) and epithelial-mesenchymal transition (EMT)-related proteins (MMP-2, MMP-9, E-cadherin, Vimentin, Twist, Slug, and Snail) both in vitro and in vivo. Finally, excessive activation of LDHC enhanced the phosphorylation levels of AKT and GSK-3β, revealing activation of the PI3K/Akt/GSK-3β oncogenic-signaling pathways. Treatment with a PI3K inhibitor reversed the effects of LDHC overexpression by inhibiting cellular proliferation, migration, and invasion, with diminished levels of p-Akt and p-GSK3β. PI3K inhibition also reversed cell proliferation-related and EMT-related proteins in LDHC-overexpressing A549 cells. In conclusion, LDHC promotes proliferation, migration, invasion, and EMT in LUAD cells via activation of the PI3K/Akt/GSK-3β pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号