首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dietary anthocyanins (ATH) have probiotic and antioxidant functions in humans. They may also have beneficial impacts on rumen microorganisms and subsequently nutrient digestion in cattle. The experiment aimed to study the effects of dietary red cabbage extract (RCE) rich in ATH on rumen fermentation, rumen bacterial community, and nutrient digestibility in beef bulls. Eight Simmental beef bulls and two RCE levels (0 and 120 g/d) were allocated in a replicated 2 × 2 crossover design. Each experimental period included 15 days for adaptation and subsequent 5 days for sampling. The results showed that dietary addition of RCE increased the ruminal concentration of total volatile fatty acids and the molar proportion of propionate, decreased the acetate to propionate ratio, and tended to decrease the molar proportion of acetate, but it did not affect the ruminal pH and the concentrations of ammonia N, microbial CP, monophenols, polyphenols, and total phenolics. ATH was undetectable in the ruminal fluid of beef bulls in both groups. RCE did not affect the alpha diversity of rumen bacterial community, and the relative abundances of major rumen bacteria at the phylum level, but it increased the relative abundances of Ruminobacter and Anaerovibrio and tended to increase the relative abundances of Oribacterium and Monoglobus at the genus level. RCE tended to increase the plasma concentrations of globulin and total protein, but it did not affect the plasma albumin, urea, triglyceride, glucose, and antioxidant activities. Dietary addition of RCE did not affect the apparent nutrient digestibility. In conclusion, the ATH in RCE was highly hydrolysable in rumen fluid. Dietary addition of RCE increased the ruminal concentration of total volatile fatty acids, decreased the acetate to propionate ratio, and slightly modified the rumen bacterial community, but it did not affect the nutrient digestibility and the plasma antioxidants in beef bulls.  相似文献   

3.
Beef cattle are often fed high-concentrate diet (HCD) to achieve high growth rate. However, HCD feeding is strongly associated with metabolic disorders. Mild acid treatment of grains in HCD with 1% hydrochloric acid (HA) followed by neutralization with sodium bicarbonate (SB) might modify rumen fermentation patterns and microbiota, thereby decreasing the negative effects of HCD. This study was thus aimed to investigate the effects of treatment of corn with 1% HA and subsequent neutralization with SB on rumen fermentation and microbiota, inflammatory response and growth performance in beef cattle fed HCD. Eighteen beef cattle were randomly allocated to three groups and each group was fed different diets: low-concentrate diet (LCD) (concentrate : forage = 40 : 60), HCD (concentrate : forage = 60 : 40) or HCD based on treated corn (HCDT) with the same concentrate to forage ratio as the HCD. The corn in the HCDT was steeped in 1% HA (wt/wt) for 48 h and neutralized with SB after HA treatment. The animal trial lasted for 42 days with an adaptation period of 7 days. At the end of the trial, rumen fluid samples were collected for measuring ruminal pH values, short-chain fatty acids, endotoxin (or lipopolysaccharide, LPS) and bacterial microbiota. Plasma samples were collected at the end of the trial to determine the concentrations of plasma LPS, proinflammatory cytokines and acute phase proteins (APPs). The results showed that compared with the LCD, feeding the HCD had better growth performance due to a shift in the ruminal fermentation pattern from acetate towards propionate, butyrate and valerate. However, the HCD decreased ruminal pH and increased ruminal LPS release and the concentrations of plasma proinflammatory cytokines and APPs. Furthermore, feeding the HCD reduced bacterial richness and diversity in the rumen. Treatment of corn increased resistant starch (RS) content. Compared with the HCD, feeding the HCDT reduced ruminal LPS and improved ruminal bacterial microbiota, resulting in decreased inflammation and improved growth performance. In conclusion, although the HCD had better growth performance than the LCD, feeding the HCD promoted the pH reduction and the LPS release in the rumen, disturbed the ruminal bacterial stability and increased inflammatory response. Treatment of corn with HA in combination with subsequent SB neutralization increased the RS content and helped counter the negative effects of feeding HCD to beef steers.  相似文献   

4.
High levels of supplementation with cereal increases production rates in cattle but can increase incidence of disease, ranging from mild indigestion to acute ruminal acidosis and death. Therefore, there is motivation to determine biological markers which can be used to identify whether animals have been, or are being fed, sufficient or excessive cereals. This study aimed to describe light microscopic findings from animals being fed diverse dietary cereal proportions and to test the performance of a novel rumen epithelial scoring system. Rumen wall tissue samples were obtained from the abattoir from 195 cattle from 11 Scottish farms and processed for histological examination. Light microscopic examination was used to characterise ruminal epithelial response to dietary challenge. Secondary objectives included describing the distribution of immune-related cells in bovine ruminal epithelium and assessing the use of a modified Elastin Martius Scarlet Blue stain (EMSB) for histological examination of the rumen epithelium. Cells staining positive for cluster of differentiation 3 were distributed mainly in the lower layers of the stratum basale and were found in higher densities in animals offered lower cereal proportion diets. Cells staining positive for major histocompatibility complex class 2 (MHCII) were most common in perivascular locations and in the junction between the lower stratum basale and the propria-submucosa. The density of MHCII positive staining cells was higher in animals on lower cereal diets. The level of supplementation with cereal was also associated with the thickness of the stratum corneum (SCT) and stratum granulosum (SGT), the integrity of the stratum corneum and sloughing of cornified cells. There were no advantages in using EMSB stain over haematoxylin and eosin (H&E) in this scoring system. We concluded that a scoring system that included only SCT, SGT and a measure of the loss of appearance of intercellular space allowed differentiation of groups of animals according to the level of cereal supplementation.  相似文献   

5.
Characterizing ruminal parameters in the context of sampling routine and feed efficiency is fundamental to understand the efficiency of feed utilization in the bovine. Therefore, we evaluated microbial and volatile fatty acid (VFA) profiles, rumen papillae epithelial and stratum corneum thickness and rumen pH (RpH) and temperature (RT) in feedlot cattle. In all, 48 cattle (32 steers plus 16 bulls), fed a high moisture corn and haylage-based ration, underwent a productive performance test to determine residual feed intake (RFI) using feed intake, growth, BW and composition traits. Rumen fluid was collected, then RpH and RT logger were inserted 5.5±1 days before slaughter. At slaughter, the logger was recovered and rumen fluid and rumen tissue were sampled. The relative daily time spent in specific RpH and RT ranges were determined. Polynomial regression analysis was used to characterize RpH and RT circadian patterns. Animals were divided into efficient and inefficient groups based on RFI to compare productive performance and ruminal parameters. Efficient animals consumed 1.8 kg/day less dry matter than inefficient cattle (P⩽0.05) while achieving the same productive performance (P⩾0.10). Ruminal bacteria population was higher (P⩽0.05) (7.6×1011 v. 4.3×1011 copy number of 16S rRNA gene/ml rumen fluid) and methanogen population was lower (P⩽0.05) (2.3×109 v. 4.9×109 copy number of 16S rRNA gene/ml rumen fluid) in efficient compared with inefficient cattle at slaughter with no differences (P⩾0.10) between samples collected on-farm. No differences (P⩾0.10) in rumen fluid VFA were also observed between feed efficiency groups either on-farm or at slaughter. However, increased (P⩽0.05) acetate, and decreased (P⩽0.05) propionate, butyrate, valerate and caproate concentrations were observed at slaughter compared with on-farm. Efficient had increased (P⩽0.05) rumen epithelium thickness (136 v. 126 µm) compared with inefficient cattle. Efficient animals also spent 318% and 93.2% more time (P⩽0.05) in acidotic (4.14% v. 1.30%) (pH⩽5.6) and optimal (5.6<pH<6.0) (8.53% v. 4.42%) RpH range compared with inefficient cattle. The circadian patterns revealed lower (P⩽0.05) RpH and no differences (P⩾0.10) in RT pre-, during, and post-prandial periods in efficient compared with inefficient cattle. In essence, superior feed efficiency in cattle seems linked to rumen features consistent with improved efficiency of feed utilization. Microbial abundance, rumen epithelial histomorphology, and RpH, may serve as indicators for feed efficiency in cattle. The divergences of assessments made on-farm and at slaughter should be considered in the development of proxies for feed efficiency.  相似文献   

6.

Background

High-grain diets that meet the energy requirements of high-producing ruminants are associated with a high risk of rumen disorders. Mild acid treatment with lactic acid (LA) has been used to modify the degradable characteristics of grains to improve the negative effects of high-grain diets. However, the related studies mainly focused on dairy cows and explored the effects on rumen fermentation, production performance, ruminal pH and so forth. And up to date, no studies have reported the hydrochloric acid (HA) treatment of grains for ruminant animals. Therefore, based on metabolomics analysis, the aim of this study was to evaluate the effects of treatment of corn by steeping in 1% LA or 1% HA for 48?h on the rumen and plasma metabolic profiles in beef steers fed a high corn (48.76%) diet with a 60:40 ratio of concentrate to roughage. The inflammatory responses of beef cattle fed LA- and HA-treated corn were also investigated.

Results

Based on ultra-high-performance liquid tandem chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) metabolomics and multivariate analyses, this study showed that steeping corn in 1% LA or 1% HA modulated the metabolic profiles of the rumen. Feeding beef steers corn steeped in 1% LA or 1% HA was associated with lower relative abundance of carbohydrate metabolites, amino acid metabolites, xanthine, uracil and DL-lactate in the rumen; with higher ruminal pH; with lower concentrations of acetate, iso-butyrate and iso-valerate; and with a tendency for lower ruminal lipopolysaccharide (LPS) concentrations. Moreover, the data showed lower concentrations of plasma C-reactive protein, serum amyloid A, haptoglobin, interleukin (IL)-1β and IL-8 in beef steers fed 1% LA- or HA-treated corn. The 1% LA treatment decreased the concentrations of plasma LPS, LPS-binding protein and tumour necrosis factor-alpha and the relative abundance of L-phenylalanine, DL-3-phenyllactic acid and tyramine in plasma. The 1% HA treatment decreased the relative abundance of urea in plasma and increased the relative abundance of all amino acids in the plasma.

Conclusions

These findings indicated that LA or HA treatment of corn modulated the degradation characteristics of starch, which contributed to improving the rumen and plasma metabolic profiles and to decreasing inflammatory responses in beef steers fed a high-concentrate diet.
  相似文献   

7.
In tropical regions, protein supplementation is a common practice in dairy and beef farming. However, the effect of highly degradable protein in ruminal fermentation and microbial community composition has not yet been investigated in a systematic manner. In this work, we aimed to investigate the impact of casein supplementation on volatile fatty acids (VFA) production, specific activity of deamination (SAD), ammonia concentration and bacterial and archaeal community composition. The experimental design was a 4×4 Latin square balanced for residual effects, with four animals (average initial weight of 280±10 kg) and four experimental periods, each with duration of 29 days. The diet comprised Tifton 85 (Cynodon sp.) hay with an average CP content of 9.8%, on a dry matter basis. Animals received basal forage (control) or infusions of pure casein (230 g) administered direct into the rumen, abomasum or divided (50 : 50 ratio) in the rumen/abomasum. There was no differences (P>0.05) in ruminal pH and microbial protein concentration between supplemented v. non-supplemented animals. However, in steers receiving ruminal infusion of casein the SAD and ruminal ammonia concentration increased 33% and 76%, respectively, compared with the control. The total concentration of VFA increased (P<0.05) in steers receiving rumen infusion of casein. SAD and the microbial protein concentration did not vary significantly among treatments during the feeding cycle, but mean SAD values were greater in steers supplemented in the rumen and rumen/abomasum. Ruminal ammonia concentration was positively correlated with SAD in animals receiving ruminal infusion of casein. Polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed low similarity between treatments, animals and time of sample collection. Richness analysis and determination of the Shannon–Wiener index indicated no differences (P>0.05) in species richness and diversity of γ-proteobacteria, firmicutes and archaea between non-supplemented Nellore steers and steers receiving casein supplementation in the rumen. However, species richness and the Shannon–Wiener index were lower (P<0.05) for the phylum bacteroidetes in steers supplemented with casein in the rumen compared with non-supplemented animals. Venn diagrams indicated that the number of unique bands varied considerably among individual animals and was usually higher in number for non-supplemented steers compared with supplemented animals. These results add new knowledge about the effects of ruminal and postruminal protein supplementation on metabolic activities of rumen microbes and the composition of bacterial and archaeal communities in the rumen of steers.  相似文献   

8.
The influence of the potential methane reducer, fumaric acid (FA), on ruminal parameters, the rumen wall and organ weights was investigated in a long-term study with growing bulls. In all, 20 bulls were fed with maize or grass silage as roughage, and with concentrate with or without 300 g FA per animal and day during the whole fattening period. After slaughtering, the organs were weighed and blood serum was analysed for glucose, β-hydroxybutyric acid (BHB) and non-esterified fatty acid concentration. The ruminal fluid was analysed for short-chain fatty acids, ammonia-N and the microbial community via single strand conformation polymorphism analysis. The rumen wall was examined histopathologically and results were graded as ‘no visible lesions’, ‘few inflammatory infiltrates’, ‘some inflammatory infiltrates’ or ‘several inflammatory infiltrates’. In addition, the dimensions of the rumen villi were measured. The FA supplementation decreased the serum BHB concentration and the butyric acid concentration in the ruminal fluid. The microbial community in the ruminal fluid was not influenced by FA. An interaction between FA and silage type was observed for the inflammation centres counted in the villous area of rumen papillae. This interaction was also observed in the length and surface of the rumen villi. Rumen villi results show that the influence of FA depends on the roughage used in the diet.  相似文献   

9.
Alterations in rumen epithelial structure and function during grain-induced subacute ruminal acidosis (SARA) are largely undescribed. In this study, four mature nonlactating dairy cattle were transitioned from a high-forage diet (HF; 0% grain) to a high-grain diet (HG; 65% grain). After feeding the HG diet for 3 wk, the cattle were transitioned back to the original HF diet, which was fed for an additional 3 wk. Continuous ruminal pH was measured on a weekly basis, and rumen papillae were biopsied during the baseline and at the first and final week of each diet. The mean, minimum, and maximum daily ruminal pH were depressed (P < 0.01) in the HG period compared with the HF period. During the HG period, SARA was diagnosed only during week 1, indicating ruminal adaptation to the HG diet. Microscopic examination of the papillae revealed a reduction (P < 0.01) in the stratum basale, spinosum, and granulosum layers, as well as total depth of the epithelium during the HG period. The highest (P < 0.05) papillae lesion scores were noted during week 1 when SARA occurred. Biopsied papillae exhibited a decline in cellular junctions, extensive sloughing of the stratum corneum, and the appearance of undifferentiated cells near the stratum corneum. Differential mRNA expression of candidate genes, including desmoglein 1 and IGF binding proteins 3, 5, and 6, was detected between diets using qRT-PCR. These results suggest that the structural integrity of the rumen epithelium is compromised during grain feeding and is associated with the differential expression of genes involved in epithelial growth and structure.  相似文献   

10.
Feed withdrawal (FW) is a frequent issue in open outdoor feedlot systems, where unexpected circumstances can limit the animals’ access to food. The relationship among fasting period, animal behaviour during feed reintroduction (FR) and acidosis occurrence has not been completely elucidated. Twenty steers fitted with rumen catheters were fed a high-concentrate diet (concentrate : forage ratio 85 : 15) and were challenged by a protocol of FW followed by FR. The animals were randomly assigned to one of the four treatments: FW for 12 h (T12), 24 h (T24), 36 h (T36) or no FW (control group) followed by FR. The steers’ behaviour, ruminal chemistry, structure of the ruminal microbial community, blood enzymes and metabolites and ruminal acidosis status were assessed. Animal behaviour was affected by the FW–FR challenge ( P < 0.05). Steers from the T12, T24 and T36 treatments showed a higher ingestion rate and a lower frequency of rumination. Although all animals were suspected to have sub-acute ruminal acidosis (SARA) prior to treatment, a severe case of transient SARA arose after FR in the T12, T24 and T36 groups. The ruminal pH remained below the threshold adopted for SARA diagnosis ( pH value = 5.6) for more than three consecutive hours (24, 7 and 19 h in the T12, T24 and T36 treatments, respectively). The FW–FR challenge did not induce clinical acute ruminal acidosis even though steers from the T36 treatment presented ruminal pH values that were consistent with this metabolic disorder (pH threshold for acute acidosis = 5.2). Total mixed ration reintroduction after the withdrawal period reactivated ruminal fermentation as reflected by changes in the fermentation end-products. Ruminal lactic acid accumulation in steers from the T24 and T36 treatments probably led to the reduction of pH in these groups. Both the FW and the FR phases may have altered the structure of the ruminal microbiota community. Whereas fibrolytic bacterial groups decreased relative abundance in the restricted animals, both lactic acid producer and utiliser bacterial groups increased ( P < 0.05). The results demonstrated a synchronisation between Streptococcus (lactate producer) and Megasphaera (lactate utiliser), as the relative abundance of both groups increased, suggesting that bacterial resilience may be central for preventing the onset of metabolic disturbances such as ruminal acidosis. A long-FW period (36 h) produced rumen pH reductions well below and lactic acid concentration increased well above the accepted thresholds for acute acidosis without any perceptible clinical signs.  相似文献   

11.
High solubility of certain trace minerals (TM) in the rumen can alter nutrient digestibility and fermentation. The objectives of the present studies were to determine the effects of TM source on 1) nutrient digestibility and ruminal fermentation, 2) concentrations of soluble Cu, Zn, and Mn in the rumen following a pulse dose of TM, and 3) Cu, Zn, and Mn binding strength on ruminal digesta using dialysis against a chelating agent in steers fed a diet formulated to meet the requirements of a high producing dairy cow. Twelve Angus steers fitted with ruminal cannulae were adapted to a diet balanced with nutrient concentrations similar to a diet for a high producing lactating dairy cow for 21 d. Steers were then randomly assigned to dietary treatments consisting of 10 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either sulfate (STM), hydroxychloride (HTM) or complexed trace minerals (CTM). The experimental design did not include a negative control (no supplemental Cu, Mn, or Zn) because the basal diet did not meet the National Research Council requirement for Cu and Zn. Copper, Mn, and Zn are also generally supplemented to lactating dairy cow diets at concentrations approximating those supplied in the present study. Following a 14-d adaptation period, total fecal output was collected for 5-d. Following the fecal collection period, rumen fluid was collected for Volatile fatty acid (VFA) parameters. On the following day, the same diet was provided for 14 d, without supplemental Cu, Zn, and Mn. This period served as a wash-out period. A pulse dose of 100, 400, and 600 mg of Cu, Zn, Mn, respectively, from either STM, HTM, or CTM, was administered via ruminal cannulae to the steers on day 15. Over a 24-h period ruminal samples were obtained every 2-h. Following centrifugation, the supernatant was analyzed for Cu, Mn, and Zn. Ruminal solid digesta samples from times 0, 12, and 24 h after bolus dosing were exposed to dialysis against Tris-EDTA. Digestibility of NDF and ADF were lesser in STM vs. HTM and vs. CTM supplemented steers. Steers receiving HTM and CTM had greater total VFA concentrations than STM, and molar proportions of individual VFA were not affected by treatment. Ruminal soluble Cu and Zn concentrations were greater post dosing in STM and CTM supplemented steers at 2, 4, and 6 h for Cu and 4, 6, 8, 10 and 12 h for Zn when compared to HTM supplemented steers. The release of Cu and Zn from ruminal solid digesta following dialysis against Tris-EDTA at 12 and 24 h postdosing was greater for steers receiving HTM compared to those receiving STM or CTM. Results indicate trace mineral source impacts: 1) how tightly bound Cu and Zn are to ruminal solid digesta; 2) fiber digestion; 3) and ruminal total VFA concentrations.  相似文献   

12.
Several nutritional strategies have been used in beef cattle production in order to increase animal performance and profitability. However, in the past two decades, the increase of consumer preference for functional foods has driven the investigation for improving food via adding functional substances to animal diets. We evaluated the effect of canola oil supplementation associated with vitamin E and selenium on performance, rumen metabolism, carcass traits, meat tenderness, and serum, liver, and meat status of antioxidants in finishing Nellore males. Animals were fed for 106 days in a feedlot and were randomly distributed in a 2 × 2 factorial arrangement: two levels of oil in the diet (no inclusion and 3% canola oil, defined as diet without oil inclusion (NO) and effect of oil (OIL), respectively) and two levels of antioxidants in the diet (no inclusion and 2.5 mg of Se/kg of DM + 500 UI of vitamin E/kg of DM, defined as diet without antioxidant inclusion (NA) and effect of the antioxidants (ANT), respectively). DM intake (kg/day) was evaluated daily; performance and serum were analysed at the beginning of the feedlot and every 28 days. Animals were slaughtered and hot carcass weight (kg) was recorded; ruminal fluid and liver samples were collected. At 24 h postmortem, carcass pH was recorded and the Longissimus thoracis was sampled. There was no significant effect of the OIL*ANT interaction (P > 0.05) for any trait evaluated. Bulls fed OIL presented greater final BW (P < 0.01), average daily gain (kg/day; P < 0.01), feed efficiency (P < 0.01), rump fat thickness (P8RF; P < 0.05), and greater tenderness; the ANT diet increased P8RF (P < 0.05). The levels of selenium and vitamin E in serum, liver, and meat were increased (P < 0.01) with the inclusion of ANT. ANT did not change triiodothyronine (T3, ng/mL) and thyroxine (T4, µg/gL) serum concentrations but decreased serum glucose levels. The treatments did not affect (P > 0.05) ruminal parameters or the protozoa population. Our results showed that the inclusion of 3% canola oil in the diet DM increased performance, feed efficiency, carcass fat deposition, and tenderness, with no effect on rumen fermentation and protozoa population of Nellore cattle in a feedlot system. The inclusion of ANT in the cattle diet did not affect performance or rumen parameters. However, the levels of ANT were increased in the serum, liver, and meat, enriching the final product with these compounds.  相似文献   

13.
The influence of fibre content of hay (H) and concentrate level (C) on local differences in the composition of ruminal digesta (ratio of solid to fluid digesta, DM, NDF, ADF and ADL content), particle size (MPL), specific gravity (SG) and fermentation (pH and concentrations of SCFA and bicarbonate) have been tested on two ruminally cannulated Friesian cows (520?kg BW) which were fed restricted, using individual cows as experimental units. Digesta samples were collected via cannula from three rumen layers: 5 to 10?cm (top) and 25?–?35?cm beneath the top of the particle mat (middle) and 5?–?10?cm above the rumen floor (bottom). For a main plot treatment (H·C), repeated samples were collected at four time intervals (1?h before and 2, 5 and 10?h after morning feeding) on each of two days. From top to bottom rumen the share of solid digesta mass (SM), DM and NDF contents of squeezed digesta fluid (SRF) and concentration of SCFA decreased (P?P?相似文献   

14.
The comparison of the effects of all forage offering methods would be particularly useful information in modeling growth performance and rumen fermentation of dairy calves. Therefore, this study attempted to evaluate the effects of methods of oat hay provision on growth performance, rumen fermentation and biochemical blood indices of dairy calves during preweaning and postweaning periods. At birth, 40 female Polish Holstein-Friesian calves (3 days of age; 39.6 ± 0.39 kg BW) were randomly assigned to four treatment groups differing in the access to chopped oat hay: CON (control, starter without oat hay), OH (starter feed containing 10% DM basis oat hay), OH-FC (starter feed containing 10% DM basis oat hay and oat hay fed as free-choice provision in different buckets) and FC (starter feed and oat hay fed as free-choice provision in different buckets). The calves were weaned on day 56, and then the study continued until day 84. Intakes of starter feed and oat hay were recorded daily, whereas BW and hip height (HH) on day 3 and then every 14 days. Samples of blood were collected on the initiation of experiment and then every 14 days, and rumen contents on day 28, 56 and 84. No treatment effects were found for starter, starch, CP, total DM intake, average daily gain, feeding efficiency, change in HH, ruminal fluid pH, concentrations of ruminal propionate and NH3-N, concentrations of urea nitrogen and non-esterified fatty acids in the blood. There were differences between treatments in terms of ruminal total volatile fatty acids and molar concentrations of acetate, butyrate and acetate to propionate ratio; highest in OH and OH-FC groups, especially during the postweaning period. On the other hand, lower concentrations of iso-valerate were found in OH and OH-FC groups on day 56 and 84. The concentrations of IGF-I throughout the experiment and β-hydroxybutyrate during the postweaning period in the blood were influenced by treatment, with the greatest values observed in OH and OH-FC calves. Results of this study indicate that starter feed containing chopped oat hay improves rumen fermentation parameters, which might allow successful transition from preruminant to mature ruminant state. Also, providing chopped oat hay with pelleted starter feed seems to be a better method than free-choice supplementation.  相似文献   

15.
A mature dairy cow was transitioned from a high forage (100% forage) to a high-grain (79% grain) diet over seven days. Continuous ruminal pH recordings were utilized to diagnose the severity of ruminal acidosis. Additionally, blood and rumen papillae biopsies were collected to describe the structural and functional adaptations of the rumen epithelium. On the final day of the grain challenge, the daily mean ruminal pH was 5.41 ± 0.09 with a minimum of 4.89 and a maximum of 6.31. Ruminal pH was under 5.0 for 130 minutes (2.17 hours) which is characterized as the acute form of ruminal acidosis in cattle. The grain challenge increased blood beta-hydroxybutyrate by 1.8 times and rumen papillae mRNA expression of 3-hydroxy-3-methylglutaryl-coenzyme A synthase by 1.6 times. Ultrastructural and histological adaptations of the rumen epithelium were imaged by scanning electron and light microscopy. Rumen papillae from the high grain diet displayed extensive sloughing of the stratum corneum and compromised cell adhesion as large gaps were apparent between cells throughout the strata. This case report represents a rare documentation of how the rumen epithelium alters its function and structure during the initial stage of acute acidosis.  相似文献   

16.
Rumen fluid from slaughtered animals is one of the wastes of slaughterhouses released to the environment that, due to its high nitrogen and phosphorus contents, can lead to soil and groundwater pollution. Meanwhile, it contains ruminal microbes and some bioactive compounds such as enzymes, minerals, vitamins and organic acids. This study was designed to examine the potential of rumen fluid as a feed additive. Therefore, the effects of spray-dried rumen fluid (SDR) with 1% maltodextrin on the performance, blood metabolites and some cytokines of sucking dairy calves during the pre-weaning phase were investigated. Forty male Holstein calves, with a mean weight of 39.4 ± 3.7 kg and 7 ± 1 days old, were randomly assigned to four groups (n = 10 calves per group) in a completely randomized design. Experimental treatments were: control diet with no additive (CON); control diet with 0.5 g/day of SDR (SDR0.5); control diet with 1 g/day of SDR (SDR1); and control diet with 1.5 g/day of SDR (SDR1.5). Daily feed intake and average daily gain of calves were not affected by feeding SDR as a feed additive. Cholesterol concentration was significantly affected by the 20th and 40th days of the experiment and decreased linearly by increasing SDR feeding level. Levels of liver enzymes, including aspartate aminotransferase and alanine aminotransferase, in the blood decreased by feeding SDR at day 40 of the experiment. Serum concentration of interleukin-6 at day 20 was not affected by dried rumen fluid feeding, whereas at day 40, a significant effect was observed among experimental treatments. The lowest value was recorded for SDR1.5 v. control calves. At day 20, the serum concentration of interferon-γ was influenced by supplementing SDR, and the highest value was recorded for SDR1.5 calves. The inclusion of SDR with 1% maltodextrin in suckling dairy calves had beneficial effects on the stimulation of calves’ immune system.  相似文献   

17.
Starter feeding is usually used in lamb production to improve rumen development and to facilitate the weaning process, but molecular mechanism of which is not well understood. Therefore, the objective of this study is to investigate the effect of starter feeding on the expression of ruminal epithelial genes involved in cell proliferation, apoptosis and metabolism in pre-weaned lambs. We selected eight pairs of 10-day-old lamb twins. One twin was fed ewe milk (M, n=8), while the other was fed ewe milk plus starter (M+S, n=8). The lambs were sacrificed at 56 days age. Results showed that the lambs fed M+S had lower pH in the rumen and a higher concentration of acetate, propionate, butyrate and total volatile fatty acid (VFA). Compared with the M group, the concentration of β-hydroxybutyric acid in plasma had an increased trend, and the concentration of IGF-1 in plasma had an decreased trend in the M+S group. The length, width and surface of rumen papillae increased in the M+S group compared with the M group; this was associated with increased cell layers in the stratum corneum, stratum granulosum and total epithelia. Messenger RNA (mRNA) expression of proliferative genes of cyclin A, cyclin D1 and cyclin-dependent kinase 2 in the ruminal epithelia of M+S lambs was increased compared with M only lambs. The mRNA expression of apoptosis genes of caspase-3, caspase-8, B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) in the M+S group was decreased compared with M group, but the ratio of Bcl-2 to Bax were not changed between the two groups. Expression of IGF-1 mRNA was decreased, but the mRNA expression of IGF-1 receptor was higher in ruminal epithelia in the M+S group. Furthermore, the mRNA expression of VFA absorption and metabolism genes of β-hydroxybutyrate dehydrogenase isoforms 1 and 3-hydroxy-3-methylglutaryl-CoA lyase had an increased trend in the M+S group than in the M group, but the mRNA expression of 3-hydroxy-3-methylglutaryl-CoA synthase isoform 1, monocarboxylate transporter isoform 1 and putative anion transporter isoform 1 had a decreased trend in the M+S group than in the M group. These results suggest that starter feeding increased proliferation and inhibited apoptosis of ruminal epithelial cells, and may promote the VFA metabolism in ruminal epithelium in pre-weaned lambs. These findings provide new insights into improving rumen development by nutritional intervention strategies in pre-weaned lambs.  相似文献   

18.
The growth retardation of yaks commonly exists on the Tibetan Plateau, and the gastrointestinal barrier function of growth-retarded yaks is disrupted. Glutamine (Gln) is an effective feed additive to improve the gastrointestinal barrier function of animals. This research evaluated the effects of Gln on growth performance, serum permeability parameters, gastrointestinal morphology and barrier function of growth-retarded yaks. Thirty-two male growth-retarded yaks (74.0 ± 6.16 kg of BW and 480 ± 5.50 days of age) were randomly allocated to 4 groups: the negative control (GRY, fed basal ration), Gln1 (fed basal ration and 60 g/d Gln per yak), Gln2 (120 g/d) and Gln3 (180 g/d). Another 8 male growth normal yaks (112 ± 6.11 kg of BW and 480 ± 5.00 days of age) with same breed were used as a positive control (GNY, fed basal ration). The results showed that GRY had lower growth performance and higher (P < 0.05) diamine oxidase, D-lactic acid and lipopolysaccharide concentrations in serum as compared to GNY. Glutamine improved the average daily gain (ADG) of growth-retarded yaks, and the Gln2 group displayed highest ADG. Glutamine supplementation reduced markers of gut permeability in growth-retarded yaks. The GRY and Gln2 groups were selected to study the gastrointestinal barrier function. Growth-retarded yaks fed Gln2 showed higher (P < 0.05) height and surface area of ruminal papillae as compared to GRY. A similar trend of height and surface area in jejunal villus was found between GRY and Gln2 groups. The Gln2 increased (P < 0.05) the concentrations of secretory immunoglobulin A in jejunum and ileum of growth-retarded yaks. The rumen and jejunum of Gln2 yaks exhibited lower (P < 0.05) interleukin-1β and higher (P < 0.05) interleukin-10 mRNA expressions. Growth-retarded yaks fed Gln2 increased (P < 0.05) the expressions of claudin-1, occludin and zonula occludens-1 in the rumen and jejunum. In conclusion, dietary supplementation with Gln could improve the gastrointestinal barrier function and promote the compensatory growth of growth-retarded yaks.  相似文献   

19.
The influence of fibre content of hay (H) and concentrate level (C) on local differences in the composition of ruminal digesta (ratio of solid to fluid digesta, DM, NDF, ADF and ADL content), particle size (MPL), specific gravity (SG) and fermentation (pH and concentrations of SCFA and bicarbonate) have been tested on two ruminally cannulated Friesian cows (520 kg BW) which were fed restricted, using individual cows as experimental units. Digesta samples were collected via cannula from three rumen layers: 5 to 10 cm (top) and 25-35 cm beneath the top of the particle mat (middle) and 5-10 cm above the rumen floor (bottom). For a main plot treatment (H x C), repeated samples were collected at four time intervals (1 h before and 2, 5 and 10 h after morning feeding) on each of two days. From top to bottom rumen the share of solid digesta mass (SM), DM and NDF contents of squeezed digesta fluid (SRF) and concentration of SCFA decreased (P < 0.05); pH and bicarbonate concentration increased (P < 0.05), while DM, NDF, ADF and ADL contents in SM, MPL and SG did not differ. Higher NDF content of hay (from 47-62%) increased SM, fibre fractions in SM, MPL, pH and concentration of bicarbonate in ruminal digesta, especially when 50% concentrate was given, while SG decreased. When the concentrate level was enhanced from 20 to 50%, digesta SM, MPL and the content of DM and NDF in SRF increased, while pH, concentrations of SCFA and acetate decreased when low-fibre hay was given. With longer time after feeding the digesta SM was reduced and fibre content in SM increased. The increase of the fibre content of hay reduced the possible negative effect of high concentrate level on the stratification of ruminal digesta. The decrease of the fibre content of hay promised better conditions for fibre digestion in the rumen when concentrate availability is limited.  相似文献   

20.
Diets combining herbage and total mixed rations (TMR) are increasingly used in temperate regions for feeding ruminants, but little information is available regarding the effects on nutrient intake and digestion of this feeding management in beef cattle. The aim of this study was to determine the effects of combining TMR (10% CP and 13% ADF), and legume-based herbage (14% CP and 27% ADF) on intake, nutrient digestion, ruminal fermentation, microbial N flow and glucose and nitrogen metabolism in heifers. The experiment was a 3×3 Latin square design replicated three times; each period lasted 18 days (10 adaptation days and 8 measurement days). Nine cross-bred (Aberdeen Angus×Hereford) heifers (214±18 kg) fitted with permanent rumen catheters and housed in individual metabolic cages were assigned to one of three treatments: 24 h access to TMR (T), 24 h access to herbage (H) or combined diets with 18 h access to TMR and 6 h access to herbage (T+H). Data were evaluated using a mixed model. Animals fed T+H (TMR 71% and herbage 29%) diets tended to have a higher dry matter intake as a proportion of their BW than animals fed T. The T+H diet did not change ruminal fermentation (pH, N–NH3 and volatile fatty acids) or the N metabolism relative to the T diet, but increased the glucagon concentration and altered glucose metabolism. Conversely, animals fed T+H had increased purine derivatives excretion, increased N use efficiency for microbial protein synthesis and decreased plasma urea and urinary N excretion relative to animals fed H diet. The use of combined diets led to consumption of nutrients similar to a TMR diet, without reducing nutrient use and could improve N utilization compared with the herbage-only diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号