首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
In Fusarium graminearum, a trichothecene biosynthetic complex known as the toxisome forms ovoid and spherical structures in the remodelled endoplasmic reticulum (ER) under mycotoxin-inducing conditions. Previous studies also demonstrated that disruption of actin and tubulin results in a significant decrease in deoxynivalenol (DON) biosynthesis in F. graminearum. However, the functional association between the toxisome and microtubule components has not been clearly defined. In this study we tested the hypothesis that the microtubule network provides key support for toxisome assembly and thus facilitates DON biosynthesis. Through fluorescent live cell imaging, knockout mutant generation, and protein–protein interaction assays, we determined that two of the four F. graminearum tubulins, α1 and β2 tubulins, are indispensable for DON production. We also showed that these two tubulins are directly associated. When the α1–β2 tubulin heterodimer is disrupted, the metabolic activity of the toxisome is significantly suppressed, which leads to significant DON biosynthesis impairment. Similar phenotypic outcomes were shown when F. graminearum wild type was treated with carbendazim, a fungicide that binds to microtubules and disrupts spindle formation. Based on our results, we propose a model where α1–β2 tubulin heterodimer serves as the scaffold for functional toxisome assembly in F. graminearum.  相似文献   

2.
3.
The membrane trafficking system is important for compartmentalization of the biosynthesis pathway and secretion of deoxynivalenol (DON) mycotoxin (a virulence factor) in Fusarium graminearum. Flippases are transmembrane lipid transporters and mediate a number of essential physiological steps of membrane trafficking, including vesicle budding, charging, and protein diffusion within the membrane. However, the roles of flippases in secondary metabolism remain unknown in filamentous fungi. Herein, we identified five flippases (FgDnfA, FgDnfB, FgDnfC1, FgDnfC2, and FgDnfD) in F. graminearum and established their specific and redundant functions in the development and pathogenicity of this phytopathogenic fungus. Our results demonstrate that FgDnfA is critical for normal vegetative growth while the other flippases are dispensable. FgDnfA and FgDnfD were found crucial for the fungal pathogenesis, and a remarkable reduction in DON production was observed in ΔFgDNFA and ΔFgDNFD. Deletion of the FgDNFB gene increased DON production to about 30 times that produced by the wild type. Further analysis showed that FgDnfA and FgDnfD have positive roles in the regulation of trichothecene (TRI) genes (TRI1, TRI4, TRI5, TRI6, TRI12, and TRI101) expression and toxisome reorganization, while FgDnfB acts as a negative regulator of DON synthesis. In addition, FgDnfB and FgDnfD have redundant functions in the regulation of phosphatidylcholine transport, and double deletion of FgDNFB and FgDNFD showed serious defects in fungal development, DON synthesis, and virulence. Collectively, our findings reveal the distinct and specific functions of flippase family members in F. graminearum and principally demonstrate that FgDnfA, FgDnfD, and FgDnfB have specific spatiotemporal roles during toxisome biogenesis.  相似文献   

4.
The ascomycete fungus, Fusarium graminearum (teleomorph Gibberella zeae), is the most common causal agent of Fusarium head blight (FHB), a devastating disease for cereal crops worldwide. F. graminearum produces ascospores (sexual spores) and conidia (asexual spores), which can serve as disease inocula of FHB. Meanwhile, Fusarium-infected grains are often contaminated with mycotoxins such as trichothecenes (TRIs), fumonisins, and zearalenones, among which TRIs are related to the pathogenicity of F. graminearum, and these toxins are hazardous to humans and livestock. In recent years, with the complete genome sequencing of F. graminearum, an increasing number of functional genes involved in the production of secondary metabolites, hyphal differentiation, sexual and asexual reproduction, virulence and pathogenicity have been identified from F. graminearum. In this review, the secondary metabolite synthesis, hyphal development and pathogenicity related genes in F. graminearum were thoroughly summarized, and the genes associated with secondary metabolites, sexual reproduction, energy metabolism, and pathogenicity were highlighted.  相似文献   

5.
Fusarium graminearum and F. culmorum are the major causal agents of Fusarium head blight in Turkey. They produce trichothecenes such as deoxynivalenol (DON), nivalenol (NIV) and their several acetylated derivatives, 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON). In this study, a total of thirty-three isolates of F. graminearum and F. culmorum were collected from various regions and three different hosts. They were identified by amplification of tri5 gene cluster. Totally 32 isolates, 21 of F. culmorum and 11 of F. graminearum, were determined as DON chemotype, while only one F. graminearum isolate (1F) was detected as a NIV. A 282 base pair (bp) band for tri13 gene and also ranging from 458 to 535 bp bands for tri7 gene were amplified in all DON producers’ genomes. Further analysis of DON chemotype based on tri3 gene amplification showed that all isolates of F. graminearum displayed 15-ADON sub-chemotype. They yielded a 863 bp amplicon. Similarly, 3-ADON sub-chemotype was identified in F. culmorum’ isolates except F13. As a result of tri3 gene assay, it was produced a 583 bp fragment in these twenty isolates. It is the first report that a F. graminearum isolate depicts NIV chemotype in agricultural regions of Turkey. According to our findings, DON chemotype is predominating in our country. Also, it is presented that most of the F. graminearum isolates have 15-ADON sub-chemotype, while all F. culmorum’s belong to 3-ADON which possess full length amplicon of tri7 gene.  相似文献   

6.
Fusarium graminearum, as the causal agent of Fusarium head blight (FHB), not only causes yield loss, but also contaminates the quality of wheat by producing mycotoxins, such as deoxynivalenol (DON). The plasma membrane H+-ATPases play important roles in many growth stages in plants and yeasts, but their functions and regulation in phytopathogenic fungi remain largely unknown. Here we characterized two plasma membrane H+-ATPases: FgPMA1 and FgPMA2 in Fgraminearum. The FgPMA1 deletion mutant (∆FgPMA1), but not FgPMA2 deletion mutant (∆FgPMA2), was impaired in vegetative growth, pathogenicity, and sexual and asexual development. FgPMA1 was localized to the plasma membrane, and ∆FgPMA1 displayed reduced integrity of plasma membrane. ∆FgPMA1 not only impaired the formation of the toxisome, which is a compartment where DON is produced, but also suppressed the expression level of DON biosynthetic enzymes, decreased DON production, and decreased the amount of mycelial invasion, leading to impaired pathogenicity by exclusively developing disease on inoculation sites of wheat ears and coleoptiles. ∆FgPMA1 exhibited decreased sensitivity to some osmotic stresses, a cell wall-damaging agent (Congo red), a cell membrane-damaging agent (sodium dodecyl sulphate), and heat shock stress. FgMyo-5 is the target of phenamacril used for controlling FHB. We found FgPMA1 interacted with FgMyo-5, and ∆FgPMA1 showed an increased expression level of FgMyo-5, resulting in increased sensitivity to phenamacril, but not to other fungicides. Furthermore, co-immunoprecipitation confirmed that FgPMA1, FgMyo-5, and FgBmh2 (a 14-3-3 protein) form a complex to regulate the sensitivity to phenamacril and biological functions. Collectively, this study identified a novel regulating mechanism of FgPMA1 in pathogenicity and phenamacril sensitivity of F. graminearum.  相似文献   

7.
Fusarium head blight caused by Fusarium graminearum is an important disease of wheat and barley worldwide. In a previous study on functional characterization of the F. graminearum kinome, one protein kinase gene important for virulence is orthologous to SCH9 that is functionally related to the cAMP-PKA and TOR pathways in the budding yeast. In this study, we further characterized the functions of FgSCH9 in F. graminearum and its ortholog in Magnaporthe oryzae. The ΔFgsch9 mutant was slightly reduced in growth rate but significantly reduced in conidiation, DON production, and virulence on wheat heads and corn silks. It had increased tolerance to elevated temperatures but became hypersensitive to oxidative, hyperosmotic, cell wall, and membrane stresses. The ΔFgsch9 deletion also had conidium morphology defects and produced smaller conidia. These results suggest that FgSCH9 is important for stress responses, DON production, conidiogenesis, and pathogenesis in F. graminearum. In the rice blast fungus Magnaporthe oryzae, the ΔMosch9 mutant also was defective in conidiogenesis and pathogenesis. Interestingly, it also produced smaller conidia and appressoria. Taken together, our data indicate that the SCH9 kinase gene may have a conserved role in regulating conidium size and plant infection in phytopathogenic ascomycetes.  相似文献   

8.
WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1) in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in Δfgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein.  相似文献   

9.
Guo  Jiazhong  Jorjani  Hossein  Carlborg  Örjan 《BMC genetics》2012,13(1):1-10

Background

Fusarium graminearum sensu stricto (s.s.) is an ubiquitous pathogen of cereals. The economic impact of Fusarium head blight (FHB) is characterized by crop losses and mycotoxin contamination. Our objective was to associate SNP diversity within candidate genes with phenotypic traits. A total of 77 F. graminearum s.s. isolates was tested for severity of fungal infection (= aggressiveness) and deoxynivalenol (DON) production in an inoculated field experiment at two locations in each of two years. For seven genes known to control fungal growth (MetAP1, Erf2) or DON production (TRI1, TRI5, TRI6 TRI10 and TRI14) single nucleotides polymorphic sites (SNPs) were determined and evaluated for the extent of linkage disequilibrium (LD). Associations of SNPs with both phenotypic traits were tested using linear mixed models.

Results

Decay of LD was in most instances fast. Two neighboring SNPs in MetAP1 and one SNP in Erf2 were significantly (P < 0.05) associated with aggressiveness explaining proportions of genotypic variance (p G ) of 25.6%, 0.5%, and 13.1%, respectively. One SNP in TRI1 was significantly associated with DON production (p G = 4.4).

Conclusions

We argue that using the published sequence information of Fusarium graminearum as a template to amplify comparative sequence parts of candidate genes is an effective method to detect quantitative trait loci. Our findings underline the potential of candidate gene association mapping approaches to identify functional SNPs underlying aggressiveness and DON production for F. graminearum s.s populations.  相似文献   

10.
Fusarium pseudograminearum is an agronomically important fungus, which infects many crop plants, including wheat, where it causes Fusarium crown rot. Like many other fungi, the Fusarium genus produces a wide range of secondary metabolites of which only few have been characterized. Recently a novel gene cluster was discovered in F. pseudograminearum, which encodes production of cytokinin-like metabolites collectively named Fusarium cytokinins. They are structurally similar to plant cytokinins and can activate cytokinin signalling in vitro and in planta. Here, the regulation of Fusarium cytokinin production was analysed in vitro. This revealed that, similar to deoxynivalenol (DON) production in Fusarium graminearum, cytokinin production can be induced in vitro by specific nitrogen sources in a pH-dependent manner. DON production was also induced in both F. graminearum and F. pseudograminearum in cytokinin-inducing conditions. In addition, microscopic analyses of wheat seedlings infected with a F. pseudograminearum cytokinin reporter strain showed that the fungus specifically induces its cytokinin production in hyphae, which are in close association with the plant, suggestive of a function of Fusarium cytokinins during infection.  相似文献   

11.

Background  

Fusarium head blight is a very important disease of small grain cereals with F. graminearum as one of the most important causal agents. It not only causes reduction in yield and quality but from a human and animal healthcare point of view, it produces mycotoxins such as deoxynivalenol (DON) which can accumulate to toxic levels. Little is known about external triggers influencing DON production.  相似文献   

12.
The fungal cereal pathogen Fusarium graminearum produces deoxynivalenol (DON) during infection. The mycotoxin DON is associated with Fusarium head blight (FHB), a disease that can cause vast grain losses. Whilst investigating the suitability of Brachypodium distachyon as a model for spreading resistance to F. graminearum, we unexpectedly discovered that DON pretreatment of spikelets could reduce susceptibility to FHB in this model grass. We started to analyse the cell wall changes in spikelets after infection with F. graminearum wild‐type and defined mutants: the DON‐deficient Δtri5 mutant and the DON‐producing lipase disruption mutant Δfgl1, both infecting only directly inoculated florets, and the mitogen‐activated protein (MAP) kinase disruption mutant Δgpmk1, with strongly decreased virulence but intact DON production. At 14 days post‐inoculation, the glucose amounts in the non‐cellulosic cell wall fraction were only increased in spikelets infected with the DON‐producing strains wild‐type, Δfgl1 and Δgpmk1. Hence, we tested for DON‐induced cell wall changes in B. distachyon, which were most prominent at DON concentrations ranging from 1 to 100 ppb. To test the involvement of DON in defence priming, we pretreated spikelets with DON at a concentration of 1 ppm prior to F. graminearum wild‐type infection, which significantly reduced FHB disease symptoms. The analysis of cell wall composition and plant defence‐related gene expression after DON pretreatment and fungal infection suggested that DON‐induced priming of the spikelet tissue contributed to the reduced susceptibility to FHB.  相似文献   

13.
A total of 27Fusarium culmorum isolates from Germany and 41F. graminearum isolates from Kenya were investigated for aggressiveness and mycotoxin production on wheat ears. In addition, ergosterol content of the kernels from ears inoculated withF. graminearum was determined and theF. culmorum isolates were tested for mycotoxin productionin vitro. For both pathogens, isolates markedly differed in aggressiveness. 59% and 37% of theF. culmorum isolates produced NIV and DON, respectively,in vivo andin vitro. The DON-producing isolates also produced 3-acDONin vitro. The more aggressive isolates produced mainly DON while the less aggressive isolates produced mainly NIV. 12% and 85% of theF. graminearum isolates produced NIV and DON, respectively. The highly aggressive isolates produced higher amounts of DON, aggressiveness being highly correlated to DON content in the kernels. NIV-producing isolates were less aggressive. Ergosterol content of kernels was moderately correlated to aggressiveness but highly correlated to DON content. Disease severity was associated with kernel weight reduction.  相似文献   

14.
Deoxynivalenol (DON) is a mycotoxin produced in cereal crops infected with Fusarium graminearum. DON poses a serious threat to human and animal health, and is a critical virulence factor. Various environmental factors, including reactive oxygen species (ROS), have been shown to interfere with DON biosynthesis in this pathogen. The regulatory mechanisms of how ROS trigger DON production have been investigated extensively in F. graminearum. However, the role of the endogenous ROS‐generating system in DON biosynthesis is largely unknown. In this study, we genetically analysed the function of leucine zipper‐EF‐hand‐containing transmembrane 1 (LETM1) superfamily proteins and evaluated the role of the mitochondrial‐produced ROS in DON biosynthesis. Our results show that there are two Letm1 orthologues, FgLetm1 and FgLetm2, in F. graminearum. FgLetm1 is localized to the mitochondria and is essential for mitochondrial integrity, whereas FgLetm2 plays a minor role in the maintenance of mitochondrial integrity. The ΔFgLetm1 mutant demonstrated a vegetative growth defect, abnormal conidia and increased sensitivity to various stress agents. More importantly, the ΔFgLetm1 mutant showed significantly reduced levels of endogenous ROS, decreased DON biosynthesis and attenuated virulence in planta. To our knowledge, this is the first report showing that mitochondrial integrity and endogenous ROS production by mitochondria are important for DON production and virulence in Fusarium species.  相似文献   

15.
Seo JA  Kim JC  Lee DH  Lee YW 《Mycopathologia》1996,134(1):31-37
A total of 214 Fusarium graminearum isolates were obtained from corn and barley which were collected from Kangwon province and the southern part of Korea, respectively, and were tested for 8-ketotrichothecenes and zearalenone (ZEA) production on rice grains. The incidences of trichothecene production by 105 isolates of F. graminearum from corn were 59.0% for deoxynivalenol (DON), 37.1% for 15-acetyldeoxynivalenol(15-ADON), 13.3% for 3-acetyldeoxynivalenol (3-ADON), 7.6% for 3,15-diacetyldeoxynivalenol (3,15-DADON), 20.0% for nivalenol (NIV), 6.7% for 4-acetylnivalenol (4-ANIV), and 1.0% for 4,15-diacetylnivalenol (4,15-DANIV). DON chemotypes frequently produced 15-ADON as the major isomer rather than 3-ADON and 9 of the 61 DON chemotypes produced low levels of NIV. On the other hand, the incidences of trichothecene production of 109 isolates by F. graminearum from barley were 24.8% for DON, 72.5% for NIV, 62.4% for 4-ANIV, and 10.1% for 4,15-DANIV. Of these isolates, 78 were NIV chemotypes and only one isolate produced DON and 3-ADON as major toxins. In addition, 26 of the 78 NIV chemotypes produced low levels of DON. ZEA was frequently produced by the trichothecene-producing isolates and the incidences of ZEA were 51.4% and 31.2% for the isolates from corn and barley, respectively. There was a great regional difference in trichothecene production by F. graminearum isolates between corn- and barley-producing areas in Korea.  相似文献   

16.
The effect of nitrogen on Fusarium Head Blight (FHB) in a susceptible barley cultivar was investigated using gel-based proteomics. Barley grown with either 15 or 100 kg ha? 1 N fertilizer was inoculated with Fusarium graminearum (Fg). The storage protein fraction did not change significantly in response either to N level or Fg, whereas eighty protein spots in the water-soluble albumin fraction increased and 108 spots decreased more than two-fold in intensity in response to Fg. Spots with greater intensity in infected plants contained fungal proteins (9 spots) and proteolytic fragments of plant proteins (65 spots). Identified fungal proteins included two superoxide dismutases, l-xylulose reductase in two spots, peptidyl prolyl cis–trans isomerase and triosephosphate isomerase, and proteins of unknown function. Spots decreasing in intensity in response to Fg contained plant proteins possibly degraded by fungal proteases. Greater spot volume changes occurred in response to Fg in plants grown with low nitrogen, although proteomes of uninfected plants were similar for both treatments. Correlation of proteome changes with measurement of Fusarium-damaged kernels, fungal biomass and mycotoxin levels indicated that increased Fusarium infection occurred in barley with low N and suggests control of N fertilization as a possible way to minimise FHB in barley.  相似文献   

17.
Methionine (Met) plays an important role in various cellular processes in both eukaryotes and prokaryotes. Cystathionine gamma-synthase encoded by STR2 gene is a key enzyme in Met biosynthesis in Saccharomyces cerevisiae. In this study, we identified FgMETB, a homologue of S. cerevisiae STR2, from Fusarium graminearum using the Protein Basic Local Alignment Search Tool (BLASTP) program. The FgMETB deletion mutants were unable to grow on fructose gelatin agar (FGA) medium containing SO42 as sole sulphur source. In addition, more than 90 % conidia of the mutants were not able to germinate in 2 % sucrose solution within 6 or 12 h of incubation. Supplementation of 1 mM Met or 0.5 mg ml−1 homocysteine, but not 1 mM cysteine or 0.5 mg ml−1 glutathione, rescued the defect of mycelial growth and spore germination of FgMETB deletion mutants. These results indicated that the enzyme encoded by FgMETB is involved in conversion of cysteine into homocysteine. Inoculation tests showed that the FgMETB deletion mutant exhibited decreased virulence significantly on wheat heads, which is consistent with a low level of deoxynivalenol (DON) production of the mutant in wheat kernels. Fungicide sensitivity assays revealed FgMETB deletion mutants showed increased sensitivity to the sterol demethylation inhibitor tebuconazole, but did not change their sensitivities to other fungicides. Taken together, results of this study indicated that FgMETB plays a critical role in the regulation of various cellular processes in F. graminearum.  相似文献   

18.
Twenty three strains ofFusarium graminearum isolated from corn were screened for their ability to produce type A and B trichothecenes and zearalenone (ZEA) on the solid substrate rice grains in the dark at 28 °C for 21 days. Toxin analyses were made with HPLC technique. Of 23 total isolates, 10 produced deoxynivalenol (DON), 4 produced DON and nivalenol (NIV), 1 produced DON and 15 acetyl-DON (15-ADON), 1 produced NIV and 4-acetyl-NIV (4-ANIV) and 1 produced NIV. Of 23 totalF. graminearum isolates, 20 produced ZEA. These results suggest that strains ofF. graminearum, prevailing in Hungarian corn growing regions, might belong to DON-and NIV-chemotypes. This is the first report demonstrating that DON-, DON-NIV-, DON-15-ADON-, NIV-4-ANIV and NIV-producingF. graminearum isolates are distributed in Hungary.  相似文献   

19.
The C-9-methylated glucosylceramides (GlcCers) are sphingolipids unique to fungi. They play important roles in fungal growth and pathogenesis, and they act as receptors for some antifungal plant defensins. We have identified two genes, FgMT1 and FgMT2, that each encode a putative sphingolipid C-9 methyltransferase (C-9-MT) in the fungal pathogen Fusarium graminearum and complement a Pichia pastoris C-9-MT-null mutant. The ΔFgmt1 mutant produced C-9-methylated GlcCer like the wild-type strain, PH-1, whereas the ΔFgmt2 mutant produced 65 to 75% nonmethylated and 25 to 35% methylated GlcCer. No ΔFgmt1ΔFgmt2 double-knockout mutant producing only nonmethylated GlcCer could be recovered, suggesting that perhaps C-9-MTs are essential in this pathogen. This is in contrast to the nonessential nature of this enzyme in the unicellular fungus P. pastoris. The ΔFgmt2 mutant exhibited severe growth defects and produced abnormal conidia, while the ΔFgmt1 mutant grew like the wild-type strain, PH-1, under the conditions tested. The ΔFgmt2 mutant also exhibited drastically reduced disease symptoms in wheat and much-delayed disease symptoms in Arabidopsis thaliana. Surprisingly, the ΔFgmt2 mutant was less virulent on different host plants tested than the previously characterized ΔFggcs1 mutant, which lacks GlcCer synthase activity and produces no GlcCer at all. Moreover, the ΔFgmt1 and ΔFgmt2 mutants, as well as the P. pastoris strain in which the C-9-MT gene was deleted, retained sensitivity to the antifungal plant defensins MsDef1 and RsAFP2, indicating that the C-9 methyl group is not a critical structural feature of the GlcCer receptor required for the antifungal action of plant defensins.  相似文献   

20.

Background  

The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB) disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON) contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine) and amino acids (e.g. arginine and ornithine) are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号