首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Linear and curvilinear electromyogram (EMG) normalization methods were compared among ten healthy men during a simulated work cycle demanding attention and static holding of the arm (Solitaire test). Maximal voluntary contractions (MVC) and gradually increasing contractions up to 70% of MVC were used for normalization in different arm postures. The test contractions studied included inward and outward rotations, abduction, shoulder elevation, and flexion in different arm positions. The shoulder load moment was calculated for the flexion tests using a simple two-dimensional model. The effect of arm posture on the EMG versus shoulder load moment relationship was studied on the following muscles: supraspinatus, infraspinatus, trapezius (three parts), deltoid (two parts) and pectoralis major. All muscles participated in the MVC tests performed, and its was not possible to suggest a single recommended test for each muscle. Differences in normalized EMG median values ranging up to 30% of MVC were found between linear and curvilinear normalization methods. Short-term repeatability of normalization based on a contraction with gradually increasing force was good. Arm posture affected the relationships between shoulder load moment and EMG activity of all muscles studied. Arm posture did not, however, have a significant effect on the estimated amplitude probability distribution functions during the simulated work task. Therefore, at least for the tasks studied, the principle of normalizing in the middle position of the range of movement was deemed acceptable.  相似文献   

2.

Background

The purpose of this study was to examine maturity-related differences in anthropometry and body composition in Japanese youth within a single year.

Methods

Two hundred and ten Japanese youth aged from 13 to 13.99 years participated in this study. Their maturity status was assessed using a self-assessment of stage of pubic hair development. Bioelectrical impedance analysis was used to estimate percent body fat and lean body mass (LBM). Muscle thickness of the anterior thigh, posterior lower leg and rectus abdominis muscles were measured by ultrasound.

Results

For boys, height, body weight, and LBM in less mature groups were lower than that in more mature groups. The maturity-related differences were still significant after adjusting for chronological age. On the other hand, muscle thickness values in the lower extremity and abdomen differed among the groups at different stages of pubic hair development, whereas there was no maturity-related difference in the relative values corrected by LBM, except for those thickness values measured at the abdomen. For girls, only the muscle thickness at the anterior thigh and muscle thickness relative to LBM1/3 at the posterior lower leg was significantly affected by maturity status, but significant maturity-related difference was not found after adjusting for chronological age.

Conclusions

At least for Japanese boys and girls aged 13 years, maturity status affected body size in boys, but not in girls, and the influence of maturation on the muscularity of the lower extremity and trunk muscles is less in both sexes.  相似文献   

3.
Musculoskeletal computer models are often used to study muscle function in children with and without impaired mobility. Calculations of muscle forces depend in part on the assumed strength of each muscle, represented by the peak isometric force parameter, which is usually based on measurements obtained from cadavers of adult donors. The aim of the present study was twofold: first, to develop a method for scaling lower-limb peak isometric muscle forces in typically-developing children; and second, to determine the effect of this scaling method on model calculations of muscle forces obtained for normal gait. Muscle volumes were determined from magnetic resonance (MR) images obtained from ten children aged from 7 to 13yr. A new mass-length scaling law was developed based on the assumption that muscle volume and body mass are linearly related, which was confirmed by the obtained volume and body mass data. Two musculoskeletal models were developed for each subject: one in which peak isometric muscle forces were estimated using the mass-length scaling law; and another in which these parameters were determined directly from the MR-derived muscle volumes. Musculoskeletal modeling and quantitative gait analysis were then used to calculate lower-limb muscle forces in normal walking. The patterns of muscle forces predicted by the model with scaled peak isometric force values were similar to those predicted by the MR-based model, implying that assessments of muscle function obtained from these two methods are practically equivalent. These results support the use of mass-length scaling in the development of subject-specific musculoskeletal models of children.  相似文献   

4.
The aim of this study was to examine the relationships between the characteristics of anaerobic exercise in the upper limb and important indicators of growth and developmental age such as height (h), body mass (m b), skeletal age (SA), plasma testosterone (T) and pubertal stage (PS). We used the force-velocity (F-) relationship test in a population of 66 healthy adolescent male junior jockeys, with considerable variation in these indicators but of the same physical fitness level (training effect). The mean values of the maximal anaerobic power (W an,max) were 391 (SD 93) W. The values of the variables in the F- relationship for the upper limb were only slightly or uncorrelated with the chronological age, but highly correlated with h, m b and SA (P<0.001). The correlation with T was less significant. Using ANOVA a highly significant effect of PS on the variables in the F- relationship was found (P<0.001). The absolute or relative (normalized to m b) increase in W an,max during puberty was greater from PS P2 and P3 than at other stages. Therefore PS would appear to be a significant factor for developmental changes in anaerobic characteristics during puberty in the adolescent. The PS P3 determined only by public hair might be an easy and accurate indicator for sports category classification of adolescents during puberty  相似文献   

5.
Muscle atrophy is one of many factors contributing to post-stroke hemiparetic weakness. Since muscle force is a function of muscle size, the amount of muscle atrophy an individual muscle undergoes has implications for its overall force-generating capability post-stroke. In this study, post-stroke atrophy was determined bilaterally in fifteen leg muscles with volumes quantified using magnetic resonance imaging (MRI). All muscle volumes were adjusted to exclude non-contractile tissue content, and muscle atrophy was quantified by comparing the volumes between paretic and non-paretic sides. Non-contractile tissue or intramuscular fat was calculated by determining the amount of tissue excluded from the muscle volume measurement. With the exception of the gracilis, all individual paretic muscles examined had smaller volumes in the non-paretic side. The average decrease in volume for these paretic muscles was 23%. The gracilis volume, on the other hand, was approximately 11% larger on the paretic side. The amount of non-contractile tissue was higher in all paretic muscles except the gracilis, where no difference was observed between sides. To compensate for paretic plantar flexor weakness, one idea might be that use of the paretic gracilis actually causes the muscle to increase in size and not develop intramuscular fat. By eliminating non-contractile tissue from our volume calculations, we have presented volume data that more appropriately represents force-generating muscle tissue. Non-uniform muscle atrophy was observed across muscles and may provide important clues when assessing the effect of muscle atrophy on post-stroke gait.  相似文献   

6.
The purpose of this study was to investigate the influence of changes in ankle joint angle on the mechanomyogram (MMG) amplitude of the human medial gastrocnemius (MG) muscle during voluntary isometric plantarflexion contractions. Ten healthy individuals were asked to perform voluntary isometric contractions at six different contraction intensities (from 10% to 100%) and at three different ankle joint angles (plantarflexion of 26°; plantarflexion of 10°; dorsiflexion of 3°). MMG signals were recorded from the surface over the MG muscle, using a 3-axis accelerometer. The relations between root mean square (RMS) MMG and isometric plantarflexion torque at different ankle joint angles were characterized to evaluate the effects of altered muscle mechanical properties on RMS MMG.We found that the relation between RMS MMG and plantarflexion torque is changed at different ankle joint angles: RMS MMG increases monotonically with increasing the plantarflexion torque but decreases as the ankle joint became dorsiflexed. Moreover, RMS MMG shows a negative correlation with muscle length, with passive torque, and with maximum voluntary torque, which were all changed significantly at different ankle joint angles.Our findings demonstrate the potential effects of changing muscle mechanical properties on muscle vibration amplitude. Future studies are required to explore the major sources of this muscle vibration from the perspective of muscle mechanics and muscle activation level, attributable to changes in the neural command.  相似文献   

7.
To determine the non-uniform surface mechanical activity of human quadriceps muscle during fatiguing activity, surface mechanomyogram (MMG), or muscle sound, and surface electromyogram (EMG) were recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles of seven subjects during unilateral isometric knee extension exercise. Time- and frequency-domain analyses of MMG and of EMG fatigued by 50 repeated maximal voluntary contractions (MVC) for 3 s, with 3-s relaxation in between, were compared among the muscles. The mean MVC force fell to 49.5 (SEM 2.0)% at the end of the repeated MVC. Integrated EMG decreased in a similar manner in each muscle head, but a marked non-uniformity was found for the decline in integrated MMG (iMMG). The fall in iMMG was most prominent for RF, followed by VM and VL. Moreover, the median frequency of MMG and the relative decrease in that of EMG in RF were significantly greater (P < 0.05) than those recorded for VL and VM. These results would suggest a divergence of mechanical activity within the quadriceps muscle during fatiguing activity by repeated MVC. Accepted: 19 January 1999  相似文献   

8.
Subjects reporting neck/shoulder pain have been shown to generate less force during maximal voluntary isometric contractions (MVC) of the shoulder muscles compared to healthy controls. This has been suggested to be caused by a pain-related decrease in voluntary activation (VA) rather than lack of muscle mass. The aim of the present study was to investigate VA of the trapezius muscle during MVCs in subjects with and without neck/shoulder pain by use of the twitch interpolation technique.Ten cases suffering from pain and ten age and gender matched, healthy controls were included in the study. Upper trapezius muscle thickness was measured using ultrasonography and pain intensity was measured on a 100 mm visual analog scale (VAS). VA was calculated from five maximal muscle activation attempts. Superimposed stimuli were delivered to the accessory nerve at peak force and during a 2% MVC following the maximal contraction.Presented as mean ± SD for cases and controls, respectively: VAS; 16.0 ± 14.4 mm and 2.1 ± 4.1 mm (P = 0.004), MVC; 545 ± 161 N and 664 ± 195 N (P = 0.016), upper trapezius muscle thickness; 10.9 ± 1.9 mm and 10.4 ± 1.5 mm (P = 0.20), VA; 93.6 ± 14.2% and 96.3 ± 6.0% (P = 0.29).In spite of significantly eight-fold higher pain intensity and ∼20% lower MVC for cases compared to controls, no difference was found in VA. Possible explanations for the reduction in MVC could be differences in co-activation of antagonists and synergists as well as muscle quality.  相似文献   

9.

Objectives:

Skeletal muscles usually cramp at short lengths, where the tension that can be exerted by muscle fibers is low. Since high tension is an important anabolic stimulus, it is questionable if cramps can induce hypertrophy and strength gains. In the present study we investigated if electrically induced cramps (EIMCs) can elicit these adaptations.

Methods:

15 healthy male adults were randomly assigned to an intervention (IG; n=10) and a control group (CG; n=5). The cramp protocol (CP) applied twice a week to one leg of the IG, consisted of 3x6 EIMCs, of 5 s each. Calf muscles of the opposite leg were stimulated equally, but were hindered from cramping by fixating the ankle at 0° plantar flexion (nCP).

Results:

After six weeks, the cross sectional area of the triceps surae was similarly increased in both the CP (+9.0±3.4%) and the nCP (+6.8±3.7%). By contrast, force of maximal voluntary contractions, measured at 0° and 30° plantar flexion, increased significantly only in nCP (0°: +8.5±8.8%; 30°: 11.7±13.7%).

Conclusion:

The present data indicate that muscle cramps can induce hypertrophy in calf muscles, though lacking high tension as an important anabolic stimulus.  相似文献   

10.
The major glucose transporter protein expressed in skeletal muscle is GLUT4. Both muscle contraction and insulin induce translocation of GLUT4 from the intracellular pool to the plasma membrane. The intracellular pathways that lead to contraction- and insulin-stimulated GLUT4 translocation seem to be different, allowing the attainment of a maximal effect when acting together. Insulin utilizes a phosphatidylinositol 3-kinase-dependent mechanism, whereas the exercise signal may be initiated by calcium release from the sarcoplasmic reticulum or from autocrine- or paracrine-mediated activation of glucose transport. During exercise skeletal muscle utilizes more glucose than when at rest. However, endurance training leads to decreased glucose utilization during sub-maximal exercise, in spite of a large increase in the total GLUT4 content associated with training. The mechanisms involved in this reduction have not been totally elucidated, but appear to cause the decrease of the amount of GLUT4 translocated to the plasma membrane by altering the exercise-induced enhancement of glucose transport capacity. On the other hand, the effect of resistance training is controversial. Recent studies, however, demonstrated the improvement in insulin sensitivity correlated with increasing muscle mass. New studies should be designed to define the molecular basis for these important adaptations to skeletal muscle. Since during exercise the muscle may utilize insulin-independent mechanisms to increase glucose uptake, the mechanisms involved should provide important knowledge to the understanding and managing peripheral insulin resistance.  相似文献   

11.
Maximum voluntary contractions (MVCs) are often used for the normalisation of electromyography data to enable comparison of signal patterns within and between study participants. Recommendations regarding the types of tasks that are needed to collect MVCs for the muscles of the forearm have been made, specifically advocating the use of resisted moment tasks to get better estimates of forearm MVCs. However, a protocol detailing which specific tasks to employ has yet to be published. Furthermore, the effects of limb dominance on the collection of MVCs have not been considered previously. Muscle activity was monitored while 23 participants performed nine isometric, resisted tasks. The tasks that are likely to elicit MVC in the flexor carpi ulnaris, flexor carpi radialis, flexor digitorum superficialis, extensor carpi ulnaris, extensor carpi radialis, extensor digitorum communis, and pronator teres were identified. Thus, targeted protocols can be designed to mitigate against fatigue. Hand dominance had limited effect, with differences being found only in the finger flexors and extensors (p< 0.03). Thus, use of the contralateral flexor digitorum superficialis and extensor digitorum communis muscles to obtain baselines for activation levels and patterns may not be appropriate.  相似文献   

12.
Although it has been reported that strengthening exercise in stroke patients is beneficial for their motor recovery, there is little evidence about which exercise method is the better option. The purpose of this study was to compare isotonic and isokinetic exercise by surface electromyography (EMG) analysis using standardized methods.Nine stroke patients performed three sets of isotonic elbow extensions at 30% of their maximal voluntary isometric torque followed by three sets of maximal isokinetic elbow extensions with standardization of mean angular velocity and the total amount of work for each matched set in two strengthening modes. All exercises were done by using 1-DoF planner robot to regulate exact resistive torque and speed. Surface electromyographic activity of eight muscles in the hemiplegic shoulder and elbow was recorded. Normalized root mean square (RMS) values and co-contraction index (CCI) were used for the analysis.The isokinetic mode was shown to activate the agonists of elbow extension more efficiently than the isotonic mode (normalized RMS for pooled triceps: 96.0 ± 17.0 (2nd), 87.8 ± 14.4 (3rd) in isokinetic, 80.9 ± 11.0 (2nd), 81.6 ± 12.4 (3rd) in isotonic contraction, F[1, 8] = 11.168; P = 0.010) without increasing the co-contraction of muscle pairs, implicating spasticity or synergy.  相似文献   

13.
Background: There is growing evidence that stroke survivors can adapt and improve step length symmetry in the context of split-belt treadmill (SBT) walking. However, less knowledge exists about the strategies involved for such adaptations. This study analyzed lower limb muscle activity in individuals post-stroke related to SBT-induced changes in step length. Methods: Step length and surface EMG activity of six lower limb muscles were evaluated in individuals post-stroke (n = 16) during (adaptation) and after (after-effects) walking at unequal belt speeds. Results: During adaptation, significant increases in EMG activity were mainly found in proximal muscles (p  0.023), whereas after-effects were observed particularly in the distal muscles. The plantarflexor EMG increased after walking on the slow belt (p  0.023) and the dorsiflexors predominantly after walking on the fast belt (p  0.017) for both, non-paretic and paretic-fast conditions. Correlation analysis revealed that after-effects in step length were mainly associated with changes in distal paretic muscle activity (0.522  r  0.663) but not with functional deficits. Based on our results, SBT walking could be relevant for training individuals post-stroke who present shorter paretic step length combined with dorsiflexor weakness, or individuals with shorter nonparetic step length and plantarflexor weakness.  相似文献   

14.
Skeletal muscle is the most abundant tissue in the body and serves various physiological functions including the generation of movement and support. Whole body motor function requires adequate quantity, geometry, and distribution of muscle. This raises the question: how do muscles scale with subject size in order to achieve similar function across humans? While much of the current knowledge of human muscle architecture is based on cadaver dissection, modern medical imaging avoids limitations of old age, poor health, and limited subject pool, allowing for muscle architecture data to be obtained in vivo from healthy subjects ranging in size. The purpose of this study was to use novel fast-acquisition MRI to quantify volumes and lengths of 35 major lower limb muscles in 24 young, healthy subjects and to determine if muscle size correlates with bone geometry and subject parameters of mass and height. It was found that total lower limb muscle volume scales with mass (R2=0.85) and with the height–mass product (R2=0.92). Furthermore, individual muscle volumes scale with total muscle volume (median R2=0.66), with the height–mass product (median R2=0.61), and with mass (median R2=0.52). Muscle volume scales with bone volume (R2=0.75), and muscle length relative to bone length is conserved (median s.d.=2.1% of limb length). These relationships allow for an arbitrary subject's individual muscle volumes to be estimated from mass or mass and height while muscle lengths may be estimated from limb length. The dataset presented here can further be used as a normative standard to compare populations with musculoskeletal pathologies.  相似文献   

15.
Summary The soleus, rectus femoris and gastrocnemius muscles of young rats were studied after 3, 6 and 12 weeks of treadmill training. The muscle fibers were characterized histochemically by their succinate dehydrogenase (SDH) and myofibrillar ATPase activity, and morphometrically by their cross-sectional areas, which were corrected for different body weights of control and trained animals.After 12 weeks of training the mean area of fibers in the muscles studied was not significantly different from the controls, as expected. In the soleus muscle the percentage of the fast-twitch fibers was decreased as a result of their transformation into slow-twitch fibers. Trained soleus muscles were the only muscles showing pathologically altered fibers, suggesting overload. The percentages of fiber types and their areas exhibited changes specific for the muscles and muscle regions studied.From these results it is concluded that the adaptation follows the sequence proportional adaptation of morphometrical parameters, disproportional adaptation of the areas of fiber types, and disproportional adaptation of the percentages and/or the areas of the fiber types. It is shown by comparison with the literature that this sequence may be generalized to a sequence of increasing expense necessary for the adaptation to increasing stimuli, and that the most decisive factors for adaptation are work load, frequency of exercise, period of training, and the age of the subject at the initiation of the training.  相似文献   

16.
We studied the effect of deuterium oxide (D2O) on contraction characteristics and ATPase activity of single glycerinated muscle fibers of rabbit psoas. D2O increased the maximum isometric force P0 by about 20%, while the force versus stiffness relation did not change appreciably. The maximum shortening velocity under zero load Vmax did not change appreciably in D2O, so that the force-velocity (P-V) curve was scaled depending on the value of P0. The Mg-ATPase activity of the fibers during generation of steady isometric force P0 was reduced by about 50% in D2O. Based on the Huxley contraction model, these results can be accounted for in terms of D2O-induced changes in the rate constants f1 and g1 for making and breaking actin-myosin linkages in the isometric condition, in such a way that f1/(f1+g1) increases by about 20%, while (f1+g1) remains unchanged. The D2O effect at the molecular level is discussed in connection with biochemical studies on actomyosin ATPase.  相似文献   

17.
The contractile properties of muscle are usually investigated by analysing the force signal recorded during electrically elicited contractions. The electrically stimulated muscle shows surface oscillations that can be detected by an accelerometer; the acceleration signal is termed the surface mechanomyogram (MMG). In the study described here we compared, in the human tibialis anterior muscle, changes in the MMG and force signal characteristics before, and immediately after fatigue, as well as during 6 min of recovery, when changes in the contractile properties of muscle occur. Fatigue was induced by sustained electrical stimulation. The final aim was to evaluate the reliability of the MMG as a tool to follow the changes in the mechanical properties of muscle caused by fatigue. Because of fatigue, the parameters of the force peak, the peak rate of force production and the peak of the acceleration of force production (d2F/dt2) decreased, while the contraction time and the half-relaxation time (1/2-RT) increased. The MMG peak-to-peak (p-p) also decreased. The attenuation rate of the force oscillation amplitude and MMG p-p at increasing stimulation frequency was greater after fatigue. With the exception of 1/2-RT, all of the force and MMG parameters were restored within 2 min of recovery. A high correlation was found between MMG and d2F/dt2 in un-fatigued muscle and during recovery. In conclusion, the MMG reflects specific aspects of muscle mechanics and can be used to follow the changes in the contractile properties of muscle caused by localised muscle fatigue.  相似文献   

18.
The actions of two phospholipase-free cardiotoxins from the venom of the cobra Naja naja siamensis were compared to phospholipase-contaminated cardiotoxins in terms of their ability to lyse human erythrocytes and to depolarize and contract skeletal muscle. The presence of 3–5% (w/w) phospholipase caused a 20–30-fold increase in the haemolytic activity of the two cardiotoxins, the pure cardiotoxins being virtually without haemolytic activity at 10?7-10?6 M. Phospholipase contamination did not enhance the ability of the cardiotoxins to cause contracture of chick biventer cervicis muscles and it caused less than a 2-fold increase in the depolarizing activity of the cardiotoxins on cultured skeletal muscle. Phospholipase-free cardiotoxins were about 10–20-times more active on cultured skeletal muscle fibres than on erythrocytes. These results support the hypothesis that some cardiotoxins have more affinity for the membranes of excitable cells than for those of other cells such as erythrocytes.  相似文献   

19.
In the present work, a generic model for the prediction of moment-angle characteristics in individual human skeletal muscles is presented. The model's prediction is based on the equation M = V x Lo(-1)sigma c cos phi x d, where M, V, and Lo are the moment-generating potential of the muscle, the muscle volume and the optimal muscle fibre length, respectively, and sigma, phi and d are the stress-generating potential of the muscle fibres, their pennation angle and the tendon moment arm length, respectively, at any given joint angle. The input parameters V, Lo, sigma, phi and d can be measured or derived mechanistically. This eliminates the common problem of the necessity to estimate one or more of the input parameters in the model by fitting its outcome to experimental results often inappropriate for the function modelled. The model's output was validated by comparisons with the moment-angle characteristics of the gastrocnemius (GS) and tibialis anterior (TA) muscles in six men, determined experimentally using voluntary contractions at several combinations of ankle and knee joint angles for the GS muscle and electrical stimulation for the TA muscle. Although the model predicted realistically the pattern of moment-angle relationship in both muscles, it consistently overestimated the GS muscle M and consistently underestimated the TA muscle M, with the difference gradually increasing from dorsiflexion to plantarflexion in both cases. The average difference between predicted and measured M was 14% for the GS muscle and 10% for the TA muscle. Approximating the muscle fibres as a single sarcomere in both muscles and failing to achieve complete TA muscle activation by electrical stimulation may largely explain the differences between theory and experiment.  相似文献   

20.
Summary Myofilaments of striated muscles can be recognized in the electron microscope to be in structural continuity with the outer membrane of the nuclear envelope. The very site of insertion of these myofilaments at the membrane surface frequently appears characterized by a dense basal knob of 85–135 Å. It is hypothesized that this attachment of myofilaments to the nuclear membrane plays a role in mechanically transmitting the contraction of the fiber to the nucleus, thus bringing about the harmonica-like folded appearance of the nucleus which is known for the contracted states of striated, smooth and cardiac muscles.The work was supported in part by the Deutsche Forschungsgemeinschaft.The author is indebted to Miss Sigrid Krien and Miss Marianne Winter for careful technical assistance as well as to Drs. Heinz Falk and U. Scheer for valuable discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号