首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The meat quality of chicken is an important factor affecting the consumer’s health. It was hypothesized that n-3 polyunsaturated fatty acid (n-3 PUFA) could be effectively deposited in chicken, by incorporating antioxidation of soybean isoflavone (SI), which led to improved quality of chicken meat for good health of human beings. Effects of partial or complete dietary substitution of lard (LA) with linseed oil (LO), with or without SI on growth performance, biochemical indicators, meat quality, fatty acid profiles, lipid-related health indicators and gene expression of breast muscle were examined in chickens. A total of 900 males were fed a corn–soybean meal diet supplemented with 4% LA, 2% LA + 2% LO and 4% LO and the latter two including 30 mg SI/kg (2% LA + 2% LO + SI and 4% LO + SI) from 29 to 66 days of age; each of the five dietary treatments included six replicates of 30 birds. Compared with the 4% LA diet, dietary 4% LO significantly increased the feed efficiency and had no negative effect on objective indices related to meat quality; LO significantly decreased plasma triglycerides and total cholesterol (TCH); abdominal fat percentage was significantly decreased in birds fed the 4% LO and 4% LO + SI diets. Chickens with LO diets resulted in higher contents of α-linolenic acid (C18:3n-3), EPA (C20:5n-3) and total n-3 PUFA, together with a lower content of palmitic acid (C16:0), lignoceric acid (C24:0), saturated fatty acids and n-6:n-3 ratio in breast muscle compared to 4% LA diet (P < 0.05); they also significantly decreased atherogenic index, thrombogenic index and increased the hypocholesterolemic to hypercholesterolemic ratio. Adding SI to the LO diets enhanced the contents of EPA and DHA (C22:6n-3), plasma total superoxide dismutase, reduced glutathione (GSH)/oxidized glutathione and muscle GSH content, while decreased plasma total triglyceride and TCH and malondialdehyde content in plasma and breast muscle compared to its absence (P < 0.05). Expression in breast muscle of fatty acid desaturase 1 (FADS1), FADS2, elongase 2 (ELOVL2) and ELOVL5 genes were significantly higher with the LO diets including SI than with the 4% LA diet. Significant interactions existed between LO level and inclusion of SI on EPA and TCH contents. These findings indicate that diet supplemented with LO combined with SI is an effective alternative when optimizing the nutritional value of chicken meat for human consumers.  相似文献   

2.
The effects of feeding n-6 and n-3 fatty acids to broiler hens on cardiac ventricle fatty acid composition, and prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) production of hatched chicks were investigated. Fertile eggs obtained from hens fed diets supplemented with 3.5% sunflower oil (Low n-3), 1.75% sunflower+1.75% fish oil (Medium n-3), or 3.5% fish oil (High n-3) were incubated. The hatched chicks were fed a diet containing 18:3 n-3, but devoid of longer chain n-6 and n-3 fatty acids for 42 days. Arachidonic acid content was lower in the cardiac ventricle of High n-3 and Medium n-3 compared to Low n-3 birds for up to 2 weeks (P<0.002). Long chain n-3 fatty acids were higher in the cardiac ventricle of chicks from hens fed High and Medium n-3 diets when compared to chicks from hens fed the Low n-3 diet. Differences in long chain n-3 fatty acids persisted up to four weeks of age (P<0.001). Peripheral blood mononuclear cells (PBMNC) of 7-day-old High n-3 broilers produced significantly lower PGE2 and TXA2 than PBMNC from Low n-3 and Medium n-3 birds. These results indicate that maternal dietary n-3 fatty acids increases cardiac ventricle n-3 fatty acids while reducing arachidonic acid and ex vivo PGE2 and TXA2 production during growth in broiler chickens.  相似文献   

3.
Dietary n-3 fatty acids generally attenuate elevated cyclooxygenase-2 (COX-2) levels in disease states. However, models of renal cystic disease (RCD) exhibit reduced renal COX-2 expression. Therefore, the in vivo regulation of COX-2 expression by dietary n-3 fatty acids was examined. In archived tissues from dietary studies, COX-2 protein and gene expression was up-regulated in diseased pcy mouse and Han:SPRD-cy rat kidneys when given diets containing eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA), but not those containing -linolenic acid (ALA), compared to control diets with linoleic acid (LA). The presence of disease was necessary to elicit these effects as COX-2 expression was unaltered by diet in normal kidneys. The effects were specific for COX-2, since COX-1 levels were unaltered by these dietary manipulations in either model. Thus, in RCD, diets containing EPA and DHA but not ALA appear to specifically up-regulate renal COX-2 gene and protein levels in vivo.  相似文献   

4.
The growth response of a double-mutant fatty acid auxotroph of yeast Saccharomyces cerevisiae to exogenous saturated fatty acids of a homologous series from 12:0 to 16:0, each supplied with oleate, linoleate, linolenate, or cis11- eicosenoate, cannot be explained in terms of the efficiency of incorporation of the fatty acids into phospholipids or alteration of membrane fluidity. There is, however, a negative correlation between growth and levels of 12:0 plus 13:0 in phospholipids, as well as a positive correlation between growth and levels of 14:0, 1 5:0, and 1 6:0. We, therefore, conclude that the predominant factor in these phospholipid fatty acyl chain modifications is maintenance of an optimal concentration of C14:0 through C16:0 in phospholipids of this organism.  相似文献   

5.
Recent studies suggest that the use of vegetable oils at expense of fish oil in aquaculture feeds might have potential negative effects on fish redox homeostasis and adiposity. Resveratrol (RESV) is a lipid-soluble phytoalexin present in fruits and vegetables with proven in vivo antioxidant function in animals. The present study aims to assess the potential use of RESV in Atlantic salmon feeds. To this end, post-smolt salmons with an initial BW of 148±3 g were fed four experimental diets for 15 weeks. A diet low in fish oil served as a control and was supplemented with 0, 0.5, 1.5 and 2.5 g/kg of RESV, respectively. The effect of the experimental diets on animal performance, tissue fatty acid composition, and the expression of genes encoding proteins involved in antioxidant signalling, lipid peroxidation, and metabolism were studied. Resveratrol significantly reduced feed intake and final BW of the salmon. Feeding RESV did not affect the sum of saturated and monounsaturated fatty acids or total lipids in the fillet. While the content of total polyunsaturated fatty acids was not affected, the percentages of some fatty acids in the liver and fillet were changed by RESV. Furthermore, in liver, the relative expression of glutathione peroxidase 4b, nuclear factor-like 2, and arachidonate 5-lipoxygenase remained unchanged across treatment groups. In conclusion, the negative impact of dietary RESV on FI and hence reduction of the BW discourages its inclusion in low fish oil diets for Atlantic salmon.  相似文献   

6.
It was the aim of this study to investigate (1) whether preconditioning modifies the fatty acid (FA) composition of myocardial phospholipids (PL), (2) whether a previous modification of membrane PL composition by the administration of coconut oil or fish oil influences the preconditioning, and (3) to compare the protective effects of preconditioning to those of dietary fish oil. To this end, three groups of rats were given during 10 weeks either a standard diet, or a standard diet +10% coconut oil, or a standard diet +10% fish oil. The preconditioning was performedin situ in the anesthetized open-chest rats by 2 cycles of 3 min left anterior descending coronary artery occlusion and 10 min reperfusion. It was followed by a 40 min ischemia and a 60 min reperfusion. ECG was recorded and used for the continuous count of the salves of extrasystoles, ventricular flutter and fibrillation. These rhythm disturbances were subsequently added and evaluated as total arrhythmias. The FA of tissue PL were analyzed in a sample of the ischemic zone the size of which was determined by means of malachite green.Coconut oil diet (rich in saturated FA) modified slightly the myocardial PL by increasing oleic acid acid and decreasing linoleic acid and resulted in the highest incidence of arrhythmias. Fish oil diet had the opposite effect in modifying drastically the PLFA (replacement of the n-6 FA by the n-3 FA) and minimizing significantly the arrhythmias in comparison with the standard diet group. The antiarrhythmic effect of preconditioning could be observed only after coconut oil had been administered and was not accompanied by a modification of PL composition. The reduction of arrhythmias in this case was comparable to that observed under fish oil administration with and without preconditioning. The size of the ischemic zone remained unchanged.We conclude that the protection by ischemic preconditioning is not mediated by the modification of the composition of heart PL, and that the n-3 FA diet had such a protective effect that no additional protection could be supplied by ischemic preconditioning.Abbreviations 120 lauric acid - 140 myristic acid - 160 palmitic acid - 161 n-7 t-trans-palmitoleic acid - 161n-7 c cis-palmitoleic acid - 180 stearic acid - 181n-9 oleic acid - 181n-7 vaccenic acid - 182n-6 linoleic acid - 183n-3- linolenic acid - 203n-6 dihomo -linolenic acid - 204n-6 arachidonic acid - 205n-3 eicosapentaenoic acid (EPA) - 224n-6 eicosatetraenoic acid - 225n-3 docosapentaenoic acid (DPA) - 226n-3 docosahexaenoic acid (DHA) - BHT butylated hydroxytoluene  相似文献   

7.
Triplicate groups of European sea bass (Dicentrarchus labrax L.), of initial mass 5 g, were fed one of three practical type diets for 64 weeks. The three diets differed only in the added oil and were 100% fish oil (FO; diet A), 40% FO/60% vegetable oil blend (VO; diet B) where the VO blend was rapeseed oil, linseed oil and palm oil in the ratio 10/35/15 by weight and 40% FO/60% VO blend (diet C) where the ratio was 24/24/12 by weight. After final sample collection the remaining fish were switched to a 100% FO finishing diet for a further 20 weeks. After 64 weeks fish fed 60% VO diet B had significantly lower live mass and liver mass than fish fed diets A and C although SGR, FCR and length were not different between groups. There were no differences in any of the above parameters after either 14 or 20 weeks on the FO finishing diet. Fatty acid compositions of flesh were correlated to dietary fatty acids although there was selective retention of docosahexaenoic acid (22:6n-3; DHA) regardless of dietary input. Inclusion of dietary VO resulted in significantly reduced flesh levels of DHA and eicosapentaenoic acid (20:5n-3; EPA) while 18:1n-9, 18:2n-6 and 18:3n-3 were all significantly increased in fish fed the 60% VO diets. Fatty acid compositions of liver showed broadly similar changes, as a result of dietary fatty acid composition, as was seen in flesh. However, the response of flesh and liver to feeding a FO finishing diet was different. In flesh, DHA and EPA values were not restored after 14 or 20 weeks of feeding a FO finishing diet with the values in fish fed the two 60% VO diets being around 70% of the values seen in fish fed FO throughout. Conversely, and despite liver DHA and EPA levels being reduced to only 40% of the value seen in fish fed 100% FO after 64 weeks, the levels of liver DHA and EPA were not significantly different between treatments after feeding the FO finishing diet for 14 weeks. However, a 200 g portion of sea bass flesh, after feeding the experimental diets for 64 weeks followed by a FO diet for 14 weeks, contained 1.22 and 0.95 g of EPA + DHA for fish fed FO or 60% VO, respectively. Therefore, sea bass grown for most of the production cycle using diets containing 60% VO can still contribute a significant quantity of healthy n-3 HUFA to the human consumer.  相似文献   

8.
Maternal n-3 and n-6 polyunsaturated fatty acid (PUFA) status may influence birth outcomes and child health. We assessed second trimester maternal diet with food frequency questionnaires (FFQs) (n=1666), mid-pregnancy maternal erythrocyte PUFA concentrations (n=1550), and umbilical cord plasma PUFA concentrations (n=449). Mean (SD) maternal intake of total n-3 PUFA was 1.17 g/d (0.43), docosahexaenoic and eicosapentaenoic acids (DHA+EPA) 0.16 g/d (0.17), and total n-6 PUFA 12.25 g/d (3.25). Mean maternal erythrocyte and cord plasma PUFA concentrations were 7.0% and 5.2% (total n-3), 5.0% and 4.6% (DHA+EPA), and 27.9% and 31.4% (total n-6). Mid-pregnancy diet–blood and blood–blood correlations were strongest for DHA+EPA (r=0.38 for diet with maternal blood, r=0.34 for diet with cord blood, r=0.36 for maternal blood with cord blood), and less strong for n-6 PUFA. The FFQ is a reliable measure of elongated PUFA intake, although inter-individual variation is present  相似文献   

9.
The lipid composition of two species of Serrasalmid fish with different natural feeding habits were compared in relation to the polyunsaturated fatty acids (PUFA) supplied in their diets. Mylossoma aureum , a herbivorous piranha, was maintained on oatmeal flakes in which : 2(n-6) and : 3(n-3) were the only PUFA and accounted for 40–8 and 1.2%, respectively of dietary fatty acids. Serrasalmus nattereri , the carnivorous red piranha, was fed mosquito larvae containing .0-33.4% of their total fatty acids as : 2(n-6)+18 : 3(n-3) and 4.9-8.5% as 20 : 4(n-6)+20 : 5(n-3). The two species had similar lipid class compositions in liver, brain, viscera and carcass, except that lipids from M. aureum were generally richer in triacylglycerols. In both species, visceral and carcass lipid contained high levels of triacylglycerols whose principal PUFA was : 2(n-6). In M. aureum the major PUFA in liver total lipid and triacylglycerols was : 2(n-6) whilst the major PUFA in liver phospholipids were : 4(n-6) and : 5(n-6), with : 6(n-3) being a minor component. The level of : 6(n-3) in ethanolamine glycerophospholipids was significantly greater in brain than liver of M. aureum. Although absent from dietary lipid, : 6(n-3) was the major PUFA in phosphatidylcholine and ethanolamine glycerophospholipids from both the liver and brain of S, nattereri . In both species, the ratio of (n-6)/(n-3)PUFA was consistently lower in tissue lipids than in dietary lipids. The results are consistent with (i) the herbivorous M. aureum converting dietary C18 PUFA to their C20 and C22 homologues, (ii) the carnivorous S, nattereri forming : 6(n-3) from either 18:3(n-3) or 20: 5(n-3) and (iii) both species selectively desaturating and elongating (n-3) rather than (n-6) PUFA.  相似文献   

10.
The objective of this work was to examine the effect of different levels of grazing on muscle nutritional fatty acid (FA) profile, including the beneficial n-3 polyunsaturated fatty acids (PUFA) and cis-9, trans-11 (cis-9, trans-11) 18:2 conjugated linoleic acid (CLA). Thirty male Galician Blond (GB) breed calves were randomly assigned to the following three grazing treatments: (1) continuous pasture grazing for 250 days (P); (2) 197-day grazing followed by a 50-day short period of concentrate-based finishing (PC) and (3) 57-day grazing followed by a 165-day long period of concentrate-based finishing (C). Calves kept sucking their mothers up to the time of slaughter. The slaughter weight was similar for all treatments (about 330 kg). Samples of the longissimus thoracis muscle were used for assessment of chemical composition by near infrared reflectance spectroscopy and FA profiles by gas chromatography. Muscle from C calves was fatter and had higher content in total FA, monounsaturated FA (MUFA), cis-9 18:1 than muscle from P calves, whereas PC muscle had generally intermediate values. No significant treatment difference for total saturated FAs (SFA) was found. Content of potentially beneficial n-3 PUFA (18:3n-3, 20:3n-3, 20:5n-3 and 22:6n-3), cis-9, trans-11 CLA and n-6:n-3 ratio were lower and PUFA : SFA ratio were higher in P than in both C and PC calves. Calves fed exclusively on pasture synthesised higher amounts of beneficial FA than calves finished on concentrate. A 50-day period of concentrate-based finishing was sufficient to offset the synthesis of beneficial FA from pasture grazing.  相似文献   

11.
This study was undertaken to provide a thorough analysis of the neutral lipid (NL) and polar lipid (PL) fractions of horse meat that included the content and distribution of acyl and alkenyl moieties in foals under different rearing conditions. Two groups of crossbred horses were studied; the first group was selected from suckling foals produced under grazing conditions and slaughtered at 4 months of age (n=8), and the second group was selected from concentrate-finished foals and slaughtered at 12 months of age (n=7). There were significant differences related to the age and feeding practices of foals which affected the intramuscular (IM) fat content and the fatty acid (FA) composition of NL and PL fractions. Samples from suckling foals were leaner and provided the highest content of methylation products from the plasmalogenic lipids, and total and n-3 polyunsaturated fatty acid (PUFA). By contrast, the meat from concentrate-finished foals had a higher IM fat level resulting in a greater accumulation of 16:0 and total monounsaturated FAs in the NL fraction, whereas the muscle PL fraction retained a similar FA composition between both groups. Linolenic acid was preferentially deposited in the NL fraction, but linoleic acid and the long-chain n-3 and n-6 PUFAs were incorporated into the PL fraction where they served as cell membrane constituents and in eicosanoid formation.  相似文献   

12.
Male rat pups (21 days old) were placed on a diet deficient in n-3 polyunsaturated fatty acids (PUFAs) or on an n-3 PUFA adequate diet containing alpha-linolenic acid (alpha-LNA; 18 : 3n-3). After 15 weeks on a diet, [4,5-3H]docosahexaenoic acid (DHA; 22 : 6n-3) was injected into the right lateral cerebral ventricle, and the rats were killed at fixed times over a period of 60 days. Compared with the adequate diet, 15 weeks of n-3 PUFA deprivation reduced plasma DHA by 89% and brain DHA by 37%; these DHA concentrations did not change thereafter. In the n-3 PUFA adequate rats, DHA loss half-lives, calculated by plotting log10 (DHA radioactivity) against time after tracer injection, equaled 33 days in total brain phospholipid, 23 days in phosphatidylcholine, 32 days in phosphatidylethanolamine, 24 days in phosphatidylinositol and 58 days in phosphatidylserine; all had a decay slope significantly greater than 0 (p < 0.05). In the n-3 PUFA deprived rats, these half-lives were prolonged twofold or greater, and calculated rates of DHA loss from brain, Jout, were reduced. Mechanisms must exist in the adult rat brain to minimize DHA metabolic loss, and to do so even more effectively in the face of reduced n-3 PUFA availability for only 15 weeks.  相似文献   

13.
A comparative analysis of fatty acids (FA) in neutral lipids and phospholipids of digestive gland and pedal muscle has been performed in molluscs from various ecological groups differing by belonging to sea or fresh water, trophic types or the associated motor activity. In freshwater pulmonary gastropods Lymnaea stagnalis and Lymnaea ovalis and marine prosobranchial molluscs Buccinum undatum and Littorina littorea the total content of ω3-acids in phospholipids of the studied tissues differed more than twice, predominantly due to the combined effect of temperature and salinity of the habitat. The lower viscosity of cell membranes in marine species (ω3/ω6 < 1) is determined to the greatest degree by the presence of eicosapentaenoic acid that accounts for 22–25% of the FA sum in marine species. Comparison of the molluscs by their trophic belonging has revealed the presence of linoleic acid in triglycerides in digestive glands of phytophages (8–12%), but the practically complete absence of this acid in the predator B. undulatum (< 0.8%). By mobility, L. littorea inhabiting the high-low tide littoral was inferior to freshwater pulmonary gastropods and to the marine predator, as it stops moving twice a day during the low tide. In phospholipids of pedal muscle of this mollusc the amount of long-chain polyunsaturated C: 22 FA was 3–6 times lower than that in other studied species, which might possibly indicate the role of these acids in functioning of the pedal muscle contractile tissue. On the whole, use of the FA characteristics as the parameters determining belonging to certain ecological group requires a certain caution due to a complex action of biotic and abiotic factors on the animal metabolism. The exception is the ω3/ω6 ratio in total phospholipids of fresh water and marine gastropods.  相似文献   

14.
Three experiments were conducted with day-old broiler chicks reared to 18 or 19 d of age. The objective was to examine the effects of dietary oil (cottonseed oil vs fish oil), dietary antioxidant (0 vs 75 ppm ethoxyquin), and dietary lead (0 vs 1000 ppm Pb as lead acetate trihydrate) on hepatic fatty acid composition. A 2×2 factorial arrangement was used in all experiments. In Experiment 1, the factors were oil (4% of each) and Pb. In Experiments 2 and 3, the factors were ethoxyquin and Pb in diets containing 3.5% cottonseed oil (Experiment 2) or 3.5% fish oil (Experiment 3). Hepatic fatty acid profiles were measured by gas-liquid chromatography in 10 chicks/treatment (Experiment 1) or 4 chicks/treatment (Experiments 2 and 3). Dietary oils altered the profiles, with cottonseed oil producing the higher values for linoleic acid (18∶2) and arachidonic acid (20∶4). With fish oil, in addition to the lower levels of 18∶2 and 20∶4, there were significant levels of eicosapentaenoic acid (20∶5) and docosahexaenoic acid (22∶6). Pb enhanced the levels of 20∶4, but the effect was greater with cottonseed oil diets compared with fish oil diets. The enhanced 20∶4 levels resulted in lower ratios of 18∶2/20∶4. Ethoxyquin enhanced the level of 18∶2 with the cottonseed oil diet, and of 20∶5 and 22∶6 with the fish oil diet. Ethoxyquin decreased the level of hepatic 20∶4 when fish oil was fed. The results clearly show that all three factors (oil type, Pb level, and ethoxyquin level) after hepatic fatty acid composition. Both oil source and Pb level appeared to exert an effect on the metabolic conversion of 18∶2 and 20∶4. The primary effect of ethoxyquin was to enhance the levels of polyunsaturated fatty acids in liver. The data do not allow the partitioning of possible ethoxyquin effects to protection of polyunsaturated acids in feed vs protection of polyunsaturated acids in liver tissue. Use of trade names implies neither approval by the North Carolina Agricultural Research Service of products named nor criticism of products not named.  相似文献   

15.
The present study examines the time dependent effects of n-6 and n-3 polyunsaturated fatty acids on liver microsomal lipid metabolism in FVB mice fed a diet supplemented with a mixture of free fatty acids (mainly 18:3n-6 and 20:5n-3) at 25 mg/g diet. Significant changes in the fatty acid composition of total liver and microsomal lipids were observed after 7 days on the diets. Thereafter, some animals remained on the same diet while others were fed a diet supplemented with hydrogenated coconut oil (HCO). With the exception of 20:5n-3 which showed a slower recovery, establishment of the HCO pattern was rapid indicating that the diet-induced changes could be easily reversed. The unsaturation index, the cholesterol/phospholipid ratio and the microviscosity of the microsomal membranes were not affected by these dietary manipulations. Unsaturated fatty acid supplementation reduced the activity of 9 desaturase by 50%. Feeding the HCO diet to mice previously fed the EPA/GLA diet led to a progressive increase in 9 desaturase activity, reaching 80% of the day zero values after 14 days. The monoene content of hepatic total lipids reflected, in most cases, the changes in enzyme activity. This study shows that a low dose of a n-3 and n-6 free fatty acid mixture increases the quantities of members of the n-3 family, without loss of n-6 fatty acids in microsomal membranes and modifies the activity of 9 desaturase without altering the microsome physicochemical parameters.  相似文献   

16.
A previous study showed that long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA; >18 carbons n-3) exert an anabolic effect on protein metabolism through the upregulation of insulin sensitivity and activation of the insulin signaling pathway. This study further delineates for the first time whether the anabolic effect of LCn-3PUFA on metabolism is dose responsive. Six steers were used to test three graded amounts of menhaden oil rich in LCn-3PUFA (0%, 2% and 4%; enteral infusions) according to a double 3 × 3 Latin square design. Treatment comparisons were made using iso-energetic substitutions of control oil for menhaden oil and using 6-week experimental periods. The LCn-3PUFA in muscle total membrane phospholipids increased from 8%, 14% to 20% as dietary menhaden oil increased. Feeding graded amounts of menhaden oil linearly decreased plasma insulin concentration (49, 35 and 25 μU/ml, P = 0.01). The insulin-stimulated amino acid disposal rates as assessed using hyperinsulinemic-euglycemic-euaminoacidemic clamps (20, 40 and 80 mU/kg per h) were linearly increased by the incremental administrations of menhaden oil from 169, 238 to 375 μmol/kg per h (P = 0.005) during the 40 mU/kg per h clamp, and from 295, 360 and 590 μmol/kg per h (P = 0.02) during the 80 mU/kg per h clamp. Glucose disposal rate responded according to a quadratic relationship with the incremental menhaden oil amounts (P < 0.05). A regression analysis showed that 47% of the amino acid disposal rates elicited during the hyperinsulinemic clamp was related to muscle membrane LCn-3PUFA content (P = 0.003). These results show for the first time that both protein and glucose metabolism respond in a dose-dependent manner to menhaden oil and to muscle membrane LCn-3PUFA.  相似文献   

17.
An association between dietary fish oil and decreased yolk weight and reduced sensory quality of eggs has been reported when eggs are enriched with n-3 FA from fish oil. Seaweeds are an important source of compounds that seem to increase egg weight when included in the laying hen diet. The objectives of this study were to determine the influence of the dietary seaweeds Macrocystis pyrifera, Sargassum sinicola and Enteromorpha sp. on the physical quality, lipid composition and consumer acceptability of n-3 FA enriched eggs. One-hundred and forty-four 35-week-old Leghorn hens were randomly distributed in four treatments that consisted of the inclusion of 2% of sardine oil (SO) and 10% of each marine alga (MA) in laying hens' diets; a control diet (C) was also prepared. The study lasted 8 weeks and egg physical quality, egg lipids and sensory attributes were evaluated. The results showed that incorporation of 10% M. pyrifera in the diets is an effective way of increasing the n-3 FA content, the albumen height and yolk color, but not the egg weight, when these are enriched with n-3 FA from fish oil. The egg flavor was also not affected.  相似文献   

18.
The dominant fatty acids in all neutral lipid fractions of non-water hardened eggs from two wild and one cultured stock of striped bass Morone saxatilis were the monoenes, 18 : 1n9/n7>16 : 1n7>17 : 1. The dominant fatty acids in the phospholipid fraction of all eggs, regardless of origin, were 22 : 6n3>18 : 1n9/n7>20 : 5n3>16 : 1n7>16 : 0>18 : 0. Arachadonic acid (AA, 20 : 4n6) was significantly lower (2·0%) in cultured fish eggs compared to either wild stock (5·8–6·1%). Fatty acids from the liver and eggs of wild Shubenacadie fish were similar to one another with respect to both neutral and phospholipid fractions. However, the AA and eicosapentaenoic acid (EPA, 20 : 5n3) content of the phospholipid fraction varied according to the hypothesized migration behaviour of Shubenacadie fish. The total lipid content of wild fish eggs was significantly greater than that of cultured fish. The total phospholipid content of Shubenacadie eggs was significantly higher than either Roanoke or cultured fish eggs. Phosphotidylinositol (PI) was the dominant phospholipid found ins all egg samples from all origins as opposed to phosphotidylcholine, which is usually the dominant phospholipid. These data indicate that PI and AA may have important and as yet unidentified roles in fertilization and embryonic development in these fish.  相似文献   

19.
Diet supplementation with oilseeds is known to improve the fatty acid profile of meat, but few studies have been carried out to determine the time required for the incorporation of a significant quantity of n-3 polyunsaturated fatty acids (PUFA) into meat from steers. Therefore, the present study aimed to assess the effects of linseed supplementation and feeding duration on the fatty acid profile, cholesterol and bioactive compounds of bovine meat. In total, 54 Friesian steers were randomly allocated during the finishing period into six experimental treatments following a 2×3 factorial design. The six treatments consisted of two diets, the control diet (CO) with no supplemental fat and the linseed diet (LS) containing 10% whole linseed, fed 40, 75 or 120 days before slaughter. At the end of each finishing period, steers from the CO and LS groups were slaughtered. After 8 days of ageing chemical analysis, the fatty acid profile, cholesterol content and bioactive compounds were determined from the longissimus thoracis muscle. Including linseed in the diet increased the content of monounsaturated fatty acids, CLA and n-3 PUFA, and reduced the proportion of saturated fatty acids and n-6 PUFA. The percentage of myristic fatty acid increased with the duration of feeding, regardless of diet and a decrease in PUFA and n-6 PUFA was observed in the CO and LS diets, respectively. Furthermore, meat from steers fed linseed showed an increased percentage of n-3 PUFA, linolenic acid, and EPA from 40 to 75 days of feeding, whereas vaccenic acid, CLA 9c,11t, and total CLA increased from 40 and 75 days but declined at 120 days. Beef from the linseed group had a higher content of bioactive substances such as creatine, carnosine and anserine than beef from the control group. The duration of feeding significantly affected the creatine concentrations, with an increase in the LS group from 40 to 75 days of feeding. Feeding linseed did not modify the cholesterol content, on average and the lowest cholesterol content was found in meat after 75 days of linseed administration. This study demonstrates that a short-term diet manipulation is sufficient to improve the nutritional properties of meat, including n-3 PUFA and bioactive compounds.  相似文献   

20.
Dietary conditioning of juvenile trout changed the acyl chain composition of mitochondrial phospholipids and the oxidative capacities of muscle mitochondria. Trout were fed three diets differing only in fatty acid (FA) composition. The highly unsaturated 22:6 n-3 (DHA) accounted for 0.4, 14, and 30% of fatty acids in Diets 1, 2 and 3. After 10 weeks of growth, the dietary groups differed markedly in FA composition of mitochondrial phospholipids, with significant dietary effects for virtually all FA. Mean mitochondrial DHA levels were 19, 40 and 33% in trout fed Diets 1, 2 and 3. Mitochondrial oxidative capacities changed with diet, while mitochondrial concentrations of cytochromes and of the adenylate nucleotide translocase (nmol mg1 protein) did not. Mitochondria from fish fed Diet 1 had higher non-phosphorylating (state 4) rates at 5°C than those fed other diets. When phosphorylating (state 3) rates differed between dietary groups, rates at 5 and 15°C were higher for fish fed the more unsaturated diets. Stepwise multiple regressions indicated that FA composition could explain much (42–70%) of the variability of state 4 rates, particularly at 5°C. At 15°C, FA composition explained 16–42% of the variability of states 3 and 4 rates. Similar conclusions were obtained for the complete data set (trout fed diets 1, 2 and 3) and for the data from trout achieving similar growth rates (e.g. those fed Diets 1 and 2). Neither general characteristics of membrane FA, such as % saturates, unsaturation index, n-3, n-6 or n-3/n-6 nor levels of abundant unsaturated FA such as DHA or 18:1(n-9 + n-7), were systematically correlated with mitochondrial capacities even though they differed considerably between trout fed the different diets. Relatively minor FA (20:5n-3, 20:0, 18:2n-6, 18:3n-3, 18:0 and 15:0) showed better correlations with mitochondrial oxidative capacities. This supports the concept that acyl chain composition modulates mitochondrial capacities via interactions between membrane proteins and specific FA of particular phospholipid classes in their microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号