首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.  相似文献   

2.
The glucagon-like peptide-1 receptor (GLP-1R) belongs to Family B1 of the seven-transmembrane G protein-coupled receptors, and its natural agonist ligand is the peptide hormone glucagon-like peptide-1 (GLP-1). GLP-1 is involved in glucose homeostasis, and activation of GLP-1R in the plasma membrane of pancreatic beta-cells potentiates glucose-dependent insulin secretion. The N-terminal extracellular domain (nGLP-1R) is an important ligand binding domain that binds GLP-1 and the homologous peptide Exendin-4 with differential affinity. Exendin-4 has a C-terminal extension of nine amino acid residues known as the "Trp cage", which is absent in GLP-1. The Trp cage was believed to interact with nGLP-1R and thereby explain the superior affinity of Exendin-4. However, the molecular details that govern ligand binding and specificity of nGLP-1R remain undefined. Here we report the crystal structure of human nGLP-1R in complex with the antagonist Exendin-4(9-39) solved by the multiwavelength anomalous dispersion method to 2.2A resolution. The structure reveals that Exendin-4(9-39) is an amphipathic alpha-helix forming both hydrophobic and hydrophilic interactions with nGLP-1R. The Trp cage of Exendin-4 is not involved in binding to nGLP-1R. The hydrophobic binding site of nGLP-1R is defined by discontinuous segments including primarily a well defined alpha-helix in the N terminus of nGLP-1R and a loop between two antiparallel beta-strands. The structure provides for the first time detailed molecular insight into ligand binding of the human GLP-1 receptor, an established target for treatment of type 2 diabetes.  相似文献   

3.
The glucagon-like peptide-1 receptor (GLP-1R) is a target for type 2 diabetes treatment. Due to the inconvenience of peptide therapeutics, small-molecule GLP-1R agonists have been studied. Compound 2 (6,7-dichloro-2-methylsulfonyl-2-N-tert-butylaminoquinoxaline) and compound B (4-(3-(benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine) have been described as small molecule, ago-allosteric modulators of GLP-1R. However, their modes of action at the GLP-1R have not been elucidated. Thus, in this study, we compared the mechanisms of action between these two compounds. When compound 2 was treated with endogenous or exogenous peptide agonists (GLP-1 and exenatide) or fragments of peptide agonists (GLP-1(9-36), Ex3, Ex4, and Ex5), the response curve of these peptide agonists shifted left without a change in maximum efficacy. In contrast, compound B potentiated the response and increased maximum efficacy. However, N-terminal truncated orthosteric antagonists including Ex7, Ex9, and Ex10, augmented the response of compound 2 at the GLP-1R but did not alter compound B activity. Intriguingly, when we co-treated compound 2 with compound B in CHO cells expressing full-length hGLP-1R or N-terminal extracellular domain-truncated GLP-1R, the activation of both types of receptors increased additively, implying that the N-terminus of the receptor is not involved in the modulation by compound agonists. We confirmed that these two compounds increased calcium influx by different patterns in CHO cells expressing GLP-1R. Taken together, our findings suggest that compounds 2 and B have different modes of action to activate GLP-1R. Further study to identify the putative binding sites will help in the discovery of orally available GLP-1R agonists.  相似文献   

4.
The glucagon-like peptide-1 receptor (GLP-1R) belongs to family B of the G-protein coupled receptors (GPCRs), and has become a promising target for the treatment of type 2 diabetes. Here we describe the development and characterization of a fully functional cysteine-deprived and C-terminally truncated GLP-1R. Single cysteines were initially substituted with alanine, and functionally redundant cysteines were subsequently changed simultaneously. Our results indicate that Cys174, Cys226, Cys296 and Cys403 are important for the GLP-1-mediated response, whereas Cys236, Cys329, Cys341, Cys347, Cys438, Cys458 and Cys462 are not. Extensive deletions were made in the C-terminal tail of GLP-1R in order to determine the limit for truncation. As for other family B GPCRs, we observed a direct correlation between the length of the C-terminal tail and specific binding of 125I-GLP-1, indicating that the membrane proximal part of the C-terminal is involved in receptor expression at the cell surface. The results show that seven cysteines and more than half of the C-terminal tail can be removed from GLP-1R without compromising GLP-1 binding or function.  相似文献   

5.
Glucagon-like peptide-1 (GLP-1) and its cognate receptor play an important physiological role in maintaining blood glucose homeostasis. A GLP-1 receptor (GLP-1R) polymorphism in which threonine 149 is substituted with a methionine residue has been recently identified in a patient with type 2 diabetes but was not found in non-diabetic control subjects. We have functionally assessed the recombinant GLP-1R variant after transient expression in COS-7 and HEK 293 cells. Compared to the wild type receptor, the variant GLP-1R showed (i) similar expression levels, (ii) 60-and 5-fold reduced binding affinities, respectively, for two GLP-1R full agonists, GLP-1 and exendin-4, and (iii) markedly decreased potencies of these peptides in triggering cAMP-mediated signaling (despite conserved efficacies). In contrast to full agonists, the efficacy of the primary GLP-1 metabolite/GLP-1R partial agonist, GLP-1 (9-36) amide, was essentially abolished by the T149M substitution. By hydropathy analysis, the polymorphism localizes to transmembrane domain 1, suggesting this receptor segment as a novel determinant of agonist affinity/efficacy. These findings reveal that naturally occurring sequence variability of the GLP-1R within the human population can result in substantial loss-of-function. A genetic link between the T149M variant and increased susceptibility to type 2 diabetes remains to be established.  相似文献   

6.
Classic models of receptor desensitization and internalization have been largely based on the behavior of Family A G-protein-coupled receptors (GPCRs). The glucagon-like peptide-2 receptor (GLP-2R) is a member of the Family B glucagon-secretin GPCR family, which exhibit significant sequence and structural differences from the Family A receptors in their intracellular and extracellular domains. To identify structural motifs that regulate GLP-2R signaling and cell surface receptor expression, we analyzed the functional properties of a series of mutant GLP-2Rs. The majority of the C-terminal receptor tail was dispensable for GLP-2-induced cAMP accumulation, ERK1/2 activation, and endocytosis in transfected cells. However, progressive truncation of the C terminus reduced cell surface receptor expression, altered agonist-induced GLP-2R trafficking, and abrogated protein kinase A-mediated heterologous receptor desensitization. Elimination of the distal 21 amino acids of the receptor was sufficient to promote constitutive receptor internalization and prevent agonist-induced recruitment of beta-arrestin-2. Site-directed mutagenesis identified specific amino acid residues within the distal GLP-2R C terminus that mediate the stable association with beta-arrestin-2. Surprisingly, although the truncated mutant receptors failed to interact with beta-arrestin-2, they underwent homologous desensitization and subsequent resensitization with kinetics similar to that observed with the wild-type GLP-2R. Our data suggest that, although the GLP-2R C terminus is not required for coupling to cellular machinery regulating signaling or desensitization, it may serve as a sorting signal for intracellular trafficking. Taken together with the previously demonstrated clathrin and dynamin-independent, lipid-raft-dependent pathways for internalization, our data suggest that GLP-2 receptor signaling has evolved unique structural and functional mechanisms for control of receptor trafficking, desensitization, and resensitization.  相似文献   

7.
In the present work, several experimental approaches were used to determine the presence of the glucagon-like peptide-1 receptor (GLP-1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP-1 receptor mRNA in several brain areas. In addition, GLP-1R, glucose transporter isoform (GLUT-2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP-1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross-linking assays. Specific binding of 125I-GLP-1(7-36) amide to the GLP-1R was detected in several brain areas and was inhibited by unlabelled GLP-1(7-36) amide, exendin-4 and exendin (9-39). A further aim of this work was to evaluate cerebral-glucose metabolism in control subjects by positron emission tomography (PET), using 2-[F-18] deoxy-D-glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP-1(7-36) amide significantly reduced (p < 0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG-6-phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT-2- and GK-containing cells.  相似文献   

8.
The signaling capacity of seven-transmembrane/G-protein-coupled receptors (7TM/GPCRs) can be regulated through ligand-mediated receptor trafficking. Classically, the recycling of internalized receptors is associated with resensitization, whereas receptor degradation terminates signaling. We have shown previously that the incretin glucagon-like peptide-1 receptor (GLP-1R) internalizes fast and is primarily resensitized through recycling back to the cell surface. GLP-1R is expressed in pancreatic islets together with the closely related glucose-dependent insulinotropic polypeptide (GIPR) and glucagon (GCGR) receptors. The interaction and cross-talk between coexpressed receptors is a wide phenomenon of the 7TM/GPCR superfamily. Numerous reports show functional consequences for signaling and trafficking of the involved receptors. On the basis of the high structural similarity and tissue coexpression, we here investigated the potential cross-talk between GLP-1R and GIPR or GCGR in both trafficking and signaling pathways. Using a real-time time-resolved FRET-based internalization assay, we show that GLP-1R, GIPR, and GCGR internalize with differential properties. Remarkably, upon coexpression of the internalizing GLP-1R and the non-internalizing GIPR, GLP-1-mediated GLP-1R internalization was impaired in a GIPR concentration-dependent manner. As a functional consequence of such impaired internalization capability, GLP-1-mediated GLP-1R signaling was abrogated. A similar compromised signaling was found when GLP-1R internalization was abrogated by a dominant-negative version of dynamin (dynamin-1 K44E), which provides a mechanistic link between GLP-1R trafficking and signaling. This study highlights the importance of receptor internalization for full functionality of GLP-1R. Moreover, cross-talk between the two incretin receptors GLP-1R and GIPR is shown to alter receptor trafficking with functional consequences for GLP-1R signaling.  相似文献   

9.
Glucagon like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones released in response to food intake and potentiate insulin secretion from pancreatic β cells through their distinct yet related G protein-coupled receptors, GLP1R and GIPR. While GLP-1 and GIP exhibit similarity in their N-terminal sequence and overall α-helical structure, GLP-1 does not bind to GIPR and vice versa. To determine which amino acid residues of these peptide ligands are responsible for specific interaction with their respective receptors, we generated mutant GIP in which several GLP-1-specific amino acid residues were substituted for the original amino acids. The potency of the mutant ligands was examined using HEK293 cells transfected with GLP1R or GIPR expression plasmids together with a cAMP-responsive element-driven luciferase (CRE-luc) reporter plasmid. A mutated GIP peptide in which Tyr1, Ile7, Asp15, and His18 were replaced by His, Thr, Glu, and Ala, respectively, was able to activate both GLP1R and GIPR with moderate potency. Replacing the original Tyr1 and/or Ile7 in the N-terminal moiety of this mutant peptide allowed full activation of GIPR but not of GLP1R. However, reintroducing Asp15 and/or His18 in the central α-helical region did not significantly alter the ligand potency. These results suggest that Tyr/His1 and Ile/Thr7 of GIP/GLP-1 peptides confer differential ligand selectivity toward GIPR and GLP1R.  相似文献   

10.
The glucagon-like peptide 1 receptor (GLP-1R) mediates important effects on beta-cell function and glucose homeostasis and is one of the most promising therapeutic targets for type 2, and possibly type 1, diabetes. Yet, little is known regarding the molecular and cellular mechanisms that regulate its function. Therefore, we examined the cellular trafficking of the GLP-1R and the relation between receptor localization and signaling activity. In resting human embryonic kidney 293 and insulinoma MIN6 cells, a fully functional green fluorescent protein-tagged GLP-1R was localized both at the cell membrane and in highly mobile intracellular compartments. Real-time confocal fluorescence microscopy allowed direct visualization of constitutive cycling of the receptor. Overexpression of K44A-dynamin increased the number of functional receptors at the cell membrane. Immunoprecipitation, sucrose sedimentation, and microscopy observations demonstrated that the GLP-1R localizes in lipid rafts and interacts with caveolin-1. This interaction is necessary for membrane localization of the GLP-1R, because overexpression of a dominant-negative form of caveolin-1 (P132L-cav1) or specific mutations within the putative GLP-1R's caveolin-1 binding domain completely inhibited GLP-1 binding and activity. Upon agonist stimulation, the GLP-1R underwent rapid and extensive endocytosis independently from arrestins but in association with caveolin-1. Finally, GLP-1R-stimulated activation of ERK1/2, which involves transactivation of epidermal growth factor receptors, required lipid raft integrity. In summary, the interaction of the GLP-1R with caveolin-1 regulates subcellular localization, trafficking, and signaling activity. This study provides further evidence of the key role of accessory proteins in specifying the cellular behavior of G protein-coupled receptors.  相似文献   

11.
Glucagon-like peptide-2 (GLP-2) is a nutrient-responsive neuropeptide that exerts diverse actions in the gastrointestinal tract, including enhancing mucosal cell survival and proliferation. GLP-2 stimulates mucosal growth in vivo with an increased rate of protein synthesis. However, it was unclear whether GLP-2 can directly stimulate protein synthesis. The objective was to test critically whether GLP-2 receptor (GLP-2R) activation directly stimulates protein synthesis through a PI 3-kinase-dependent Akt-mTOR signaling pathway. HEK 293 cells (transfected with human GLP-2R cDNA) were treated with human GLP-2 with/without pretreatment of PI 3-kinase inhibitor (LY-294002) or mTOR inhibitor (rapamycin). Results show that 1) GLP-2 specifically bound to GLP-2R overexpressed in the HEK cells with K(a) = 0.22 nM and B(max) = 321 fmol/μg protein; 2) GLP-2-stimulated protein synthesis was dependent on the amount of GLP-2R cDNA and the dosage of GLP-2 and reached the plateau among 0.2-2 nM GLP-2; 3) GLP-2-stimulated protein synthesis was abolished by the PI 3-kinase inhibitor and mTOR inhibitor; and 4) GLP-2-mediated stimulation of phosphorylation on Akt and mTOR was dependent on the amount of GLP-2R cDNA transfected and the dosage of GLP-2. In addition, GLP-2-mediated action and signaling in regulation of protein synthesis were confirmed in mouse hippocampal neurons (expressing native GLP-2R). GLP-2 directly stimulated protein synthesis of primary cultured neurons in dosage-dependent, PI 3-kinase-dependent, and rapamycin-sensitive manners, which linked with activation of Akt-mTOR signaling pathway as well. We conclude that GLP-2R activation directly stimulates protein synthesis by activating the PI 3-kinase-dependent Akt-mTOR signaling pathway. GLP-2-stimulated protein synthesis may be physiologically relevant to maintaining neuronal long-term potentiation and providing secondary mediators (namely neuropeptides or growth factors).  相似文献   

12.
Two fragments of the receptor for glucagon-like peptide-1 (GLP-1), each containing the N-terminal domain, were expressed and characterized in either bacterial or mammalian cells. The first fragment, rNT-TM1, included the N-terminal domain and first transmembrane helix and was stably expressed in the membrane of human embryonic kidney 293 cells. The second, 6H-rNT, consisted of only the N-terminal domain of the receptor fused with a polyhistidine tag at its N terminus. The latter fragment was expressed in Escherichia coli in the form of inclusion bodies from which the protein was subsequently purified and refolded in vitro. Although both receptor fragments displayed negligible (125)I-labeled GLP-1(7-36)amide-specific binding, they both displayed high affinity for the radiolabeled peptide antagonist (125)I-exendin-4(9-39). Competition binding studies demonstrated that the N-terminal domain of the GLP-1 receptor maintains high affinity for the agonist exendin-4 as well as the antagonists exendin-4(3-39) and exendin-4(9-39) whereas, in contrast, GLP-1 affinity was greatly reduced. This study shows that although the exendin antagonists are not dependent upon the extracellular loops and transmembrane helices for maintaining their normal high affinity binding, the endogenous agonist GLP-1 requires regions outside of the N-terminal domain. Hence, distinct structural features in exendin-4, between residues 9 and 39, provide additional affinity for the N-terminal domain of the receptor. These data are consistent with a model for the binding of peptide ligands to the GLP-1 receptor in which the central and C-terminal regions of the peptides bind to the N terminus of the receptor, whereas the N-terminal residues of peptide agonists interact with the extracellular loops and transmembrane helices.  相似文献   

13.
Side effects from targeted drugs remain a serious concern. One reason is the nonselective binding of a drug to unintended proteins such as its paralogs, which are highly homologous in sequences and have similar structures and drug-binding pockets. To identify targetable differences between paralogs, we analyzed two types(type-I and type-II) of functional divergence between two paralogs in the known target protein receptor family G-protein coupled receptors(GPCRs) at the amino acid level. Paralogous protein receptors in glucagon-like subfamily, glucagon receptor(GCGR) and glucagon-like peptide-1 receptor(GLP-1R), exhibit divergence in ligands and are clinically validated drug targets for type 2 diabetes. Our data showed that type-II amino acids were significantly enriched in the binding sites of antagonist MK-0893 to GCGR, which had a radical shift in physicochemical properties between GCGR and GLP-1R. We also examined the role of type-I amino acids between GCGR and GLP-1R. The divergent features between GCGR and GLP-1R paralogs may be helpful in their discrimination, thus enabling the identification of binding sites to reduce undesirable side effects and increase the target specificity of drugs.  相似文献   

14.
The mutation of Asp198 to Asn in the receptor for glucagon-like peptide-1(7–36)amide (GLP-1) had no effect upon GLP-1 affinity whereas substitution with Ala greatly reduced affinity, demonstrating the importance of polarity rather than negative charge at Asp198. However, the Asp198-Ala mutation had less effect upon the affinity of Exendin-4, a peptide agonist that has been shown previously not to require its N-terminus for high affinity. Moreover, the affinity of a truncated GLP-1 analogue lacking the first eight residues was not affected by the Asp198-Ala mutation, demonstrating that Asp198 is required for maintaining the binding site of the N-terminal region of GLP-1.  相似文献   

15.
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9-39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9-39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.  相似文献   

16.
Glucagon-like peptides (GLP-1 and GLP-2) are two proglucagon-derived intestinal hormones that mediate distinct physiological functions through two related receptors (GLP-1R and GLP-2R) which are important drug targets for metabolic disorders and Crohn’s disease, respectively. Despite great progress in GLP-1R structure determination, our understanding on the differences of peptide binding and signal transduction between these two receptors remains elusive. Here we report the electron microscopy structure of the human GLP-2R in complex with GLP-2 and a Gs heterotrimer. To accommodate GLP-2 rather than GLP-1, GLP-2R fine-tunes the conformations of the extracellular parts of transmembrane helices (TMs) 1, 5, 7 and extracellular loop 1 (ECL1). In contrast to GLP-1, the N-terminal histidine of GLP-2 penetrates into the receptor core with a unique orientation. The middle region of GLP-2 engages with TM1 and TM7 more extensively than with ECL2, and the GLP-2 C-terminus closely attaches to ECL1, which is the most protruded among 9 class B G protein-coupled receptors (GPCRs). Functional studies revealed that the above three segments of GLP-2 are essential for GLP-2 recognition and receptor activation, especially the middle region. These results provide new insights into the molecular basis of ligand specificity in class B GPCRs and may facilitate the development of more specific therapeutics.Subject terms: Cryoelectron microscopy, Hormone receptors  相似文献   

17.
Loureirin B (LB) is a natural product derived from Sanguis draconis, which has hypoglycaemic effects. In order to research the possible target of LB in the treatment of diabetes, molecular docking was used to simulate the interaction between LB and potential targets, and among them, glucagon-like peptide-1 receptor (GLP-1R) had the optimal results. Further, spectroscopy and surface plasmon resonance (SPR) experiments were applied to detect the interaction between LB and GLP-1R. Ultimately, after GLP-1R siRNA interfering the expression of GLP-1R in Ins-1 cell, the promoting insulin secretion of LB was weaken, which directly proved that GLP-1R plays an important role. These results show that LB promotes insulin secretion of Ins-1 cells through GLP-1R. Hence, the strategy of LB as a prodrug will provide a potential approach for non-peptide GLP-1R agonist.  相似文献   

18.
The glucagon-like peptide-1 receptor (GLP-1R) is a therapeutically important family B G protein-coupled receptor (GPCR) that is pleiotropically coupled to multiple signaling effectors and, with actions including regulation of insulin biosynthesis and secretion, is one of the key targets in the management of type II diabetes mellitus. However, there is limited understanding of the role of the receptor core in orthosteric ligand binding and biological activity. To assess involvement of the extracellular loop (ECL) 2 in ligand-receptor interactions and receptor activation, we performed alanine scanning mutagenesis of loop residues and assessed the impact on receptor expression and GLP-1(1-36)-NH(2) or GLP-1(7-36)-NH(2) binding and activation of three physiologically relevant signaling pathways as follows: cAMP formation, intracellular Ca(2+) (Ca(2+)(i)) mobilization, and phosphorylation of extracellular signal-regulated kinases 1 and 2 (pERK1/2). Although antagonist peptide binding was unaltered, almost all mutations affected GLP-1 peptide agonist binding and/or coupling efficacy, indicating an important role in receptor activation. However, mutation of several residues displayed distinct pathway responses with respect to wild type receptor, including Arg-299 and Tyr-305, where mutation significantly enhanced both GLP-1(1-36)-NH(2)- and GLP-1(7-36)-NH(2)-mediated signaling bias for pERK1/2. In addition, mutation of Cys-296, Trp-297, Asn-300, Asn-302, and Leu-307 significantly increased GLP-1(7-36)-NH(2)-mediated signaling bias toward pERK1/2. Of all mutants studied, only mutation of Trp-306 to alanine abolished all biological activity. These data suggest a critical role of ECL2 of the GLP-1R in the activation transition(s) of the receptor and the importance of this region in the determination of both GLP-1 peptide- and pathway-specific effects.  相似文献   

19.
Meshki J  Douglas SD  Hu M  Leeman SE  Tuluc F 《PloS one》2011,6(9):e25332
U373MG astrocytoma cells endogenously express the full-length neurokinin 1 receptor (NK1R). Substance P (SP), the natural ligand for NK1R, triggers rapid and transient membrane blebbing and we report that these morphological changes have different dynamics and intracellular signaling as compared to the changes that we have previously described in HEK293-NK1R cells. In both cell lines, the SP-induced morphological changes are Gq-independent, and they require the Rho, Rho-associated coiled-coil kinase (ROCK) signaling pathway. Using confocal microscopy we have demonstrated that tubulin is phosphorylated subsequent to cell stimulation with SP and that tubulin accumulates inside the blebs. Colchicine, a tubulin polymerization inhibitor, blocked SP-induced blebbing in U373MG but not in HEK293-NK1R cells. Although p21-activated kinase (PAK) is expressed in both cell lines, SP induced rapid phosphorylation of PAK in U373MG, but failed to phosphorylate PAK in HEK293-NK1R cells. The cell-permeable Rho inhibitor C3 transferase inhibited SP-induced PAK phosphorylation, but the ROCK inhibitor Y27632 had no effect on PAK phosphorylation, suggesting that Rho activates PAK in a ROCK-independent manner. Our study demonstrates that SP triggers rapid changes in cell morphology mediated by distinct intracellular signaling mechanisms in U373MG versus HEK293-NK1R cells.  相似文献   

20.
Neuropeptides related to vertebrate tachykinins have been identified in Drosophila. Two Drosophila G‐protein‐coupled receptors (GPCRs), designated NKD (CG6515) and DTKR (CG7887), cloned earlier, display sequence similarities to mammalian tachykinin receptors. However, they were not characterized with the endogenous Drosophila tachykinins (DTKs). The present study characterizes one of these receptors, DTKR. We determined that HEK‐293 cells transfected with DTKR displayed dose‐dependent increases in both intracellular calcium and cyclic AMP levels in response to the different DTK peptides. DTK peptides also induced internalization of DTKR‐green fluorescent protein (GFP) fusion constructs in HEK‐293 cells. We generated specific antireceptor antisera and showed that DTKR is widely distributed in the adult brain and more scarcely in the larval CNS. The distribution of the receptor in brain neuropils corresponds well with the distribution of its ligands, the DTKs. Our findings suggest that DTKR is a DTK receptor in Drosophila and that this ligand‐receptor system plays multiple functional roles. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号