首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbiotic relationship with the beneficial mycorrhizal fungus.  相似文献   

2.

Wild emmer wheat, Triticum dicoccoides, the progenitor of modern tetraploid and hexaploid wheats, is an important resource for new variability for disease resistance genes. T. dicoccoides accession pau4656 showed resistance against prevailing leaf rust and stripe rust races in India and was used for developing stable introgression lines (IL) in T. durum cv Bijaga yellow and named as IL pau16068. F5 Recombinant inbred lines (F5 RILs) were developed by crossing IL pau16068 with T. durum cultivar PBW114 and RIL population was screened against highly virulent Pt and Pst pathotypes at the seedling and adult plant stages. Inheritance analyses revealed that population segregated for two genes for all stage resistance (ASR) against leaf rust, one ASR gene against stripe rust and three adult plant resistance (APR) genes for stripe rust resistance. For mapping these genes a set of 483 SSR marker was used for bulked segregant analysis. The markers showing diagnostic polymorphism in the resistant and susceptible bulks were amplified on all RILs. Single marker analysis placed all stage leaf rust resistance genes on chromosome 6A and 2A linked to the SSR markers Xwmc256 and Wpaus268, respectively. Likewise one all stage stripe rust resistance gene were mapped on long arm of chromosome 6A linked to markers 6AL-5833645 and 6AL-5824654 and two APR genes mapped on chromosomes 2A and 2B close to the SSR marker Wpaus268 and Xbarc70, respectively. The current study identified valuable leaf rust and stripe rust resistance genes effective against multiple rust races for deployment in the wheat breeding programme.

  相似文献   

3.
Leaf rust, caused by Puccinia triticina (Pt), and stripe rust, caused by P. striiformis f. sp. tritici (Pst), are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum) landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ) and one race of Pst (PSTv-37) frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum.  相似文献   

4.
Mechanism of durable resistance: a new approach   总被引:2,自引:0,他引:2  
Summary Wheat genotypes, including backcross derivatives of Thatcher carrying Lr10 and Lr23, substitution lines for Lr10 and Lr23 in Chinese Spring background and Chinese Spring and Thatcher were analysed against 21 pathotypes of leaf rust in seedling tests. Adult plant responses in all these stocks were observed in the field nurseries under exposure to the inoculum of the Indian virulent races of leaf rust. The seedling data demonstrated that both the substitution lines and the backcross derivatives for each gene carry identical pattern of infection for resistance. The high level of adult plant resistance in the substitution lines, in contrast to the backcross derivatives in Thatcher, has been postulated to be due to the combination of resistance contributed by Lr10 and adult plant Chinese Spring resistance or to Lr23 and Chinese Spring adult plant resistance. It has been suggested that genes Lr10 and Lr23 added to the Chinese Spring background provide sources for durable resistance, since Chinese Spring has continued to provide a moderate level of adult plant resistance to leaf rust for a very long time.  相似文献   

5.
[目的]小麦叶锈病是影响小麦生产主要病害之一,其病原菌新小种的出现和劣势小种上升为优势小种导致抗病品种的抗病性不断被克服.小麦隐匿柄锈菌与小麦互作不同阶段差异表达谱分析对于揭示该病菌致病的分子机制,进而有效防控小麦叶锈病具有重要意义.[方法]利用转录组分析小麦隐匿柄锈菌致病生理小种与感叶锈病小麦品种MuTcLr19亲和...  相似文献   

6.
7.
Leaf rust resistance gene Lr28 has been transferred form Aegilops speltoides into bread wheat on chromosome 4AL. To identify the molecular markers linked to Lr28 the available microsatellite markers for wheat chromosome arm 4AL were surveyed on near isogenic lines (NILs) of Triticum aestivum cultivars having Lr28 gene, other Lrgenes and susceptible cultivars. A null allele of Xgwm 160 marker was found to be associated with Lr28. Linkage between the marker and the Lr28 resistance gene was confirmed using F2 mapping population of cross PBW343 and HD2329 + Lr28.  相似文献   

8.
山东省12个主栽小麦品种(系)抗叶锈性分析   总被引:1,自引:0,他引:1  
本研究旨在明确山东省12个小麦主栽品种(系)抗叶锈性及抗叶锈基因,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据。利用2015年采自山东省的5个小麦叶锈菌流行小种的混合小种对这些材料进行苗期抗性鉴定,然后选用15个小麦叶锈菌生理小种对这些品种(系)进行苗期基因推导,并利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对其进行抗叶锈基因分子检测。结果显示,山东省12个主栽小麦品种(系)苗期对该省2015年的5个小麦叶锈菌混合流行小种均表现高度感病。通过基因推导与分子检测发现,济南17含有Lr16,矮抗58和山农20含有Lr26,其余济麦系列、烟农系列、良星系列等9个品种(系)均未检测到所供试标记片段。此外,本研究还对山东省3个非主栽品种进行了检测,结果发现,中麦175含有抗叶锈基因Lr1和Lr37,含有成株抗性基因;皖麦38只检测到Lr26,济麦20未检测到所供试标记片段。综合以上结果,山东省主栽小麦品种(系)所含抗叶锈基因丰富度较低,尤其不含有对我国小麦叶锈菌流行小种有效的抗锈基因,应该引起高度重视,今后育种工作应注重引入其他抗叶锈基因,提高抗叶锈性。  相似文献   

9.
为了明确河南省小麦品种的抗叶锈性及抗叶锈基因的分布,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据,本研究利用2015年采自河南省的5个小麦叶锈菌流行小种混合菌株,对近几年河南省16个主栽小麦品种进行了苗期抗性鉴定,然后选用12个小麦叶锈菌生理小种对这些品种进行苗期基因推导,同时利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对该16个品种进行了抗叶锈基因分子检测。结果显示,供试品种苗期对小麦叶锈菌混合流行小种均表现高度感病;基因推导与分子检测结果表明,供试品种可能含有Lr1、Lr16、Lr26和Lr30这4个抗叶锈基因,其中先麦8号含有Lr1和Lr26;郑麦366和郑麦9023含有Lr1;西农979和怀川916含有Lr16;中麦895、偃展4110、郑麦7698、平安8号、众麦1号、周麦16、衡观35和矮抗58含有Lr26;周麦22中含有Lr26,还可能含有Lr1和Lr30;豫麦49-198和洛麦23可能含有本研究中检测以外的其他抗叶锈基因。因此,河南省主栽小麦品种的抗叶锈基因丰富度较低,今后育种工作应注重引入其他抗叶锈性基因,提高抗叶锈性,有效控制小麦叶锈病。  相似文献   

10.
RFLP analysis has been used to characterise XMv, a chromosome of Aegilops ventricosa present in a disomic addition line of wheat. This chromosome is known to carry a major gene conferring resistance to leaf rust (Lr). The analysis demonstrated that XMv is translocated with respect to the standard wheat genome, and consists of a segment of the short arm of homoeologous group 2 attached to a group 6 chromosome lacking a distal part of the short arm. Lr was located to the region of XMv with homoeology to 2S by analysis of a leaf rust-susceptible deletion line that was found to lack the entire 2S segment. Confirmation and refinement of the location of Lr was obtained by analysis of a spontaneous resistant translocation in which a small part of XMv had been transferred to wheat chromosome 2A.  相似文献   

11.
Leaf rust resistance genes were sought in 23 resistant common wheat accessions with alien genetic material of Aegilops speltoides, Ae. triuncialis, and Triticum kiharae from the Arsenal collection. The genes were identified by common phytopathological tests and PCR analysis with STS markers linked with the known Lr genes. None of the methods identified the resistance genes in two accessions. In the other accessions, the combination of the two methods broadened the spectrum of detectable genes and, in some cases, allowed double verification of the presence of a resistance gene. Most accessions proved to contain several leaf rust resistance genes, combining juvenile and adult plant ones. The accessions were found to contain gene combinations that ensured field resistance (Lr13 + Lr10 and Lr12 + Lr34) and immunity under the conditions of the Non-Chernozem region. Accessions with alien genetic material contained a unique combination of five or six resistance genes. Since the accessions were rich in leaf rust resistance genes, including effective ones, and carried rare combinations of these genes, they were proposed as donors to be universally employed in breeding for immunity in all regions of Russia.  相似文献   

12.
The objective of this work was to develop a marker for the adult plant leaf rust resistance gene Lr35. The Lr35 gene was originally introgressed into chromosome 2B from Triticum speltoides, a diploid relative of wheat. A segregating population of 96 F 2 plants derived from a cross between the resistant line ThatcherLr35 and the susceptible variety Frisal was analysed. Out of 80 RFLP probes previously mapped on wheat chromosome 2B, 51 detected a polymorphism between the parents of the cross. Three of them were completely linked with the resistance gene Lr35. The co-segregating probe BCD260 was converted into a PCR-based sequence-tagged-site (STS) marker. A set of 48 different breeding lines derived from several European breeding programs was tested with the STS marker. None of these lines has a donor for Lr35 in its pedigree and all of them reacted negatively with the STS marker. As no leaf rust races virulent on Lr35 have been found in different areas of the world, the STS marker for the Lr35 resistance gene is of great value to support the introgression of this gene in combination with other leaf rust (Lr) genes into breeding material by marker-assisted selection. Received: 14 December 1998 / Accepted: 30 January 1999  相似文献   

13.
D Bai  D R Knott 《Génome》1994,37(3):405-409
Six accessions of Triticum turgidum var. dicoccoides L. (4x, AABB) of diverse origin were tested with 10 races of leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm.) and 10 races of stem rust (P. graminis f.sp. tritici Eriks. &Henn.). Their infection type patterns were all different from those of lines carrying the Lr or Sr genes on the A or B genome chromosomes with the same races. The unique reaction patterns are probably controlled by genes for leaf rust or stem rust resistance that have not been previously identified. The six dicoccoides accessions were crossed with leaf rust susceptible RL6089 durum wheat and stem rust susceptible 'Kubanka' durum wheat to determine the inheritance of resistance. They were also crossed in diallel to see whether they carried common genes. Seedlings of F1, F2, and BC1F2 generations from the crosses of the dicoccoides accessions with RL6089 were tested with leaf rust race 15 and those from the crosses with 'Kubanka' were tested with stem rust race 15B-1. The F2 populations from the diallel crosses were tested with both races. The data from the crosses with the susceptible durum wheats showed that resistance to leaf rust race 15 and stem rust race 15B-1 in each of the six dicoccoides accessions is conferred by a single dominant or partially dominant gene. In the diallel crosses, the dominance of resistance appeared to be affected by different genetic backgrounds. With one exception, the accessions carry different resistance genes: CI7181 and PI 197483 carry a common gene for resistance to leaf rust race 15. Thus, wild emmer wheat has considerable genetic diversity for rust resistance and is a promising source of new rust resistance genes for cultivated wheats.  相似文献   

14.
‘Express’, a hard red spring wheat cultivar that has been widely grown in the western United States, is used to differentiate races of Puccinia striiformis f. sp. tritici, the causal fungal pathogen of wheat stripe rust. To identify genes conferring race-specific, overall resistance to stripe rust, Express was crossed with ‘Avocet S’. The parents and F1, F2, F3 and F5 populations were tested with races PST-1, PST-21, PST-43, and PST-45 of P. striiformis f. sp. tritici in the seedling stage under controlled greenhouse conditions. Two dominant genes for resistance to stripe rust were identified, one conferring resistance to PST-1 and PST-21, and the other conferring resistance to all four races. Linkage groups were constructed for the resistance genes using 146 F5 lines to establish resistance gene analog and chromosome-specific simple sequence repeat marker polymorphisms. The gene for resistance to races PST-1 and PST-21 was mapped on the long arm of chromosome 1B, and that conferring resistance to all four races was mapped on the long arm of chromosome 5B. We temporarily designate the gene on 1BL as YrExp1 and the gene on 5BL as YrExp2. Polymorphism of at least one of the two markers flanking YrExp2 was detected in 91% of the 44 tested wheat genotypes, suggesting that they would be useful in marker-assisted selection for combining the gene with other resistance genes into many other wheat cultivars. Knowledge of these genes will be useful to understand recent virulence changes in the pathogen populations.  相似文献   

15.
Tracking wheat rust on a continental scale   总被引:2,自引:0,他引:2  
The rusts of wheat are important fungal plant pathogens that can be disseminated thousands of kilometers across continents and oceans by wind. Rusts are obligate parasites that interact with resistance genes in wheat in a gene-for-gene manner. New races of rust develop by mutation and selection for virulence against rust resistance genes in wheat. In recent years, new races of wheat leaf rust, wheat stripe rust, and wheat stem rust have been introduced into wheat production areas in different continents. These introductions have complicated efforts to develop wheat cultivars with durable rust resistance and have reduced the number of effective rust-resistance genes that are available for use. The migration patterns of wheat rusts are characterized by identifying their virulence against important rust resistance genes in wheat and by the use of molecular markers.  相似文献   

16.

Key message

KU3198 is a common wheat accession that carries one novel leaf rust resistance (Lr) gene, Lr70 , and another Lr gene which is either novel, Lr52 or an allele of Lr52.

Abstract

Leaf rust, caused by Puccinia triticina Eriks. (Pt), is a broadly distributed and economically important disease of wheat. Deploying cultivars carrying effective leaf rust resistance (Lr) genes is a desirable method of disease control. KU3198 is a common wheat (Triticum aestivum L.) accession from the Kyoto collection that was highly resistant to Pt in Canada. An F2 population from the cross HY644/KU3198 showed segregation for two dominant Lr genes when tested with Pt race MBDS which was virulent on HY644. Multiple bulk segregant analysis (MBSA) was employed to find putative chromosome locations of these Lr genes using SSR markers that provided coverage of the genome. MBSA predicted that the Lr genes were located on chromosomes 5B and 5D. A doubled haploid population was generated from the cross of JBT05-714 (HY644*3/KU3198), a line carrying one of the Lr genes from KU3198, to Thatcher. This population segregated for a single Lr gene conferring resistance to Pt race MBDS, which was mapped to the terminal region of the short arm of chromosome 5B with SSR markers and given the temporary designation LrK1. One F3 family derived from the HY644/KU3198 F2 population that segregated only for the second Lr gene from KU3198 was identified. This family was treated as an F2-equivalent population and used for mapping the Lr gene, which was located to the terminal region of chromosome 5DS. As no other Lr gene has been mapped to 5DS, this gene is novel and has been designated as Lr70.  相似文献   

17.
Several new races of the stripe rust pathogen have become frequent throughout the wheat growing regions of the United States since 2000. These new races are virulent to most of the wheat seedling resistance genes limiting the resistance sources that can be used to combat this pathogen. High-temperature adult-plant (HTAP) stripe rust resistance has proven to be more durable than seedling resistance due to its non-race-specific nature, but its use is limited by the lack of mapping information. We report here the identification of a new HTAP resistance gene from Triticum turgidum ssp. dicoccoides (DIC) designated as Yr36. Lines carrying this gene were susceptible to almost all the stripe rust pathogen races tested at the seedling stage but showed adult-plant resistance to the prevalent races in California when tested at high diurnal temperatures. Isogenic lines for this gene were developed by six backcross generations. Field tests in two locations showed increased levels of field resistance to stripe rust and increased yields in isogenic lines carrying the Yr36 gene compared to those without the gene. Recombinant substitution lines of chromosome 6B from DIC in the isogenic background of durum cv. Langdon were used to map the Yr36 gene on the short arm of chromosome 6B completely linked to Xbarc101, and within a 2-cM interval defined by PCR-based markers Xucw71 and Xbarc136. Flanking locus Xucw71 is also closely linked to the grain protein content locus Gpc-B1 (0.3-cM). Marker-assisted selection strategies are presented to improve stripe rust resistance and simultaneously select for high or low Gpc-B1 alleles.  相似文献   

18.
R L Innes  E R Kerber 《Génome》1994,37(5):813-822
Twelve accessions of Triticum tauschii (Coss.) Schmal. were genetically analyzed for resistance to leaf rust (Puccinia recondita Rob. ex Desm.) and stem rust (Puccinia graminis Pers. f.sp. tritici Eriks. and E. Henn.) of common wheat (Triticum aestivum L.). Four genes conferring seedling resistance to leaf rust, one gene conferring seedling resistance to stem rust, and one gene conferring adult-plant resistance to stem rust were identified. These genes were genetically distinct from genes previously transferred to common wheat from T. tauschii and conferred resistance to a broad spectrum of pathogen races. Two of the four seedling leaf rust resistance genes were not expressed in synthetic hexaploids, produced by combining tetraploid wheat with the resistant T. tauschii accessions, probably owing to the action of one or more intergenomic suppressor loci on the A or B genome. The other two seedling leaf rust resistance genes were expressed at the hexaploid level as effectively as in the source diploids. One gene was mapped to the short arm of chromosome 2D more than 50 cM from the centromere and the other was mapped to chromosome 5D. Suppression of seedling resistance to leaf rust in synthetic hexaploids derived from three accessions of T. tauschii allowed the detection of three different genes conferring adult-plant resistance to a broad spectrum of leaf rust races. The gene for seedling resistance to stem rust was mapped to chromosome ID. The degree of expression of this gene at the hexaploid level was dependent on the genetic background in which it occurred and on environmental conditions. The expression of the adult-plant gene for resistance to stem rust was slightly diminished in hexaploids. The production of synthetic hexaploids was determined to be the most efficient and flexible method for transferring genes from T. tauschii to T. aestivum, but crossing success was determined by the genotypes of both parents. Although more laborious, the direct introgression method of crossing hexaploid wheat with T. tauschii has the advantages of enabling selection for maximum expression of resistance in the background hexaploid genotype and gene transfer into an agronomically superior cultivar.  相似文献   

19.
A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcross-recombinant inbred line (BC-RIL) population derived from the cross of a wheat–Ae. caudata introgression line (IL) T291-2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.  相似文献   

20.

Key message

We report a new stripe rust resistance gene on chromosome 7AS in wheat and molecular markers useful for transferring it to other wheat genotypes.

Abstract

Several new races of the stripe rust pathogen have established throughout the wheat growing regions of China in recent years. These new races are virulent to most of the designated seedling resistance genes limiting the resistance sources. It is necessary to identify new genes for diversification and for pyramiding different resistance genes in order to achieve more durable resistance. We report here the identification of a new resistance gene, designated as Yr61, in Chinese wheat cultivar Pindong 34. A mapping population of 208 F2 plants and 128 derived F2:3 lines in a cross between Mingxian 169 and Pindong 34 was evaluated for seedling stripe rust response. A genetic map consisting of eight resistance gene analog polymorphism (RGAP), two sequence-tagged site (STS) and four simple sequence repeat (SSR) markers was constructed. Yr61 was located on the short arm of chromosome 7A and flanked by RGAP markers Xwgp5467 and Xwgp5765 about 1.9 and 3.9 cM in distance, which were successfully converted into STS markers STS5467 and STS5765b, respectively. The flanking STS markers could be used for marker-assisted selection of Yr61 in breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号