首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation in plasma levels of cortisol, an essential hormone in the stress response, is associated in population-based studies with cardio-metabolic, inflammatory and neuro-cognitive traits and diseases. Heritability of plasma cortisol is estimated at 30–60% but no common genetic contribution has been identified. The CORtisol NETwork (CORNET) consortium undertook genome wide association meta-analysis for plasma cortisol in 12,597 Caucasian participants, replicated in 2,795 participants. The results indicate that <1% of variance in plasma cortisol is accounted for by genetic variation in a single region of chromosome 14. This locus spans SERPINA6, encoding corticosteroid binding globulin (CBG, the major cortisol-binding protein in plasma), and SERPINA1, encoding α1-antitrypsin (which inhibits cleavage of the reactive centre loop that releases cortisol from CBG). Three partially independent signals were identified within the region, represented by common SNPs; detailed biochemical investigation in a nested sub-cohort showed all these SNPs were associated with variation in total cortisol binding activity in plasma, but some variants influenced total CBG concentrations while the top hit (rs12589136) influenced the immunoreactivity of the reactive centre loop of CBG. Exome chip and 1000 Genomes imputation analysis of this locus in the CROATIA-Korcula cohort identified missense mutations in SERPINA6 and SERPINA1 that did not account for the effects of common variants. These findings reveal a novel common genetic source of variation in binding of cortisol by CBG, and reinforce the key role of CBG in determining plasma cortisol levels. In turn this genetic variation may contribute to cortisol-associated degenerative diseases.  相似文献   

2.
Corticosteroids are transported in the blood by a serpin, corticosteroid-binding globulin (CBG), and their normally equilibrated release can be further triggered by the cleavage of the reactive loop of CBG. We report here the crystal structures of cleaved human CBG (cCBG) at 1.8-Å resolution and its complex with cortisol at 2.3-Å resolution. As expected, on cleavage, CBG undergoes the irreversible S-to-R serpin transition, with the cleaved reactive loops being fully incorporated into the central β-sheet. A connecting loop of helix D, which is in a helix-like conformation in native CBG, unwinds and grossly perturbs the hormone binding site following β-sheet expansion in the cCBG structure but shifts away from the binding site by more than 8 Å following the binding of cortisol. Unexpectedly, on cortisol binding, the hormone binding site of cCBG adopts a configuration almost identical with that of the native conformer. We conclude that CBG has adapted an allosteric mechanism of the serpins to allow equilibrated release of the hormones by a flip-flop movement of the intact reactive loop into and out of the β-sheet. The change in the hormone binding affinity results from a change in the flexibility or plasticity of the connecting loop, which modulates the configuration of the binding site.  相似文献   

3.
Corticosteroid-binding globulin (CBG) is the principal carrier of cortisol in circulation and is a non-inhibitory member of the serpin family of serine proteinase inhibitors. It possesses an exposed elastase specific site which, when cleaved, allows a conformational change promoting the delivery of cortisol to sites of inflammation. Previously there was no ability to independently distinguish between the uncleaved, stressed, conformer of CBG and total CBG in circulation. Here we raised and characterized monoclonal antibodies generated against a synthetic peptide spanning the elastase cleavage site within the exposed reactive centre loop (RCL) and measured changes in CBG by ELISA following treatment with human neutrophil elastase. The antibodies recognized the synthetic peptide as well as intact CBG and the epitope (STGVTLNL) spanned the elastase cleavage site. Treatment of plasma with elastase resulted in a complete loss of CBG levels determined using these RCL antibodies whereas CBG levels measured with an unrelated CBG monoclonal antibody were unaffected. We also compared plasma levels of CBG measured by RCL antibodies and an unrelated CBG antibody and showed discordance in some samples. This study shows for the first time the ability to measure the intact, stressed conformer of CBG. We report discordance with total CBG in some samples implying the presence of cleaved CBG in circulation. This is an important finding as it has implications for free cortisol which hitherto have been determined from total cortisol and total CBG levels. This antibody could be used for determining the time course of intact CBG in various relevant patient cohorts and for structure/function studies on the biology of human CBG.  相似文献   

4.
Corticosteroid-binding globulin (CBG) transports glucocorticoids and progesterone in the blood and thereby modulates the tissue availability of these hormones. As a member of the serine protease inhibitor (SERPIN) family, CBG displays a reactive center loop (RCL) that is targeted by proteinases. Cleavage of the RCL is thought to trigger a SERPIN-typical stressed-to-relaxed (S-to-R) transition that leads to marked structural rearrangements and a reduced steroid-binding affinity. To characterize structure-function relationships in CBG we studied various conformational states of E. coli-produced rat and human CBG. In the 2.5 Å crystal structure of human CBG in complex with progesterone, the RCL is cleaved at a novel site that differs from the known human neutrophil elastase recognition site. Although the cleaved RCL segment is five residues longer than anticipated, it becomes an integral part of β-sheet A as a result of the S-to-R transition. The atomic interactions observed between progesterone and CBG explain the lower affinity of progesterone in comparison to corticosteroids. Surprisingly, CD measurements in combination with thermal unfolding experiments show that rat CBG fails to undergo an S-to-R transition upon proteolytic cleavage of the RCL hinting that the S-to-R transition observed in human CBG is not a prerequisite for CBG function in rat. This observation cautions against drawing general conclusions about molecular mechanisms by comparing and merging structural data from different species.  相似文献   

5.
Delivery of therapeutics and imaging agents to target tissues requires localization and activation strategies with molecular specificity. Cell-associated proteases can be used for these purposes in a number of pathologic conditions, and their enzymatic activities can be exploited for activation strategies. Here, molecules based on the d-arginine octamer (r8) protein-transduction domain (PTD, also referred to as molecular transporters) have been adapted for selective uptake into cells only after proteolytic cleavage of a PTD-attenuating sequence by the prostate-specific antigen (PSA), an extracellular protease associated with the surface and microenvironment of certain prostate cancer cells. Convergent syntheses of these activatable PTDs (APTDs) are described, and the most effective r8 PTD-attenuating sequence is identified. The conjugates are shown to be stable in serum, cleaved by PSA, and taken up into Jurkat (human T cells) and PC3M prostate cancer cell lines only after cleavage by PSA. These APTD peptide-based molecules may facilitate targeted delivery of therapeutics or imaging agents to PSA-expressing prostate cancers.  相似文献   

6.
Corticosteroid binding globulin (CBG) and thyroxin binding globulin (TBG) both belong to the same SERPIN superfamily of serine-proteinase inhibitors but in the course of evolution CBG has adapted to its new role as a transport agent of insoluble hormones. CBG binds corticosteroids in plasma, delivering them to sites of inflammation to modify the inflammatory response. CBG is an effective drug carrier for genetic manipulation, and hence there is immense biological interest in the location of the hormone binding site. The crystal structure of human CBG (hCBG) has not been determined, but sequence alignment with other SERPINs suggests that it conforms as a whole to the tertiary structure shared by the superfamily. Human CBG shares 52.15% and 55.50% sequence similarity with alpha1-antitrypsin and alpha1-antichymotrypsin, respectively. Multiple sequence alignment among the three sequences shows 73 conserved regions. The molecular structures of alpha1-antitrypsin and alpha1-antichymotrypsin, the archetype of the SERPIN superfamily, obtained by X-ray diffraction methods are used to develop a homology model of hCBG. Energy minimization was applied to the model to refine the structure further. The homology model of hCBG contains 371 residues (His13 to Val383 ). The secondary structure comprises 11 helices, 15 turns and 11 sheets. The putative corticosteroid binding region is found to exist in a pocket between beta-sheets S4, S10, S11 and alpha helix H10. Both cortisol and aldosterone are docked to the elongated hydrophobic ligand binding pocket with the polar residues at the two extremities. A difference accessible surface area (DASA) study revealed that cortisol binds with the native hCBG more tightly than aldosterone. Cleavage at the Val379-Met380 peptide bond causes a deformation of hCBG (also revealed through a DASA study). This deformation could probably trigger the release of the bound hormone. Figure Stereoscopic view of the ribbon diagram of hCBG complexed with cortisol. The bound cortisol is shown in space filling model in blue. Helices and sheets are shown in red and magenta respectively. Turns are shown in yellow.  相似文献   

7.
The inhibitors that belong to the serpin family are suicide inhibitors that control the major proteolytic cascades in eucaryotes. Recent data suggest that serpin inhibition involves reactive centre cleavage followed by loop insertion, whereby the covalently linked protease is translocated away from the initial docking site. However under certain circumstances, serpins can also be cleaved like a substrate by target proteases. In this report we have studied the conformation of the reactive centre of plasminogen activator inhibitor type 1 (PAI-1) mutants with inhibitory and substrate properties. The polarized steady-state and time-resolved fluorescence anisotropies were determined for BODIPY(R) probes attached to the P1' and P3 positions of the substrate and active forms of PAI-1. The fluorescence data suggest an extended orientational freedom of the probe in the reactive centre of the substrate form as compared to the active form, revealing that the conformation of the reactive centres differ. The intramolecular distance between the P1' and P3 residues in reactive centre cleaved inhibitory and substrate mutants of PAI-1, were determined by using the donor-donor energy migration (DDEM) method. The distances found were 57+/-4 A and 63+/-3 A, respectively, which is comparable to the distance obtained between the same residues when PAI-1 is in complex with urokinase-type plasminogen activator (uPA). Following reactive centre cleavage, our data suggest that the core of the inhibitory and substrate forms possesses an inherited ability of fully inserting the reactive centre loop into beta-sheet A. In the inhibitory forms of PAI-1 forming serpin-protease complexes, this ability leads to a translocation of the cognate protease from one pole of the inhibitor to the opposite one.  相似文献   

8.
The release of hormones from thyroxine-binding globulin (TBG) and corticosteroid-binding globulin (CBG) is regulated by movement of the reactive center loop in and out of the β-sheet A of the molecule. To investigate how these changes are transmitted to the hormone-binding site, we developed a sensitive assay using a synthesized thyroxine fluorophore and solved the crystal structures of reactive loop cleaved TBG together with its complexes with thyroxine, the thyroxine fluorophores, furosemide, and mefenamic acid. Cleavage of the reactive loop results in its complete insertion into the β-sheet A and a substantial but incomplete decrease in binding affinity in both TBG and CBG. We show here that the direct interaction between residue Thr(342) of the reactive loop and Tyr(241) of the hormone binding site contributes to thyroxine binding and release following reactive loop insertion. However, a much larger effect occurs allosterically due to stretching of the connecting loop to the top of the D helix (hD), as confirmed in TBG with shortening of the loop by three residues, making it insensitive to the S-to-R transition. The transmission of the changes in the hD loop to the binding pocket is seen to involve coherent movements in the s2/3B loop linked to the hD loop by Lys(243), which is, in turn, linked to the s4/5B loop, flanking the thyroxine-binding site, by Arg(378). Overall, the coordinated movements of the reactive loop, hD, and the hormone binding site allow the allosteric regulation of hormone release, as with the modulation demonstrated here in response to changes in temperature.  相似文献   

9.
Thyroxine binding globulin (TBG) is the major carrier of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) in plasma. TBG is member of the serpin family of proteins although it has no proteinase inhibitory activity. In this study we show that TBG has properties typical of a metastable serpin and provide evidence that occupancy of the hormone binding site alters the conformation of the reactive center loop. After reactive center loop cleavage by endoproteinase Asp-N or neutrophil elastase the protein became more stable to guanidine hydrochloride denaturation compared to the native protein, as a result of loop insertion. In addition, incubation of the native protein with a reactive center loop peptide, caused a change in mobility on a native gel. This is consistent with the idea that thyroxine binding globulin is able to form a binary complex with the peptide as a result of beta-sheet A expansion. To assess the effect of cleavage and loop insertion on the hormone binding site we used the specific binding of a fluorophore, 1,8-anilinonaphthalene sulfonic acid (ANS). Loop insertion itself had no effect on ANS affinity, but cleavage with elastase at the P4'-P5' bond caused a reduction in affinity, presumably because this cleavage site is located within the hormone binding site. These data support the concept that cleavage of TBG by proteinases released in inflammation is a mechanism to deliver thyroid hormones to target tissues. A linkage between the occupancy state of the hormone binding site and the conformation of the reactive center loop was indicated by the observation that binding of T3 to native TBG reduced proteolytic susceptibility by both endoproteinase Asp-N and elastase.  相似文献   

10.
A 5-fluorodeoxyuridine prodrug as targeted therapy for prostate cancer   总被引:3,自引:0,他引:3  
A method for targeted delivery of the cytotoxic agent 5-fluorodeoxyuridine (FudR) (1) to sites of metastatic prostate cancer is described. The prodrug was synthesized by coupling the active drug (FudR) to the PSA-peptide via a self-cleaving diamino acid linker to produce HSSKLQ-Leu-Aib-FudR. This prodrug serves as a substrate for prostate specific antigen (PSA). This approach permitted efficient conversion of the inactive prodrug back to the active cytotoxic state by the enzymatic activity of PSA which is highly expressed by prostate cells.  相似文献   

11.
Corticosteroid-binding globulin (CBG) is a serine proteinase inhibitor (serpin) family member that transports glucocorticoids in blood and regulates their access to target cells. The 1.9A crystal structure of rat CBG shows that its steroid-binding site resembles the thyroxin-binding site in the related serpin, thyroxin-binding globulin, and mutagenesis studies have confirmed the contributions of key residues that constitute the steroid-binding pocket. Unlike thyroxin-bound thyroxin-binding globulin, the cortisol-bound CBG displays an "active" serpin conformation with the proteinase-sensitive, reactive center loop (RCL) fully expelled from the regulatory beta-sheet A. Moreover, the CBG structure allows us to predict that complete insertion of the proteolytically cleaved RCL into the serpin fold occurs in concert with a displacement and unwinding of helix D that would disrupt the steroid-binding site. This allosteric coupling between RCL positioning and occupancy of the CBG steroid-binding site, which resembles the ligand (glycosamino-glycan)-dependent activation of the thrombin inhibitory serpins heparin cofactor II and anti-thrombin RCLs, ensures both optimal recognition of CBG by target proteinases and efficient release of steroid to sites of action.  相似文献   

12.
Human glandular kallikrein 2 (hK2) is a serine protease expressed by the prostate gland with 80% identity in primary structure to prostate-specific antigen (PSA). Recently, hK2 was shown to activate the zymogen form of PSA (proPSA) in vitro and is likely to be the physiological activator of PSA in the prostate. hK2 is also able to activate urokinase and effectively cleave fibronectin. We studied the substrate specificity of hK2 and regulation of its activity by zinc and extracellular protease inhibitors present in the prostate and seminal plasma. The enzymatic activity and substrate specificity was studied by determining hK2 cleavage sites in the major gel proteins in semen, semenogelin I and II, and by measuring hydrolysis of various tripeptide aminomethylcoumarin substrates. HK2 cleaves substrates C-terminal of single or double arginines. Basic amino acids were also occasionally found at several other positions N-terminal of the cleavage site. Therefore, the substrate specificity of hK2 fits in well with that of a processor of protein precursors. Possible regulation mechanisms were studied by testing the ability of Zn2+ and different protease inhibitors to inhibit hK2 by kinetic measurements. Inhibitory constants were determined for the most effective inhibitors PCI and Zn2+. The high affinity of PCI for hK2 (kass = 2.0 x 10(5) M-1 x s-1) and the high concentrations of PCI (4 microM) and hK2 (0.2 microM) in seminal plasma make hK2 a very likely physiological target protease for PCI. hK2 is inhibited by Zn2+ at micromolar concentrations well below the 9 mM zinc concentration found in the prostate. The enzymatic activity of hK2 is likely to be reversibly regulated by Zn2+ in prostatic fluid. This regulation may be impaired in CAP and advanced metastatic cancer resulting in lack of control of the hK2 activity and a need for other means of control.  相似文献   

13.
Galectin-3 is a chimeric carbohydrate-binding protein, which interacts with cell surface carbohydrate-containing molecules and extracellular matrix glycoproteins and has been implicated in various biological processes such as cell growth, angiogenesis, motility, and metastasis. It is expressed in a wide range of tumor cells and is associated with tumor progression. The functions of galectin-3 are dependent on its localization and post-translational modifications such as cleavage and phosphorylation. Recently, we showed that galectin-3 Tyr-107 is phosphorylated by c-Abl; concomitantly, it was also shown that galectin-3 can be cleaved at this site by prostate-specific antigen (PSA), a chymotrypsin-like serine protease, after Tyr-107, resulting in loss of galectin-3 multivalency while preserving its carbohydrate binding activity. Galectin-3 is largely a monomer in solution but may form a homodimer by self-association through its carbohydrate recognition domain, whereas, in the presence of a ligand, galectin-3 polymerizes up to pentamers utilizing its N-terminal domain. Oligomerization is a unique feature of secreted galectin-3, which allows its function by forming ordered galectin-glycan structures, i.e. lattices, on the cell surface or through direct engagement of specific cell surface glycoconjugates by traditional ligand-receptor binding. We questioned whether Tyr-107 phosphorylation by c-Abl affects galectin-3 cleavage by PSA. The data suggest a role for galectin-3 in prostate cells associated with increased activity of c-Abl kinase and loss of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) activity. In addition, the ratio of phosphorylated/dephosphorylated galectin-3 might be used as a complementary value to that of PSA for prognosis of prostate cancer and a novel therapeutic target for the treatment of prostate cancer.  相似文献   

14.
Prostate-specific antigen (PSA), produced by prostate cells, provides an excellent serum marker for prostate cancer. It belongs to the human kallikrein family of enzymes, a second prostate-derived member of which is human glandular kallikrein-1 (hK2). Active PSA and hK2 are both 237-residue kallikrein-like proteases, based on sequence homology. An hK2 model structure based on the serine protease fold is presented and compared to PSA and six other serine proteases in order to analyze in depth the role of the surface-accessible loops surrounding the active site. The results show that PSA and hK2 share extensive structural similarity and that most amino acid replacements are centered on the loops surrounding the active site. Furthermore, the electrostatic potential surfaces are very similar for PSA and hK2. PSA interacts with at least two serine protease inhibitors (serpins): alpha-1-antichymotrypsin (ACT) and protein C inhibitor (PCI). Three-dimensional model structures of the uncleaved ACT molecule were developed based upon the recent X-ray structure of uncleaved antithrombin. The serpin was docked both to PSA and hK2. Amino acid replacements and electrostatic complementarities indicate that the overall orientation of the proteins in these complexes is reasonable. In order to investigate PSA's heparin interaction sites, electrostatic computations were carried out on PSA, hK2, protein C, ACT, and PCI. Two heparin binding sites are suggested on the PSA surface and could explain the enhanced complex formation between PSA and PCI, while inhibiting the formation of the ACT-PSA complex, PSA, hK2, and their preliminary complexes with ACT should facilitate the understanding and prediction of structural and functional properties for these important proteins also with respect to prostate diseases.  相似文献   

15.
Understanding of the molecular mechanism and biological implication underlying the difference in binding of substrate peptides and small-molecule inhibitors to multidrug-resistant mutants of HIV-1 protease would help to develop new anti-HIV agents combating drug resistance. Here, an integration of rigorous quantum mechanics/molecular mechanics (QM/MM) analysis and empirical Poisson–Boltzmann/surface area (PB/SA) model is described to investigate the structural basis and energetic property of wild-type HIV-1 protease and its mutants in recognizing and binding with a wide variety of ligands, including the peptides derived from its cognate cleavage sites and the cleavage site variants as well as a number of FDA-approved protease inhibitors, attempting to explain why is substrate binding unsusceptible to most observed HIV-1 protease mutations. A preliminary test study demonstrates that the combined QM/MM–PB/SA scheme is able to effectively reproduce the relative ligand binding energy changes upon protease single- and double-mutations, albeit the absolute values appear to be different significantly between the calculated and experimental results. With the QM/MM–PB/SA calculations a complete mutation energy map of HIV-1 protease–ligand interactions is created, which unravels distinct affinity pictures of wild-type substrates, substrate variants and, particularly, the protease inhibitors bound to HIV-1 protease mutants, suggesting that, on the one hand, the evaluation pressure under anti-HIV chemotherapies addresses site-directed protease mutations that impair and undermine the intermolecular interactions specific to inhibitors but not substrates; on the other hand, co-evaluation of protease and its substrate peptides provides a more effective mechanism to avoid therapeutic surveillance. Further, nonbonded interaction analysis and computational alanine scanning reveal 12 key residues that is critical for substrate binding, from which the Asn25, Gly27, Ala28, Asp29 and Pro81 are identified that have not yet been found to cause drug resistance and hence would be the promising sites targeted by new protease inhibitors.  相似文献   

16.
Cleavage of ovalbumin and angiotensinogen at sites homologous to the reactive centre loop of alpha 1-antitrypsin is not accompanied by the increase in heat-stability associated with the transition from the native stressed (S) structure to a cleaved relaxed (R) form that is typical of other serpins. Failure to undergo the S-R change in ovalbumin is not due to phosphorylation of Ser-344 near the sites of cleavage on the loop. The suggested explanation is the unique presence of bulky side chains at the P10-P12 site in ovalbumin and angiotensinogen.  相似文献   

17.
CrmA is a "cross-class" serpin family inhibitor of the proapoptotic serine protease, granzyme B, as well as cysteine proteases of the caspase family. To determine whether crmA inhibits these structurally diverse proteases by a common conformational trapping mechanism, we mapped the position of the protease in crmA complexes with granzyme B or caspase-1 by fluorescence perturbation and fluorescence resonance energy transfer (FRET) analyses of site-specific fluorophore-labeled crmAs. A reactive loop P6 NBD label underwent similar large fluorescence enhancements (>200%) either upon reactive loop cleavage by AspN protease or complex formation with granzyme B or caspase-1, consistent with the insertion of the cleaved reactive loop into sheet A in both types of crmA-protease complexes. NBD labels on the noninserting part of the reactive loop docking site for protease (P1' residue) or midway between the two ends of sheet A (helix F residue 101) showed no significant perturbations due to protease complexation. By contrast, labels at positions 68 and 261, lying at the end of sheet A most distal from the reactive loop, showed marked perturbations distinct from those induced by AspN cleavage and thus ascribable to granzyme B or caspase-1 proximity in the complexes. Substantial FRET between protease tryptophans and 5-dimethylaminonaphthalene-1-sulfonyl-labeled crmAs occurred in protease complexes with crmAs labeled at the 68 and 261 positions, but not the P1' position. These results suggest that granzyme B and caspase-1 are inhibited by crmA by a common mechanism involving full reactive loop insertion into sheet A and translocation of the protease to the distal end of the sheet as previously found for inhibition of other serine proteases by serpins.  相似文献   

18.
19.
The function of the serpins as proteinase inhibitors depends on their ability to insert the cleaved reactive centre loop as the fourth strand in the main A beta-sheet of the molecule upon proteolytic attack at the reactive centre, P1-P1'. This mechanism is vulnerable to mutations which result in inappropriate intra- or intermolecular loop insertion in the absence of cleavage. Intermolecular loop insertion is known as serpin polymerisation and results in a variety of diseases, most notably liver cirrhosis resulting from mutations of the prototypical serpin alpha1-antitrypsin. We present here the 2.6 A structure of a polymer of alpha1-antitrypsin cleaved six residues N-terminal to the reactive centre, P7-P6 (Phe352-Leu353). After self insertion of P14 to P7, intermolecular linkage is affected by insertion of the P6-P3 residues of one molecule into the partially occupied beta-sheet A of another. This results in an infinite, linear polymer which propagates in the crystal along a 2-fold screw axis. These findings provide a framework for understanding the uncleaved alpha1-antitrypsin polymer and fibrillar and amyloid deposition of proteins seen in other conformational diseases, with the ordered array of polymers in the crystal resulting from slow accretion of the cleaved serpin over the period of a year.  相似文献   

20.
The membrane topology and quaternary structure of rat cardiac gap junction ion channels containing alpha 1 connexin (i.e. Cx43) have been examined using anti-peptide antibodies directed to seven different sites in the protein sequence, cleavage by an endogenous protease in heart tissue and electron microscopic image analysis of native and protease-cleaved two-dimensional membrane crystals of isolated cardiac gap junctions. Specificity of the peptide antibodies was established using dot immunoblotting, Western immunoblotting, immunofluorescence and immunoelectron microscopy. Based on the folding predicted by hydropathy analysis, five antibodies were directed to sites in cytoplasmic domains and two antibodies were directed to the two extracellular loop domains. Isolated gap junctions could not be labeled by the two extracellular loop antibodies using thin-section immunogold electron microscopy. This is consistent with the known narrowness of the extracellular gap region that presumably precludes penetration of antibody probes. However, cryo-sectioning rendered the extracellular domains accessible for immunolabeling. A cytoplasmic "loop" domain of at least Mr = 5100 (residues (101 to 142) is readily accessible to peptide antibody labeling. The native Mr = 43,000 protein can be protease-cleaved on the cytoplasmic side of the membrane, resulting in an Mr approximately 30,000 membrane-bound fragment. Western immunoblots showed that protease cleavage occurs at the carboxy tail of the protein, and the cleavage site resides between amino acid residues 252-271. Immunoelectron microscopy demonstrated that the Mr approximately 13,000 carboxy-terminal peptide(s) is released after protease cleavage and does not remain attached to the Mr approximately 30,000 membrane-bound fragment via non-covalent interactions. Electron microscopic image analysis of two-dimensional membrane crystals of cardiac gap junctions revealed that the ion channels are formed by a hexagonal arrangement of protein subunits. This quaternary arrangement is not detectably altered by protease cleavage of the alpha 1 polypeptide. Therefore, the Mr approximately 13,000 carboxyterminal domain is not involved in forming the transmembrane ion channel. The similar hexameric architecture of cardiac and liver gap junction connexins indicates conservation in the molecular design of the gap junction channels formed by alpha or beta connexins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号