首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiation therapy–mediated salivary gland destruction is characterized by increased inflammatory cell infiltration and fibrosis, both of which ultimately lead to salivary gland hypofunction. However, current treatments (e.g., artificial saliva and sialagogues) only promote temporary relief of symptoms. As such, developing alternative measures against radiation damage is critical for restoring salivary gland structure and function. One promising option for managing radiation therapy–mediated damage in salivary glands is by activation of specialized proresolving lipid mediator receptors due to their demonstrated role in resolution of inflammation and fibrosis in many tissues. Nonetheless, little is known about the presence and function of these receptors in healthy and/or irradiated salivary glands. Therefore, the goal of this study was to detect whether these specialized proresolving lipid mediator receptors are expressed in healthy salivary glands and, if so, if they are maintained after radiation therapy–mediated damage. Our results indicate that specialized proresolving lipid mediator receptors are heterogeneously expressed in inflammatory as well as in acinar and ductal cells within human submandibular glands and that their expression persists after radiation therapy. These findings suggest that epithelial cells as well as resident immune cells represent potential targets for modulation of resolution of inflammation and fibrosis in irradiated salivary glands.  相似文献   

2.
3.
Our aim is to provide a summary of the field of salivary gland development and regeneration from the perspective of what is known about the function of nerves during these processes. The primary function of adult salivary glands is to produce and secrete saliva. Neuronal control of adult salivary gland function has been a focus of research ever since Pavlov’s seminal experiments on salivation in dogs. Less is known about salivary gland innervation during development and how the developing nerves influence gland organogenesis and regeneration. Here, we will review what is known about the communication between the autonomic nervous system and the epithelium of the salivary glands during organogenesis. An important emerging theme is the instructive role of the nervous system on the epithelial stem/progenitor cells during development as well as regeneration after damage. We will provide a brief overview of the neuroanatomy of the salivary glands and discuss recent literature that begins to integrate neurobiology with epithelial organogenesis, which may provide paradigms for exploring these interactions in other organ systems.  相似文献   

4.
罹患头颈部肿瘤的患者在接受放射治疗时往往会发生放射性唾液腺损伤。射线的照射使患者唾液腺结构破坏、功能减退,患者的生活质量严重下降。对于放射性唾液腺损伤,临床上尚无有效的治疗方式。骨髓来源细胞(bone marrow-derived cells,BMDCs)最早用于治疗血液系统疾病。随着对BMDCs认识的逐渐深入,BMDCs的应用领域日益广泛。近些年来,一些动物实验的研究结果表明,利用BMDCs治疗放射性唾液腺损伤能够有效地保护腺体内各种实质细胞,促进腺组织再生,恢复唾液腺功能。本文主要对利用BMDCs治疗放射性唾液腺损伤的治疗方式、治疗效果及其主要的治疗机制进行综述,并对该领域今后的研究方向进行了展望。  相似文献   

5.
Guided cell migration is necessary for the proper function and development of many tissues, one of which is the Drosophila embryonic salivary gland. Here we show that two distinct Wnt signaling pathways regulate salivary gland migration. Early in migration, the salivary gland responds to a WNT4-Frizzled signal for proper positioning within the embryo. Disruption of this signal, through mutations in Wnt4, frizzled or frizzled 2, results in misguided salivary glands that curve ventrally. Furthermore, disruption of downstream components of the canonical Wnt pathway, such as dishevelled or Tcf, also results in ventrally curved salivary glands. Analysis of a second Wnt signal, which acts through the atypical Wnt receptor Derailed, indicates a requirement for Wnt5 signaling late in salivary gland migration. WNT5 is expressed in the central nervous system and acts as a repulsive signal, needed to keep the migrating salivary gland on course. The receptor for WNT5, Derailed, is expressed in the actively migrating tip of the salivary glands. In embryos mutant for derailed or Wnt5, salivary gland migration is disrupted; the tip of the gland migrates abnormally toward the central nervous system. Our results suggest that both the Wnt4-frizzled pathway and a separate Wnt5-derailed pathway are needed for proper salivary gland migration.  相似文献   

6.
Head and neck cancer is the fifth most common malignancy and accounts for 3% of all new cancer cases each year. Despite relatively high survival rates, the quality of life of these patients is severely compromised because of radiation-induced impairment of salivary gland function and consequential xerostomia (dry mouth syndrome). In this study, a clinically applicable method for the restoration of radiation-impaired salivary gland function using salivary gland stem cell transplantation was developed. Salivary gland cells were isolated from murine submandibular glands and cultured in vitro as salispheres, which contained cells expressing the stem cell markers Sca-1, c-Kit and Musashi-1. In vitro, the cells differentiated into salivary gland duct cells and mucin and amylase producing acinar cells. Stem cell enrichment was performed by flow cytrometric selection using c-Kit as a marker. In vitro, the cells differentiated into amylase producing acinar cells. In vivo, intra-glandular transplantation of a small number of c-Kit(+) cells resulted in long-term restoration of salivary gland morphology and function. Moreover, donor-derived stem cells could be isolated from primary recipients, cultured as secondary spheres and after re-transplantation ameliorate radiation damage. Our approach is the first proof for the potential use of stem cell transplantation to functionally rescue salivary gland deficiency.  相似文献   

7.
BACKGROUND: Cell growth arrest and autophagy are required for autophagic cell death in Drosophila. Maintenance of growth by expression of either activated Ras, Dp110, or Akt is sufficient to inhibit autophagy and cell death in Drosophila salivary glands, but the mechanism that controls growth arrest is unknown. Although the Warts (Wts) tumor suppressor is a critical regulator of tissue growth in animals, it is not clear how this signaling pathway controls cell growth. RESULTS: Here, we show that genes in the Wts pathway are required for salivary gland degradation and that wts mutants have defects in cell growth arrest, caspase activity, and autophagy. Expression of Atg1, a regulator of autophagy, in salivary glands is sufficient to rescue wts mutant salivary gland destruction. Surprisingly, expression of Yorkie (Yki) and Scalloped (Sd) in salivary glands fails to phenocopy wts mutants. By contrast, misexpression of the Yki target bantam was able to inhibit salivary gland cell death, even though mutations in bantam fail to suppress the wts mutant salivary gland-persistence phenotype. Significantly, wts mutant salivary glands possess altered phosphoinositide signaling, and decreased function of the class I PI3K-pathway genes chico and TOR suppressed wts defects in cell death. CONCLUSIONS: Although we have previously shown that salivary gland degradation requires genes in the Wts pathway, this study provides the first evidence that Wts influences autophagy. Our data indicate that the Wts-pathway components Yki, Sd, and bantam fail to function in salivary glands and that Wts regulates salivary gland cell death in a PI3K-dependent manner.  相似文献   

8.
Diabetes is often accompanied by dysfunction of salivary glands. However, the molecular mechanism remains unclear. The mechanisms that underlie diabetic hyposalivation were studied by db/db mice and SMG-C6 cells. We found morphological changes and decreased stimulated salivary flow rates of the submandibular gland (SMG) in diabetic mice. We observed structural changes and dysfunction of mitochondria. More mitophagosomes and higher expression of autophagy-related proteins were detected. Increased levels of proteins PINK1 and Parkin indicate that PINK1/Parkin-mediated mitophagy was activated in diabetic SMG. Consistently, high glucose (HG) induced mitochondrial dysfunction and PINK1/Parkin-mediated mitophagy in cultivated SMG-C6 cells. HG also increased reactive oxygen species (ROS) and lessened activation of antioxidants in SMG-C6 cells. In addition, HG lowered ERK1/2 phosphorylation and HG-induced mitophagy was decreased after ERK1/2 was activated by LM22B-10. Altogether, these data suggest that ROS played a crucial role in diabetes-induced mitochondrial dysfunction and PINK1/Parkin-mediated mitophagy and ERK1/2 was required in HG-induced mitophagy in SMG.  相似文献   

9.
Atrophy or hypofunction of the salivary gland because of aging or disease leads to hyposalivation that affects patient quality of life by causing dry mouth, deterioration of mastication/deglutition, and poor oral hygiene status. Current therapy for atrophy or hypofunction of the salivary gland in clinical practice focuses on symptom relief using drugs and artificial saliva; therefore, there is still a need to develop new therapies. To investigate potential novel therapeutic targets, we induced the differentiation of salivary gland cells by co-culturing human adipose-derived stem cells isolated from buccal fat pads (hBFP-ASCs) with human salivary-gland-derived fibroblasts (hSG-fibros). We examined their potential for transplantation and tissue neogenesis. Following the culture of hBFP-ASCs and hSG-fibros, differentiated cells were transplanted into the submandibular glands of SCID mice, and their degree of differentiation in tissues was determined. We also examined their potential for functional tissue reconstitution using a three-dimensional (3D) culture system. Co-cultured cells expressed salivary-glandrelated markers and generated new tissues following transplantation in vivo. Moreover, cell reconstituted glandular structures in the 3D culture system. In conclusion, coculture of hSG-fibros with hBFP-ASCs led to successful differentiation into salivary gland cells that could be transplanted to generate new tissues.  相似文献   

10.
Sj?gren's syndrome is a chronic autoimmune disorder characterized by inflammation of salivary glands resulting in impaired secretory function. Our present studies indicate that chronic exposure of salivary epithelium to TNF-α and/or IFN-γ alters tight junction integrity, leading to secretory dysfunction. Resolvins of the D-series (RvDs) are endogenous lipid mediators derived from DHA that regulate excessive inflammatory responses leading to resolution and tissue homeostasis. In this study, we addressed the hypothesis that activation of the RvD1 receptor ALX/FPR2 in salivary epithelium prevents and/or resolves the TNF-α-mediated disruption of acinar organization and enhances monolayer formation. Our results indicate that 1) the RvD1 receptor ALX/FPR2 is present in fresh, isolated cells from mouse salivary glands and in cell lines of salivary origin; and 2) the agonist RvD1 (100 ng/ml) abolished tight junction and cytoskeletal disruption caused by TNF-α and enhanced cell migration and polarity in salivary epithelium. These effects were blocked by the ALX/FPR2 antagonist butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe. The ALX/FPR2 receptor signals via modulation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways since, in our study, blocking PI3K activation with LY294002, a potent and selective PI3K inhibitor, prevented RvD1-induced cell migration. Furthermore, Akt gene silencing with the corresponding siRNA almost completely blocked the ability of Par-C10 cells to migrate. Our findings suggest that RvD1 receptor activation promotes resolution of inflammation and tissue repair in salivary epithelium, which may have relevance in the restoration of salivary gland dysfunction associated with Sj?gren's syndrome.  相似文献   

11.
Environmental and occupational mercury exposure is considered a major public health issue. Despite being well known that MeHg exposure causes adverse effects in several physiologic functions, MeHg effects on salivary glands still not completely elucidated. Here, we investigated the cellular MeHg-induced damage in the three major salivary glands (parotid, submandibular, and sublingual) of adult rats after chronic, systemic and low doses of MeHg exposure. Rats were exposed by 0.04 mg/kg/day over 60 days. After that, animals were euthanized and all three glands were collected. We evaluated total Hg accumulation, metallothionein I/II (MT I/II), α-smooth muscle actin (α-SMA), and cytokeratin 18 (CK18) immune expression. Our results have showed that MeHg is able to disrupt gland tissue and to induce a protective mechanism by MT I/II expression. We also showed that cell MT production is not enough to protect gland tissue against cellular structural damage seen by reducing marking of cytoskeletal proteins as CK18 and α-SMA. Our data suggest that chronic MeHg exposure in low-daily doses is able to induce cellular damage in rat salivary glands.  相似文献   

12.
The Drosophila embryonic salivary gland is a migrating tissue that undergoes a stereotypic pattern of migration into the embryo. We demonstrate that the migratory path of the salivary gland requires the PDGF/VEGF pathway. The PDGF/VEGF receptor, Pvr, is strongly expressed in the salivary glands, and Pvr mutations cause abnormal ventral curving of the glands, suggesting that Pvr is involved in gland migration. Although the Pvr ligands, Pvf1 and Pvf2, have distinct expression patterns in the Drosophila embryo, mutations for either one of the ligands result in salivary gland migration defects similar to those seen in embryos that lack Pvr. Rescue experiments indicate that the PDGF/VEGF pathway functions autonomously in the salivary gland. The results of this study demonstrate that the Drosophila PDGF/VEGF pathway is essential for proper positioning of the salivary glands.  相似文献   

13.
Berry DL  Baehrecke EH 《Cell》2007,131(6):1137-1148
Autophagy is a catabolic process that is negatively regulated by growth and has been implicated in cell death. We find that autophagy is induced following growth arrest and precedes developmental autophagic cell death of Drosophila salivary glands. Maintaining growth by expression of either activated Ras or positive regulators of the class I phosphoinositide 3-kinase (PI3K) pathway inhibits autophagy and blocks salivary gland cell degradation. Developmental degradation of salivary glands is also inhibited in autophagy gene (atg) mutants. Caspases are active in PI3K-expressing and atg mutant salivary glands, and combined inhibition of both autophagy and caspases increases suppression of gland degradation. Further, induction of autophagy is sufficient to induce premature cell death in a caspase-independent manner. Our results provide in vivo evidence that growth arrest, autophagy, and atg genes are required for physiological autophagic cell death and that multiple degradation pathways cooperate in the efficient clearance of cells during development.  相似文献   

14.
The ectodysplasin pathway, comprising the ligand ectodysplasin, its receptor Edar and a dedicated death domain adaptor protein Edaradd, plays an important role in epidermal organ formation in mammals. Mutations in the genes encoding these proteins cause dysplasia or absence of teeth, sweat glands and hair follicles. However, the relative position of this pathway in the regulatory hierarchy directing follicle formation remains unclear. In this work, the chicken orthologs of Eda, Edar and Edaradd were cloned to exploit the temporal precision of the feather tract system in order to study the role of the ectodysplasin pathway. We find that these genes are expressed in a similar pattern during feather and hair development, with the notable difference that the ligand Eda, which is expressed in the epidermis of the mouse, is expressed in the dermis of the feather tract. Contrary to conclusions reached from the analysis of mutant mice, we find that localization of Edar expression to the nascent placode is coincident or subsequent to the local expression of other markers of placodal differentiation, and not an upstream event in tract patterning. Furthermore, forced expression of BMP and activated beta-catenin demonstrate that local expression of Edar is dictated by the interaction between these two pathways. These results suggest that activation of the ectodysplasin pathway may be permissive for activating signals to overcome signals that inhibit placode formation, but the function of this pathway in the specification of follicle initiation lies downstream of other patterning events.  相似文献   

15.
Epithelial cell migration and morphogenesis require dynamic remodeling of the actin cytoskeleton and cell-cell adhesion complexes. Numerous studies in cell culture and in model organisms have demonstrated the small GTPase Rac to be a critical regulator of these processes; however, little is known about Rac function in the morphogenic movements that drive epithelial tube formation. Here, we use the embryonic salivary glands of Drosophila to understand the role of Rac in epithelial tube morphogenesis. We show that inhibition of Rac function, either through loss of function mutations or dominant-negative mutations, disrupts salivary gland invagination and posterior migration. In contrast, constitutive activation of Rac induces motile behavior and subsequent cell death. We further show that Rac regulation of salivary gland morphogenesis occurs through modulation of cell-cell adhesion mediated by the E-cadherin/beta-catenin complex and that shibire, the Drosophila homolog of dynamin, functions downstream of Rac in regulating beta-catenin localization during gland morphogenesis. Our results demonstrate that regulation of cadherin-based adherens junctions by Rac is critical for salivary gland morphogenesis and that this regulation occurs through dynamin-mediated endocytosis.  相似文献   

16.
X-linked and autosomal forms of anhidrotic ectodermal dysplasia syndromes (HED) are characterized by deficient development of several ectodermal organs, including hair, teeth and exocrine glands. The recent cloning of the genes that underlie these syndromes, ectodysplasin (ED1) and the ectodysplasin A receptor (EDAR), and their identification as a novel TNF ligand-receptor pair suggested a role for TNF signaling in embryonic morphogenesis. In the mouse, the genes of the spontaneous mutations Tabby (Ta) and downless (dl) were identified as homologs of ED1 and EDAR, respectively. To gain insight into the function of this signaling pathway in development of skin and hair follicles, we analyzed the expression and regulation of Eda and Edar in wild type as well as Tabby and Lef1 mutant mouse embryos. We show that Eda and Edar expression is confined to the ectoderm and occurs in a pattern that suggests a role of ectodysplasin/Edar signaling in the interactions between the ectodermal compartments and the formation and function of hair placodes. By using skin explant cultures, we further show that this signaling pathway is intimately associated with interactions between the epithelial and mesenchymal tissues. We also find that Ta mutants lack completely the placodes of the first developing tylotrich hairs, and that they do not show patterned expression of placodal genes, including Bmp4, Lef1, Shh, Ptch and Edar, and the genes for beta-catenin and activin A. Finally, we identified activin as a mesenchymal signal that stimulates Edar expression and WNT as a signal that induces Eda expression, suggesting a hierarchy of distinct signaling pathways in the development of skin and hair follicles. In conclusion, we suggest that Eda and Edar are associated with the onset of ectodermal patterning and that ectodysplasin/edar signaling also regulates the morphogenesis of hair follicles.  相似文献   

17.
During Drosophila metamorphosis, larval tissues, such as the salivary glands, are histolysed whereas imaginal tissues differentiate into adult structures forming at eclosion a fly-shaped adult. Inactivation of the lethal(2)giant larvae (l(2)gl) gene encoding the cytoskeletal associated p127 protein, causes malignant transformation of brain neuroblasts and imaginal disc cells with developmental arrest at the larval-pupal transition phase. At this stage, p127 is expressed in wild-type salivary glands which become fully histolysed 12 - 13 h after pupariation. By contrast to wild-type, administration of 20-hydroxyecdsone to l(2)gl-deficient salivary glands is unable to induce histolysis, although it releases stored glue granules and gives rise to a nearly normal pupariation chromosome puffing, indicating that p127 is required for salivary gland apoptosis. To unravel the l(2)gl function in this tissue we used transgenic lines expressing reduced ( approximately 0.1) or increased levels of p127 (3.0). Here we show that the timing of salivary gland histolysis displays an l(2)gl-dose response. Reduced p127 expression delays histolysis whereas overexpression accelerates this process without affecting the duration of third larval instar, prepupal and pupal development. Similar l(2)gl-dependence is noticed in the timing of expression of the cell death genes reaper, head involution defective and grim, supporting the idea that p127 plays a critical role in the implementation of ecdysone-triggered apoptosis. These experiments show also that the timing of salivary gland apoptosis can be manipulated without affecting normal development and provide ways to investigate the nature of the components specifically involved in the apoptotic pathway of the salivary glands.  相似文献   

18.
Salivary gland formation in the Drosophila embryo is dependent on the homeotic gene Sex combs reduced (Scr). When Scr function is missing, salivary glands do not form, and when SCR is expressed everywhere in the embryo, salivary glands form in new places. Scr is normally expressed in all the cells that form the salivary gland. However, as the salivary gland invaginates, Scr mRNA and protein disappear. Homeotic genes, such as Scr, specify tissue identity by regulating the expression of downstream target genes. For many homeotic proteins, target gene specificity is achieved by cooperatively binding DNA with cofactors. Therefore, it is likely that SCR also requires a cofactor(s) to specifically bind to DNA and regulate salivary gland target gene expression. Here, we show that two homeodomain-containing proteins encoded by the extradenticle (exd) and homothorax (hth) genes are also required for salivary gland formation. exd and hth function at two levels: (1) exd and hth are required to maintain the expression of Scr in the salivary gland primordia prior to invagination and (2) exd and hth are required in parallel with Scr to regulate the expression of downstream salivary gland genes. We also show that Scr regulates the nuclear localization of EXD in the salivary gland primordia through repression of homothorax (hth) expression, linking the regulation of Scr activity to the disappearance of Scr expression in invaginating salivary glands.  相似文献   

19.
Ectodysplasin (Eda), a member of the tumor necrosis factor (TNF) superfamily, and its receptor Edar are necessary components of ectodermal organ development. Analysis of their expression patterns and mutant phenotypes has shown that during mouse hair and tooth development they may be involved in signalling between separate epithelial compartments. Here we have analysed ectodysplasin and Edar expression in other embryonic mouse tissues, and show that Edar mRNA is confined to the epithelium. Ectodysplasin and Edar are expressed in separate epithelial compartments in the developing brain and the lacrimal gland. In the salivary gland ectodysplasin is expressed in the mesenchyme and Edar in the epithelium. This is the first indication of ectodysplasin-Edar signalling between the epithelium and the mesenchyme. We also studied the expression pattern of a related TNF receptor, TNFRSF19, and show that it is expressed in an overlapping domain with Edar in the tooth, mammary gland, whiskers, and limb bud suggesting a potentially redundant role.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号