首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-15, a pleiotropic cytokine, is involved in the inflammatory responses in various infectious and autoimmune diseases. We have recently constructed IL-15-transgenic (Tg) mice, which have an increased number of memory-type CD8+ T cells in the peripheral lymphoid tissues. In the present study, we found that eosinophilia and Th2-type cytokine production in the airway were severely attenuated in OVA-sensitized IL-15-Tg mice following OVA inhalation. IL-15-Tg mice preferentially developed Tc1 responses mediated by CD8+ T cells after OVA sensitization, and in vivo depletion of CD8+ T cells by anti-CD8 mAb aggravated the allergic airway inflammation in IL-15-Tg mice following OVA inhalation. Adoptive transfer of CD8+ T cells from OVA-sensitized IL-15-Tg mice into normal mice before OVA sensitization suppressed Th2 response to OVA in the normal mice. These results suggest that overexpression of IL-15 in vivo suppresses Th2-mediated-allergic airway response via induction of CD8+ T cell-mediated Tc1 response.  相似文献   

2.
Sauchinone, a lignan compound isolated from the root of Saururus chinensis, has been recently demonstrated to exhibit anti-inflammatory activity via the suppression of NF-kB p65 activity in vitro. In an effort to evaluate the in vivo anti-inflammatory function of sauchinone, we have evaluated the effects of sauchinone on allergen-induced airway inflammation using a murine model of allergic asthma. We observed that marked eosinophilic and lymphocyte infiltration in the BAL fluid were suppressed to a significant degree by sauchinone, and that mucus-secreting goblet cell hyperplasia and collagen deposition in the airways were also ameliorated by administration of sauchinone treatment. Moreover, gene expression of the inflammatory cytokines, IL-13, and IL-5 and eotaxin in the lung, and IL-5 in the draining lymph node were significantly decreased in sauchinone-treated mice. We demonstrated that sauchinone repressed Th2 cell development in vitro and IL-4 production by Th2 cells, and also inhibited GATA-3-mediated IL-5 promoter activity in a dose-dependent manner. Collectively, sauchinone ameliorated allergen-induced airway inflammation, in part, by repressing GATA-3 activity for Th2 cell development, indicating the possible therapeutic potential of sauchinone in airway inflammatory diseases including allergic asthma and rhinitis.  相似文献   

3.
Although CD4(+)CD25(+) regulatory T (Treg) cells are known to suppress Th1 cell-mediated immune responses, their effect on Th2-type immune responses remains unclear. In this study we examined the role of Treg cells in Th2-type airway inflammation in mice. Depletion and reconstitution experiments demonstrated that the Treg cells of naive mice effectively suppressed the initiation and development of Th2-driven airway inflammation. Despite effective suppression of Th2-type airway inflammation in naive mice, adoptively transferred, allergen-specific Treg cells were unable to suppress airway inflammation in allergen-presensitized mice. Preactivated allergen-specific Treg cells, however, could suppress airway inflammation even in allergen-presensitized mice by accumulating in the lung, where they reduced the accumulation and proliferation of Th2 cells. Upon activation, allergen-specific Treg cells up-regulated CCR4, exhibited enhanced chemotactic responses to CCR4 ligands, and suppressed the proliferation of and cytokine production by polarized Th2 cells. Collectively, these results demonstrated that Treg cells are capable of suppressing Th2-driven airway inflammation even in allergen-presensitized mice in a manner dependent on their efficient migration into the inflammatory site and their regulation of Th2 cell activation and proliferation.  相似文献   

4.
Allergic rhinitis is a chronic inflammatory disease orchestrated by Th2 lymphocytes. Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 is known to be a negative regulator in the IL-4α/STAT-6 signaling pathway of the lung. However, the role of SHP-1 enzyme and its functional relationship with Th2 and Th1 cytokines are not known in the nasal airway. In this study, we aimed to study the nasal inflammation as a result of SHP-1 deficiency in viable motheaten (mev) mice and to investigate the molecular mechanisms involved. Cytology, histology, and expression of cytokines and chemokines were analyzed to define the nature of the nasal inflammation. Targeted gene depletion of Th1 (IFN-γ) and Th2 (IL-4 and IL-13) cytokines was used to identify the critical pathways involved. Matrix metalloproteinases (MMPs) were studied to demonstrate the clearance mechanism of recruited inflammatory cells into the nasal airway. We showed here that mev mice had a spontaneous allergic rhinitis-like inflammation with eosinophilia, mucus metaplasia, up-regulation of Th2 cytokines (IL-4 and IL-13), chemokines (eotaxin), and MMPs. All of these inflammatory mediators were clearly counter-regulated by Th2 and Th1 cytokines. Deletion of IFN-γ gene induced a strong Th2-skewed inflammation with transepithelial migration of the inflammatory cells. These findings suggest that SHP-1 enzyme and Th2/Th1 paradigm may play a critical role in the maintenance of nasal immune homeostasis and in the regulation of allergic rhinitis.  相似文献   

5.

Background

Among patients with cystic fibrosis (CF), females have worse pulmonary function and survival than males, primarily due to chronic lung inflammation and infection with Pseudomonas aeruginosa (P. aeruginosa). A role for gender hormones in the causation of the CF "gender gap" has been proposed. The female gender hormone 17β-estradiol (E2) plays a complex immunomodulatory role in humans and in animal models of disease, suppressing inflammation in some situations while enhancing it in others. Helper T-cells were long thought to belong exclusively to either T helper type 1 (Th1) or type 2 (Th2) lineages. However, a distinct lineage named Th17 is now recognized that is induced by interleukin (IL)-23 to produce IL-17 and other pro-inflammatory Th17 effector molecules. Recent evidence suggests a central role for the IL-23/IL-17 pathway in the pathogenesis of CF lung inflammation. We used a mouse model to test the hypothesis that E2 aggravates the CF lung inflammation that occurs in response to airway infection with P. aeruginosa by a Th17-mediated mechanism.

Results

Exogenous E2 caused adult male CF mice with pneumonia due to a mucoid CF clinical isolate, the P. aeruginosa strain PA508 (PA508), to develop more severe manifestations of inflammation in both lung tissue and in bronchial alveolar lavage (BAL) fluid, with increased total white blood cell counts and differential and absolute cell counts of polymorphonuclear leukocytes (neutrophils). Inflammatory infiltrates and mucin production were increased on histology. Increased lung tissue mRNA levels for IL-23 and IL-17 were accompanied by elevated protein levels of Th17-associated pro-inflammatory mediators in BAL fluid. The burden of PA508 bacteria was increased in lung tissue homogenate and in BAL fluid, and there was a virtual elimination in lung tissue of mRNA for lactoferrin, an antimicrobial peptide active against P. aeruginosa in vitro.

Conclusions

Our data show that E2 increases the severity of PA508 pneumonia in adult CF male mice, and suggest two potential mechanisms: enhancement of Th17-regulated inflammation and suppression of innate antibacterial defences. Although this animal model does not recapitulate all aspects of human CF lung disease, our present findings argue for further investigation of the effects of E2 on inflammation and infection with P. aeruginosa in the CF lung.  相似文献   

6.
Asthma is a chronic inflammatory disorder, previous studies have shown that IL-17A contributes to the development of asthma, and there is a positive correlation between the level of IL-17A and the severity of disease. Here, we constructed recombinant Mycobacterium smegmatis expressing fusion protein Ag85A-IL-17A (rMS-Ag85a-IL-17a) and evaluated whether it could attenuate allergic airway inflammation, and further investigated the underlying mechanism. In this work, the murine model of asthma was established with ovalbumin, and mice were intranasally vaccinated with rMS-Ag85a-IL-17a. Autoantibody of IL-17A in sera was detected, and the airway inflammatory cells infiltration, the local cytokines and chemokines production and the histopathological changes of lung tissue were investigated. We found that the administration of rMS-Ag85a-IL-17a induced the autoantibody of IL-17A in sera. The vaccination of rMS-Ag85a-IL-17a remarkably reduced the infiltration of inflammatory cells and the secretion of mucus in lung tissue and significantly decreased the numbers of the total cells, eosinophils and neutrophils in BALF. Th1 cells count in spleen, Th1 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and T-bet mRNA in lung tissue were significantly increased with rMS-Ag85a-IL-17a administration. Meanwhile, rMS-Ag85a-IL-17a vaccination markedly decreased Th2 cells count, Th2 cytokine and Th17 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and chemokines mRNA expression in lung tissue. These data confirmed that recombinant Mycobacterium smegmatis in vivo could induce autoantibody of IL-17A, which attenuated asthmatic airway inflammation.  相似文献   

7.
ABSTRACT

The current study aimed to study the effects of Bulleyaconitine A (BLA) on asthma. Asthmatic mice model was established by ovalbumin (OVA) stimulation, and the model mice were treated by BLA. After BLA treatment, the changes in lung and airway resistances, total and differential leukocytes in the bronchoalveolar lavage fluid (BALF) were detected, and the changes in lung inflammation and airway remodeling were observed. Moreover, the secretion of IgE, Th1/Th2-type and IL-17A cytokines in BALF and serum of the asthmatic mice were determined. The resuts showed that BLA attenuated OVA-induced lung and airway resistances, inhibited the inflammatory cell recruitment in BALF and the inflammation and airway remodeling of the asthmatic mice. In addition, BLA suppressed the secretion of IgE, Th2-type cytokines, and IL-17A, but enhanced secretions of Th1-type cytokines in BALF and serum. The current study discovered that BLA inhibited the lung inflammation and airway remodeling via restoring the Th1/Th2 balance in asthmatic mice.  相似文献   

8.
Estrogen influences the disease severity and sexual dimorphism in asthma, which is caused by complex mechanisms. Besides classical nuclear estrogen receptors (ERαβ), G-protein-coupled estrogen receptor (GPER) was recently established as an estrogen receptor on the cell membrane. Although GPER is associated with immunoregulatory functions of estrogen, the pathophysiological role of GPER in allergic inflammatory lung disease has not been examined. We investigated the effect of GPER-specific agonist G-1 in asthmatic mice. GPER expression in asthmatic lung was confirmed by immunofluorescent staining. OVA-sensitized BALB/c and C57BL/6 mice were treated with G-1 by daily subcutaneous injections during an airway challenge phase, followed by histological and biochemical examination. Strikingly, administration of G-1 attenuated airway hyperresponsiveness, accumulation of inflammatory cells, and levels of Th2 cytokines (IL-5 and IL-13) in BAL fluid. G-1 treatment also decreased serum levels of anti-OVA IgE antibodies. The frequency of splenic Foxp3+CD4+ regulatory T cells and IL-10-producing GPER+CD4+ T cells was significantly increased in G-1-treated mice. Additionally, splenocytes isolated from G-1-treated mice showed greater IL-10 production. G-1-induced amelioration of airway inflammation and IgE production were abolished in IL-10-deficient mice. Taken together, these results indicate that extended GPER activation negatively regulates the acute asthmatic condition by altering the IL-10-producing lymphocyte population. The current results have potential importance for understanding the mechanistic aspects of function of estrogen in allergic inflammatory response.  相似文献   

9.
Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. Viticis Fructus (VF) has long been used in China and Korea as a traditional herbal remedy for treating various inflammatory diseases. Previously, we have isolated a novel phytochemical, pyranopyran-1, 8-dione (PPY), from VF. This study was conducted to evaluate the ability of PPY to prevent airway inflammation and to attenuate airway responses in a cockroach allergen-induced asthma model in mice. The mice sensitized to and challenged with cockroach allergen were treated with oral administration of PPY. The infiltration of total cells, eosinophils and lymphocytes into the BAL fluid was significantly inhibited in cockroach allergen-induced asthma mice treated with PPY (1, 2, or 10 mg/kg). Th2 cytokines and chemokine, such as IL-4, IL-5, IL-13 and eotaxin in BAL fluid were also reduced to normal levels following treatment with PPY. In addition, the levels of IgE were also markedly suppressed after PPY treatment. Histopathological examination demonstrated that PPY substantially inhibited eosinophil infiltration into the airway, goblet cell hyperplasia and smooth muscle hypertrophy. Taken together, these results demonstrate that PPY possesses a potent efficacy on controlling allergic asthma response such as airway inflammation and remodeling.  相似文献   

10.
11.
The high percentage of Vermamoeba was found in tap water in Korea. This study investigated whether Vermamoeba induced allergic airway inflammation in mice. We selected 2 free-living amoebas (FLAs) isolated from tap water, which included Korean FLA 5 (KFA5; Vermamoeba vermiformis) and 21 (an homolog of Acanthamoeba lugdunensis KA/E2). We axenically cultured KFA5 and KFA21. We applied approximately 1×106 to mice’s nasal passages 6 times and investigated their pathogenicity. The airway resistance value was significantly increased after KFA5 and KFA21 treatments. The eosinophil recruitment and goblet cell hyperplasia were concomitantly observed in bronchial alveolar lavage (BAL) fluid and lung tissue in mice infected with KFA5 and KFA21. These infections also activated the Th2-related interleukin 25, thymic stromal lymphopoietin, and thymus and activation-regulated chemokines gene expression in mouse lung epithelial cells. The CD4+ interleukin 4+ cell population was increased in the lung, and the secretion of Th2-, Th17-, and Th1-associated cytokines were upregulated during KFA5 and KFA21 infection in the spleen, lung-draining lymph nodes, and BAL fluid. The pathogenicity (allergenicity) of KFA5 and KFA21 might not have drastically changed during the long-term in vitro culture. Our results suggested that Vermamoeba could elicit allergic airway inflammation and may be an airway allergen.  相似文献   

12.
BackgroundAsthma is one of the most common chronic inflammatory conditions of the lungs in modern society. Asthma is associated with airway hyperresponsiveness and remodeling of the airways, with typical symptoms of cough, wheezing, shortness of breath and chest tightness. Interleukins (IL) play an integral role in its inflammatory pathogenesis. Medicinal herbs and secondary metabolites are gaining considerable attention due to their potential therapeutic role and pharmacological mechanisms as adjunct tools to synthetic bronchodilator drugs.PurposeTo systematically review the literature on the use of single or mixed plants extracts therapy in vivo experimental systems for asthma, emphasizing their regulations on IL production to improve lung.MethodsLiterature searches were performed on PubMed, EMBASE, Scopus and Web of Science databases. All articles in English were extracted from 1999 up to September 2019, assessed critically for data extraction. Studies investigating the effectiveness and safety of plant extracts administered; inflammatory cell count, immunoglobulin E (IgE) production and regulation of pro-inflammatory cytokine and T helper (Th) 1 and Th2-driven cytokine expression in bronchoalveolar lavage fluid (BALF) and lung of asthmatic animals were included.ResultsFour hundred and eighteen publications were identified and 51 met the inclusion criteria. Twenty-six studies described bioactive compounds from plant extracts. The most frequent immunopharmacological mechanisms described included reduction in IgE and eosinophilic recruitment, decreased mucus hypersecretion and airway hyperreactivity, enhancement of the balance of Th1/Th2 cytokine ratio, suppression of matrix metallopeptidase 9 (MMP-9) and reversal of structural alterations.ConclusionPlant extract therapies have potential control activities on asthma symptoms by modulating the secretion of pro-inflammatory (IL-1β, IL-8), Th17 (IL-17), anti-inflammatory (IL-10, IL-23, IL-31, IL-33), Th1 (IL-2, IL-12) and Th2 (IL-4, IL-5, IL-6, IL-13) cytokines, reducing the level of biomarkers of airway inflammation.  相似文献   

13.
Non-typeable Haemophilus influenzae (NTHi) is commonly associated with chronic suppurative lung disease in children. We have previously shown that children with chronic suppurative lung disease have a reduced capacity to produce IFN-γ in response to NTHi compared with healthy control children. The aim of this study was to determine if deficient NTHi-specific IFN-γ production is associated with heightened systemic or airway inflammation. We measured a panel of cytokines (IFN-γ, IL-1β, IL-6, IL-8, IL-12 p70), antimicrobial proteins (LL-37, IP-10) as well as cellular and clinical factors associated with airway and systemic inflammation in 70 children with chronic suppurative lung disease. IFN-γ was measured in peripheral blood mononuclear cells challenged in vitro with live NTHi. Regression analysis was used to assess the association between the systemic and airway inflammation and the capacity to produce IFN-γ. On multivariate regression, NTHi-specific IFN-γ production was significantly negatively associated with the BAL concentrations of the inflammatory cytokines IL-6 (β=-0.316; 95%CI -0.49, -0.14; p=0.001) and IL-1β (β=-0.023; 95%CI -0.04, -0.01; p=0.001). This association was independent of bacterial or viral infection, BAL cellularity and the severity of bronchiectasis (using modified Bhalla score on chest CT scans). We found limited evidence of systemic inflammation in children with chronic suppurative lung disease. In summary, increased local airway inflammation is associated with a poorer systemic cell-mediated immune response to NTHi in children with chronic suppurative lung disease. These data support the emerging body of evidence that impaired cell-mediated immune responses and dysregulated airway inflammation may be linked and contribute to the pathobiology of chronic suppurative lung disease.  相似文献   

14.
IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma.  相似文献   

15.
We previously demonstrated inhibition of ovalbumin-induced allergic airway hyper-responsiveness in the mouse using ES-62, a phosphorylcholine-containing glycoprotein secreted by the filarial nematode, Acanthocheilonema viteae. This inhibition correlated with ES-62-induced mast cell desensitisation, although the degree to which this reflected direct targeting of mast cells remained unclear as suppression of the Th2 phenotype of the inflammatory response, as measured by eosinophilia and IL-4 levels in the lungs, was also observed. We now show that inhibition of the lung Th2 phenotype is reflected in ex vivo analyses of draining lymph node recall cultures and accompanied by a decrease in the serum levels of total and ovalbumin-specific IgE. Moreover, ES-62 also suppresses the lung infiltration by neutrophils that is associated with severe asthma and is generally refractory to conventional anti-inflammatory therapies, including steroids. Protection against Th2-associated airway inflammation does not reflect induction of regulatory T cell responses (there is no increased IL-10 or Foxp3 expression) but rather a switch in polarisation towards increased Tbet expression and IFNγ production. This ES-62-driven switch in the Th1/Th2 balance is accompanied by decreased IL-17 responses, a finding in line with reports that IFNγ and IL-17 are counter-regulatory. Consistent with ES-62 mediating its effects via IFNγ-mediated suppression of pathogenic Th2/Th17 responses, we found that neutralising anti-IFNγ antibodies blocked protection against airway inflammation in terms of pro-inflammatory cell infiltration, particularly by neutrophils, and lung pathology. Collectively, these studies indicate that ES-62, or more likely small molecule analogues, could have therapeutic potential in asthma, in particular for those subtypes of patients (e.g. smokers, steroid-resistant) who are refractory to current treatments.  相似文献   

16.
During viral infection, inflammation and recovery are tightly controlled by competing proinflammatory and regulatory immune pathways. Respiratory syncytial virus (RSV) is the leading global cause of infantile bronchiolitis, which is associated with recurrent wheeze and asthma diagnosis in later life. Th2-driven disease has been well described under some conditions for RSV-infected mice. In the present studies, we used the Foxp3DTR mice (which allow specific conditional depletion of Foxp3+ T cells) to investigate the functional effects of regulatory T cells (Tregs) during A2-strain RSV infection. Infected Treg-depleted mice lost significantly more weight than wild-type mice, indicating enhanced disease. This enhancement was characterized by increased cellularity in the bronchoalveolar lavage (BAL) fluid and notable lung eosinophilia not seen in control mice. This was accompanied by abundant CD4+ and CD8+ T cells exhibiting an activated phenotype and induction of interleukin 13 (IL-13)- and GATA3-expressing Th2-type CD4+ T cells that remained present in the airways even 14 days after infection. Therefore, Treg cells perform vital anti-inflammatory functions during RSV infection, suppressing pathogenic T cell responses and inhibiting lung eosinophilia. These findings provide additional evidence that dysregulation of normal immune responses to viral infection may contribute to severe RSV disease.  相似文献   

17.
Ye YL  Huang WC  Lee YL  Chiang BL 《Cytokine》2002,19(2):76-84
The mechanisms that cause the inflammation of airway and lung tissue in asthma have been studied extensively. It is noted that type 1T helper cell (Th1)-related cytokines could decrease the accumulation of eosinophils in lung tissue and relieve airway constriction. But the therapeutic mechanisms of Th1 cytokines remain unclear. In this study, interleukin-12 (IL-12) DNA plasmid as a therapeutic reagent was delivered intravenously. Bronchoalveolar lavage (BAL) fluids were collected from IL-12 treated and control mice, and analyzed for cell composition and eotaxin level. The results showed that IL-12 DNA plasmid could effectively inhibit eosinophilia and airway inflammation in vivo. The level of eotaxin in BAL fluid also decreased. To further investigate the effect of Th1-related cytokines such as IL-12 or interferon-gamma (IFN-gamma) on the eotaxin level produced by lung cells, primary lung cell culture was established. The results demonstrated that both IL-12 and IFN-gamma could suppress eotaxin secretion from IL-13 or IL-4 stimulated primary lung cell culture. Moreover, the inhibitory effect of IL-12 could not be reversed by the administration of anti-IFN-gamma antibody. All the evidences suggested that IL-12 could regulate airway inflammation by suppressing the eotaxin secretion of lung tissue through an IFN-gamma independent mechanism.  相似文献   

18.
BackgroundAsthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma.MethodsTo test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response.ResultsWe found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines.ConclusionWe conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2.  相似文献   

19.
20.

Background

Viral and bacterial respiratory tract infections in early-life are linked to the development of allergic airway inflammation and asthma. However, the mechanisms involved are not well understood. We have previously shown that neonatal and infant, but not adult, chlamydial lung infections in mice permanently alter inflammatory phenotype and physiology to increase the severity of allergic airway disease by increasing lung interleukin (IL)-13 expression, mucus hyper-secretion and airway hyper-responsiveness. This occurred through different mechanisms with infection at different ages. Neonatal infection suppressed inflammatory responses but enhanced systemic dendritic cell:T-cell IL-13 release and induced permanent alterations in lung structure (i.e., increased the size of alveoli). Infant infection enhanced inflammatory responses but had no effect on lung structure. Here we investigated the role of hematopoietic cells in these processes using bone marrow chimera studies.

Methodology/Principal Findings

Neonatal (<24-hours-old), infant (3-weeks-old) and adult (6-weeks-old) mice were infected with C. muridarum. Nine weeks after infection bone marrow was collected and transferred into recipient age-matched irradiated naïve mice. Allergic airway disease was induced (8 weeks after adoptive transfer) by sensitization and challenge with ovalbumin. Reconstitution of irradiated naïve mice with bone marrow from mice infected as neonates resulted in the suppression of the hallmark features of allergic airway disease including mucus hyper-secretion and airway hyper-responsiveness, which was associated with decreased IL-13 levels in the lung. In stark contrast, reconstitution with bone marrow from mice infected as infants increased the severity of allergic airway disease by increasing T helper type-2 cell cytokine release (IL-5 and IL-13), mucus hyper-secretion, airway hyper-responsiveness and IL-13 levels in the lung. Reconstitution with bone marrow from infected adult mice had no effects.

Conclusions

These results suggest that an infant chlamydial lung infection results in long lasting alterations in hematopoietic cells that increases the severity of allergic airway disease in later-life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号