首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abbreviated impactor measurement concept is a potential improvement to the labor-intensive full-resolution cascade impactor methodology for inhaler aerosol aerodynamic particle size distribution (APSD) measurement by virtue of being simpler and therefore quicker to execute. At the same time, improved measurement precision should be possible by eliminating stages upon which little or no drug mass is collected. Although several designs of abbreviated impactor systems have been developed in recent years, experimental work is lacking to validate the technique with aerosols produced by currently available inhalers. In part 1 of this two-part article that focuses on aerosols produced by pressurized metered dose inhalers (pMDIs), the evaluation of two abbreviated impactor systems (Copley fast screening Andersen impactor and Trudell fast screening Andersen impactor), based on the full-resolution eight-stage Andersen nonviable cascade impactor (ACI) operating principle, is reported with a formulation producing dry particles. The purpose was to investigate the potential for non-ideal collection behavior associated with particle bounce in relation to internal losses to surfaces from which particles containing active pharmaceutical ingredient are not normally recovered. Both abbreviated impactors were found to be substantially equivalent to the full-resolution ACI in terms of extra-fine and fine particle and coarse mass fractions used as metrics to characterize the APSD of these pMDI-produced aerosols when sampled at 28.3 L/min, provided that precautions are taken to coat collection plates to minimize bounce and entrainment.  相似文献   

2.
The abbreviated impactor measurement (AIM) concept is a potential solution to the labor-intensive full-resolution cascade impactor (CI) methodology for inhaler aerosol aerodynamic particle size measurement. In this validation study, the effect of increasing the internal dead volume on determined mass fractions relating to aerodynamic particle size was explored with two abbreviated impactors both based on the Andersen nonviable cascade impactor (ACI) operating principle (Copley fast screening Andersen impactor [C-FSA] and Trudell fast screening Andersen impactor [T-FSA]). A pressurized metered dose inhaler-delivered aerosol producing liquid ethanol droplets after propellant evaporation was chosen to characterize these systems. Measures of extrafine, fine, and coarse particle mass fractions from the abbreviated systems were compared with corresponding data obtained by a full-resolution ACI. The use of liquid ethanol-sensitive filter paper provided insight by rendering locations visible where partly evaporated droplets were still present when the “droplet-producing” aerosol was sampled. Extrafine particle fractions based on impactor-sized mass were near equivalent in the range 48.6% to 54%, comparing either abbreviated system with the benchmark ACI-measured data. The fine particle fraction of the impactor-sized mass determined by the T-FSA (94.4 ± 1.7%) was greater than using the C-FSA (90.5 ± 1.4%) and almost identical with the ACI-measured value (95.3 ± 0.4%). The improved agreement between T-FSA and ACI is likely the result of increasing the dead space between the entry to the induction port and the uppermost impaction stage, compared with that for the C-FSA. This dead space is needed to provide comparable conditions for ethanol evaporation in the uppermost parts of these impactors.  相似文献   

3.
The purpose of this study was to compare relative precision of two different abbreviated impactor measurement (AIM) systems and a traditional multi-stage cascade impactor (CI). The experimental design was chosen to provide separate estimates of variability for each impactor type. Full-resolution CIs are useful for characterizing the aerosol aerodynamic particle size distribution of orally inhaled products during development but are too cumbersome, time-consuming, and resource-intensive for other applications, such as routine quality control (QC). This article presents a proof-of-concept experiment, where two AIM systems configured to provide metrics pertinent to QC (QC-system) and human respiratory tract (HRT-system) were evaluated using a hydrofluoroalkane-albuterol pressurized metered dose inhaler. The Andersen eight-stage CI (ACI) served as the benchmark apparatus. The statistical design allowed estimation of precision with each CI configuration. Apart from one source of systematic error affecting extra-fine particle fraction from the HRT-system, no other bias was detected with either abbreviated system. The observed bias was shown to be caused by particle bounce following the displacement of surfactant by the shear force of the airflow diverging above the collection plate of the second impaction stage. A procedure was subsequently developed that eliminated this source of error, as described in the second article of this series (submitted to AAPS PharmSciTech). Measurements obtained with both abbreviated impactors were very similar in precision to the ACI for all measures of in vitro performance evaluated. Such abbreviated impactors can therefore be substituted for the ACI in certain situations, such as inhaler QC or add-on device testing.  相似文献   

4.
Simvastatin (SV), a drug of the statin class currently used orally as an anti-cholesterolemic via the inhibition of the 3-hydroxy-3-methyl-glutaryl-Coenzyme A (HMG-CoA) reductase, has been found not only to reduce cholesterol but also to have several other pharmacological actions that might be beneficial in airway inflammatory diseases. Currently, there is no inhalable formulation that could deliver SV to the lungs. In this study, a pressurised metered-dose inhaler (pMDI) solution formulation of SV was manufactured, with ethanol as a co-solvent, and its aerosol performance and physico-chemical properties investigated. A pMDI solution formulation containing SV and 6% w/w ethanol was prepared. This formulation was assessed visually and quantitatively for SV solubility. Furthermore, the aerosol performance (using Andersen Cascade impactor at 28.3 L/min) and active ingredient chemical stability up to 6 months at different storage temperatures, 4 and 25°C, were also evaluated. The physico-chemical properties of the SV solution pMDI were also characterised by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and laser diffraction. The aerosol particles, determined using scanning electron microscopy (SEM), presented a smooth surface morphology and were spherical in shape. The aerosol produced had a fine particle fraction of 30.77 ± 2.44% and a particle size distribution suitable for inhalation drug delivery. Furthermore, the short-term chemical stability showed the formulation to be stable at 4°C for up to 6 months, whilst at 25°C, the formulation was stable up to 3 months. In this study, a respirable and stable SV solution pMDI formulation for inhalation has been presented that could potentially be used clinically as an anti-inflammatory therapy for the treatment of several lung diseases.Key Words: lung inflammation, pMDI, pressurised metered dose inhaler, simvastatin  相似文献   

5.
Abbreviated impactors have been developed recently to allow more rapid evaluation of inhalation products as alternates to the eight-stage Andersen Cascade Impactor (ACI) which has been widely used in the pharmaceutical industry for assessing aerodynamic particle size distribution. In this paper, a two-stage abbreviated impactor, Westech Fine Particle Dose Impactor (WFPD), was used to characterize the aerodynamic particle size of metered dose inhaler (MDI) products, and the results were compared with those obtained using the standard eight-stage ACI. Seven commercial MDI products, with different propellants (chlorofluorocarbon/hydrofluoroalkane) and formulation types (suspension/solution, dry/normal/wet), were tested in this study by both WFPD and ACI. Substantially equivalent measures of fine particle fraction were obtained for most of the tested MDI products, but larger coarse particle fraction and extra-fine particle fraction values were measured from WFPD relative to those measured using the ACI. Use of the WFPD also produced more wall loss than the ACI. Therefore, it is recommended that the system suitability be evaluated on a product-by-product basis to establish substantial equivalency before implementing an abbreviated impactor measurement methodology for routine use in inhaler product characterization.  相似文献   

6.
The purpose of this work was to characterize theophylline (THF) cocrystals prepared by spray drying in terms of the physicochemical properties and inhalation performance when aerosolized from a dry powder inhaler. Cocrystals of theophylline with urea (THF-URE), saccharin (THF-SAC) and nicotinamide (THF-NIC) were prepared by spray drying. Milled THF and THF-SAC cocrystals were also used for comparison. The physical purity, particle size, particle morphology and surface energy of the materials were determined. The in vitro aerosol performance of the spray-dried cocrystals, drug-alone and a drug-carrier aerosol, was assessed. The spray-dried particles had different size distributions, morphologies and surface energies. The milled samples had higher surface energy than those prepared by spray drying. Good agreement was observed between multi-stage liquid impinger and next-generation impactor in terms of assessing spray-dried THF particles. The fine particle fractions of both formulations were similar for THF, but drug-alone formulations outperformed drug-carrier formulations for the THF cocrystals. The aerosolization performance of different THF cocrystals was within the following rank order as obtained from both drug-alone and drug-carrier formulations: THF-NIC > THF-URE > THF-SAC. It was proposed that micromeritic properties dominate over particle surface energy in terms of determining the aerosol performance of THF cocrystals. Spray drying could be a potential technique for preparing cocrystals with modified physical properties.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-012-9883-3) contains supplementary material, which is available to authorized users.Key words: aerodynamic diameter, cocrystal, spray drying, surface energy, theophylline  相似文献   

7.
Microbiological aerosols were measured on a spray irrigation site at Fort Huachuca, Ariz. Indigenous bacteria and tracer bacteriophage were sampled from sprays of chlorinated and unchlorinated secondary-treatment wastewaters during day and night periods. Aerosol dispersal and downwind migration were determined. Bacterial and coliphage f2 aerosols were sampled by using Andersen viable type stacked-sieve and high-volume electrostatic precipitator samplers. Bacterial standard plate counts averaged 2.4 x 10(5) colony-forming units per ml in unchlorinated effluents. Bacterial aerosols reached 500 bacteria per m3 at 152 m downwind and 10,500 bacteria per m3 at 46m. Seeded coliphage f2 averaged 4.0 x 10(5) plaque-forming units per ml in the effluent and were detected 563 m downwind. Downwind microbial aerosol levels were somewhat enhanced by nighttime conditions. The median aerodynamic particle size of the microbial aerosols was approximately 5.0 micrometer. Chlorination reduced wastewater bacterial levels 99.97% and reduced aerosol concentrations to near background levels; coliphage f2 was reduced only 95.4% in the chlorinated effluent and was readily measured 137 m downwind. Microbiological source strength an meteorological data were used in conjunction with a dispersion model to generate mathematical predictions of aerosol strength at various sampler locations. The mean calculated survival of aerosolized bacteria (standard plate count) in the range 46 to 76 m downwind was 5.2%, and that of coliphage f2 was 4.3 %.  相似文献   

8.
This study investigates electrostatic fields surrounding the human head and particle deposition onto facial skin and eyes caused by the combined effect of electrostatic and wind fields. The electrostatic fields are calculated by a three-dimensional numerical model calculating the field strength between a field source and a human head. The deposition velocity can be viewed as determined by the sum of two contributions: that of an electrostatic field and that of a wind field. Deposition velocities are calculated by a semiempirical particle deposition model that considers particle transport from the free stream to the human face. The particle deposition model uses the electrostatic field model results as input parameters and is applied to the forehead and eyes of two facial shapes for two different turbulence conditions and aerosol charge distributions. The results of different practical working conditions, under which the potential difference between head (person) and source ranges from 5.6 to 15.0 kV, indicates that the presence of electrostatic fields always increases particle deposition for industrial aerosols. For aged aerosols an effect is only present for submicron particles. Bioelectromagnetics 19:246–258, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
An experimental technique is presented for studying aerosols generated from lyophilized bacteria by using Escherichia coli B, Bacillus subtilis var. niger, Enterobacter aerogenes, and Pasteurella tularensis. An aerosol generator capable of creating fine particle aerosols of small quantities (10 mg) of lyophilized powder under controlled conditions of exposure to the atmosphere is described. The physical properties of the aerosols are investigated as to the distribution of number of aerosol particles with particle size as well as to the distribution of number of bacteria with particle size. Biologically unstable vegetative cells were quantitated physically by using 14C and Europium chelate stain as tracers, whereas the stable heat-shocked B. subtilis spores were assayed biologically. The physical persistence of the lyophilized B. subtilis aerosol is investigated as a function of size of spore-containing particles. The experimental result that physical persistence of the aerosol in a closed aerosol chamber increases as particle size is decreased is satisfactorily explained on the bases of electrostatic, gravitational, inertial, and diffusion forces operating to remove particles from the particular aerosol system. The net effect of these various forces is to provide, after a short time interval in the system (about 2 min), an aerosol of fine particles with enhanced physical stability. The dependence of physical stability of the aerosol on the species of organism and the nature of the suspending medium for lyophilization is indicated. Also, limitations and general applicability of both the technique and results are discussed.  相似文献   

10.
Pressurized metered dose inhalers (pMDIs) are frequently used for the treatment of asthma and chronic obstructive pulmonary disease. The aerodynamic particle size distribution (APSD) of the residual particles delivered from a pMDI plays a key role in determining the amount and region of drug deposition in the lung and thereby the efficacy of the inhaler. In this study, a simulation model that predicts the APSD of residual particles from suspension pMDIs was utilized to identify the primary determinants for APSD. These findings were then applied to better understand the effect of changing drug concentration and micronized drug size on experimentally observed APSDs determined through Andersen Cascade Impactor testing. The experimental formulations evaluated had micronized drug mass median aerodynamic diameters (MMAD) between 1.2 and 2.6 μm and drug concentrations ranging from 0.01 to 1% (w/w) with 8.5% (w/w) ethanol in 1,1,1,2-tetrafluoroethane (HFA-134a). It was determined that the drug concentration, micronized drug size, and initially atomized droplet distribution have a significant impact in modulating the proportion of atomized droplets that contain multiple suspended drug particles, which in turn increases the residual APSD. These factors were found to be predictive of the residual particle MMAD for experimental suspension HFA-134a formulations containing ethanol. The empirical algebraic model allows predicting the residual particle size for a variety of suspension formulations with an average error of 0.096 μm (standard deviation of 0.1 μm).KEY WORDS: aerodynamic particle size distribution (APSD), formulation, pressurized metered dose inhaler (pMDI), suspension  相似文献   

11.
The development of dry powder inhalation (DPI) products of traditional Chinese medicine (TCM) remains to be a challenge due to chemical complexity and batch-to-batch variations in constituent composition. This study was to investigate the feasibility of using spray-dried corrugated particles to improve the aerodynamic performance of a TCM, Shuang-Huang-Lian (SHL), in carrier-based DPI. Particles with different surface roughness were spray-dried by the addition of leucine and concomitant manipulation of spray-drying parameters. The surface roughness was determined by atomic force microscopy, whilst the aerodynamic performance of drug particle–mannitol/lactose blends was evaluated using a next-generation pharmaceutical impactor through a Cyclohaler. Although the emission efficiency for corrugated particle-based DPI was ∼10% lower than that for smooth SHL, the fine particle fractions (FPF<4.4 μm) of 32.4–36.8% for the former were significantly higher than those of 14.7–16.2% for the latter. In particular, the FPF and fraction of drug detached from the carrier appeared not to be significantly affected by the variation in constituent composition of SHL. This study demonstrates that the use of corrugated particles in carrier-based DPI improved aerosol performance by facilitating drug detachment from the carrier, independent of variation in constituent composition, and such particles were potentially applicable to the development of SHL DPI products.KEY WORDS: dry powder inhaler, Shuang-Huang-Lian, spray-drying, surface roughness, traditional Chinese medicine  相似文献   

12.
A novel method for measuring bioaerosol charge distribution was investigated using electrostatic sampling and quantitative polymerase chain reaction (qPCR). Here, Bacillus subtilis var niger and Pseudomonas fluorescens were aerosolized and precipitated into different regions of two 96-well plates placed inside an electrostatic sampler. The concentrations of negatively charged bacteria in the air samples collected were quantified using qPCR, and the relevant bioaerosol charge levels were calculated using an equation developed in this study. Experimental results showed that B. subtilis var niger bioaerosols had wider charge distribution than P. fluorescens. For B. subtilis var niger, 93% of them carried a charge level of 13–42 units, 2% carried a charge level of 8–13 or lower, and 5% carried a charge level of 42–195 or higher. While for P. fluorescens, 99% of P. fluorescens aerosols carried a charge level of 14–34 elementary units. The indicative charge levels of bioaerosols collected at a certain point in the electrostatic sampling line largely depends on the particle size, bacterial species, electrostatic field strength, and the sampling flow rates for a given electrostatic sampler. In general, the trends for the charge levels here were similar to those obtained in previous studies. Use of qPCR technology in this study can distinguish between biological and non-biological particles collected. Thus, this avoided counting the non-biological particles in traditional bioaerosol charge measurements in which an optical particle counter is used. The developed technique here can be also used to analyze the charge levels for other types of bioaerosols.  相似文献   

13.
Current pharmacopeial methods for testing dry powder inhalers (DPIs) require that 4.0 L be drawn through the inhaler to quantify aerodynamic particle size distribution of “inhaled” particles. This volume comfortably exceeds the internal dead volume of the Andersen eight-stage cascade impactor (ACI) and Next Generation pharmaceutical Impactor (NGI) as designated multistage cascade impactors. Two DPIs, the second (DPI-B) having similar resistance than the first (DPI-A) were used to evaluate ACI and NGI performance at 60 L/min following the methodology described in the European and United States Pharmacopeias. At sampling times ≥2 s (equivalent to volumes ≥2.0 L), both impactors provided consistent measures of therapeutically important fine particle mass (FPM) from both DPIs, independent of sample duration. At shorter sample times, FPM decreased substantially with the NGI, indicative of incomplete aerosol bolus transfer through the system whose dead space was 2.025 L. However, the ACI provided consistent measures of both variables across the range of sampled volumes evaluated, even when this volume was less than 50% of its internal dead space of 1.155 L. Such behavior may be indicative of maldistribution of the flow profile from the relatively narrow exit of the induction port to the uppermost stage of the impactor at start-up. An explanation of the ACI anomalous behavior from first principles requires resolution of the rapidly changing unsteady flow and pressure conditions at start up, and is the subject of ongoing research by the European Pharmaceutical Aerosol Group. Meanwhile, these experimental findings are provided to advocate a prudent approach by retaining the current pharmacopeial methodology.KEY WORDS: cascade impactor, compendial method, dry powder inhaler, sample volume  相似文献   

14.
Compendial methods determining dry powder inhaler (DPI)-emitted aerosol aerodynamic particle size distribution (APSD) collect a 4-L air sample containing the aerosol bolus, where the flow, which propagates through the cascade impactor (CI) measurement system from the vacuum source, is used to actuate the inhaler. A previous article described outcomes with two CIs (Andersen eight-stage cascade impactor (ACI) and Next-Generation Pharmaceutical Impactor (NGI)) when the air sample volume was ≤4 L with moderate-resistance DPIs. This article extends that work, examining the hypothesis that DPI flow resistance may be a factor in determining outcomes. APSD measurements were made using the same CI systems with inhalers representing low and high flow resistance extremes (Cyclohaler® and HandiHaler® DPIs, respectively). The ratio of sample volume to internal dead space (normalized volume (V*)) was varied from 0.25 to 1.98 (NGI) and from 0.43 to 3.46 (ACI). Inhaler resistance was a contributing factor to the rate of bolus transfer; the higher resistance DPI completing bolus relocation to the NGI pre-separator via the inlet when V* was as small as 0.25, whereas only ca. 50% of the bolus mass was collected at this condition with the Cyclohaler® DPI. Size fractionation of the bolus from either DPI was completed within the ACI at smaller values of V* than within the NGI. Bolus transfer from the Cyclohaler® capsule and from the HandiHaler® to the ACI system were unaffected by the different flow rise time observed in the two different flow controller systems, and the effects the ACI-based on APSD measurements were marginal.  相似文献   

15.
With the growing interest in developing biologics for pulmonary delivery, systematic fast screening methods are needed for rapid development of formulations. Due to the labile nature of macromolecules, the development of stable, biologically active formulations with desired aerosol performance imposes several challenges both from a formulation and processing perspective. In this study, spray-freeze-drying was used to develop respirable protein powders. In order to systematically map the selected design space, lysozyme aqueous pre-formulations were prepared based on a constrained mixture design of experiment. The physicochemical properties of the resulting powders were characterized and the effects of formulation factors on aerosol performance and protein stability were systematically screened using a logic flow chart. Our results elucidated several relevant formulation attributes (density, total solid content, protein:sugars ratio) required to achieve a stable lysozyme powder with desirable characteristics for pulmonary delivery. A similar logical fast screening strategy could be used to delineate the appropriate design space for different types of proteins and guide the development of powders with pre-determined aerodynamic properties.  相似文献   

16.
Pulmonary delivery of therapeutic peptides and proteins has many advantages including high relative bioavailability, rapid systemic absorption and onset of action and a non-invasive mode of administration which improves patient compliance. In this study, we investigated the effect of spray-drying (SD) and spray freeze-drying processes on the stability and aerosol performance of parathyroid hormone (PTH) (1-34) microparticles. In this study, the stabilisation effect of trehalose (a non-reducing sugar) and Brij 97 (a non-ionic surfactant) on spray-dried PTH particles was assessed using analytical techniques including circular dichroism (CD), fluorescence spectroscopy, modulated differential scanning calorimetry and an in vitro bioactivity assay. Physical characterisation also included electron microscopy, tap density measurement and laser light diffraction. The aerosol aerodynamic performance of the formulations was assessed using the Andersen cascade impactor. Based on these studies, a formulation for spray freeze-drying was selected and the effects of the two particle engineering techniques on the biophysical stability and aerosol performance of the resulting powders was determined. CD, fluorescence spectroscopy and bioactivity data suggest that trehalose when used alone as a stabilising excipient produces a superior stabilising effect than when used in combination with a non-ionic surfactant. This highlights the utility of CD and fluorescence spectroscopy studies for the prediction of protein bioactivity post-processing. Therefore, a method and formulation suitable for the preparation of PTH as a dry powder was developed based on spray-drying PTH with trehalose as a stabiliser with the bioactivity of SD PTH containing trehalose being equivalent to that of unprocessed PTH.  相似文献   

17.
T.M. MADELIN AND H.E. JOHNSON. 1992. An aerodynamic particle sizer (APS) that uses laser Doppler velocimetry was used to determine aerodynamic diameters of spores of fungal and thermophilic actinomycete species common in mouldy hay, acrosolized at different humidities and temperatures. Results were compared with those obtained from inertial impaction in a cascade impactor. The APS gave slightly smaller measurements than the cascade impactor. Both methods gave aerodynamic diameters generally slightly smaller than the average spore dimensions observed on cascade impactor slides with a microscope. The latter measurements were less than axial dimensions given in the literature. Brief passage of spores through air at 95% relative humidity (RH) and 38°C, compared with 40% RH and 20°C, caused an immediate increase in their aerodynamic diameter and the breaking of chains of spores. Cultures maintained at 75% RH and aerosolized at 98% RH similarly produced larger spore particles than those passed through dry air. These findings have implications for mould-induced asthma and allergic alveolitis since they relate to physical behaviour of airborne spores and particle deposition sites in the lung.  相似文献   

18.
An aerodynamic particle sizer (APS) that uses laser Doppler velocimetry was used to determine aerodynamic diameters of spores of fungal and thermophilic actinomycete species common in mouldy hay, aerosolized at different humidities and temperatures. Results were compared with those obtained from inertial impaction in a cascade impactor. The APS gave slightly smaller measurements than the cascade impactor. Both methods gave aerodynamic diameters generally slightly smaller than the average spore dimensions observed on cascade impactor slides with a microscope. The latter measurements were less than axial dimensions given in the literature. Brief passage of spores through air at 95% relative humidity (RH) and 38 degrees C, compared with 40% RH and 20 degrees C, caused an immediate increase in their aerodynamic diameter and the breaking of chains of spores. Cultures maintained at 75% RH and aerosolized at 98% RH similarly produced larger spore particles than those passed through dry air. These findings have implications for mould-induced asthma and allergic alveolitis since they relate to physical behaviour of airborne spores and particle deposition sites in the lung.  相似文献   

19.
This study of aerodynamic mass-weighted particle size distribution (APSD) data from orally inhaled products (OIPs) investigated whether a set of simpler (than currently used) metrics may be adequate to detect changes in APSD for quality control (QC) purposes. A range of OIPs was examined, and correlations between mass median aerodynamic diameter and the ratio of large particle mass (LPM) to small particle mass (SPM) were calculated. For an Andersen cascade impactor, the LPM combines the mass associated with particle sizes from impactor stage 1 to a product-specific boundary size; SPM combines the mass of particles from that boundary through to terminal filter. The LPM–SPM boundary should be chosen during development based on the full-resolution impactor results so as to maximize the sensitivity of the LPM/SPM ratio to meaningful changes in quality. The LPM/SPM ratio along with the impactor-sized mass (ISM) are by themselves sufficient to detect changes in central tendency and area under the APSD curve, which are key in vitro quality attributes for OIPs. Compared to stage groupings, this two-metric approach provides better intrinsic precision, in part due to having adequate mass and consequently better ability to detect changes in APSD and ISM, suggesting that this approach should be a preferred QC tool. Another advantage is the possibility to obtain these metrics from the abbreviated impactor measurements (AIM) rather than from full-resolution multistage impactors. Although the boundary is product specific, the testing could be accomplished with a basic AIM system which can meet the needs of most or all OIPs.  相似文献   

20.
Laser diffraction (LD) and next generation impactor (NGI) are commonly used for the evaluation of inhaled drug formulations. In this study, the effect of temperature and humidity on the assessment of the nebulizer particle size distribution (PSD) by LD was investigated, and the consistency between NGI and LD measurements was evaluated. There was an increase in particle size with higher temperature or lower humidity. The particle population with a diameter less than 1 μm was significant at a temperature of 5°C or at relative humidity >90%; however, the same particle population became undetectable when temperature increased to 39°C or at relative humidity of 30–45%. The results of the NGI and LD measurements of aerosol generated from three types of jet nebulizers were compared. A poor correlation between the NGI and LD measurements was observed for PARI LC (2.2 μm) (R 2?=?0.893) and PARI LC (2.9 μm) (R 2?=?0.878), while a relatively good correlation (R 2?=?0.977) was observed for the largest particle size nebulizer (PARI TIA (8.6 μm)). We conclude that the ambient environment and the nebulizer have significant impacts on the performance and consistency between these instruments. These factors should be controlled in the evaluation of inhaled aerosol drug formulations when these instruments are used individually or in combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号