首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Because the signaling eicosanoids, epoxyeicosatrienoic acids (EETs) and HETEs, are esterified to membrane phospholipids, we asked which long-chain acyl-CoA synthetase (ACSL) isoforms would activate these molecules and whether the apparent FA substrate preferences of each ACSL isoform might differ depending on whether it was assayed in mammalian cell membranes or as a purified bacterial recombinant protein. We found that all five ACSL isoforms were able to use EETs and HETEs as substrates and showed by LC-MS/MS that ACSLs produce EET-CoAs. We found differences in substrate preference between ACS assays performed in COS7 cell membranes and recombinant purified proteins. Similarly, preferences and Michaelis-Menten kinetics for long-chain FAs were distinctive. Substrate preferences identified for the purified ACSLs did not correspond to those observed in ACSL-deficient mouse models. Taken together, these data support the concept that each ACSL isoform exhibits a distinct substrate preference, but apparent substrate specificities depend upon multiple factors including membrane character, coactivators, inhibitors, protein interactions, and posttranslational modification.  相似文献   

3.
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen that is highly prevalent in individuals with cystic fibrosis (CF). A major problem in treating CF patients infected with P. aeruginosa is the development of antibiotic resistance. Therefore, the identification of novel P. aeruginosa antibiotic drug targets is of the utmost urgency. The genome of P. aeruginosa contains four putative cytochrome P450 enzymes (CYPs) of unknown function that have never before been characterized. Analogous to some of the CYPs from Mycobacterium tuberculosis, these P. aeruginosa CYPs may be important for growth and colonization of CF patients’ lungs. In this study, we cloned, expressed, and characterized CYP168A1 from P. aeruginosa and identified it as a subterminal fatty acid hydroxylase. Spectral binding data and computational modeling of substrates and inhibitors suggest that CYP168A1 has a large, expansive active site and preferentially binds long chain fatty acids and large hydrophobic inhibitors. Furthermore, metabolic experiments confirm that the enzyme is capable of hydroxylating arachidonic acid, an important inflammatory signaling molecule present in abundance in the CF lung, to 19-hydroxyeicosatetraenoic acid (19-HETE; Km = 41 μM, Vmax = 220 pmol/min/nmol P450), a potent vasodilator, which may play a role in the pathogen’s ability to colonize the lung. Additionally, we found that the in vitro metabolism of arachidonic acid is subject to substrate inhibition and is also inhibited by the presence of the antifungal agent ketoconazole. This study identifies a new metabolic pathway in this important human pathogen that may be of utility in treating P. aeruginosa infections.  相似文献   

4.
The site(s) of interaction between human cytochrome P450 2B6 and NADPH-cytochrome P450 reductase (P450 reductase) have yet to be identified. To investigate this, the cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) was used to covalently link P450 2B6-P450 reductase. Following digestion with trypsin, the cross-linked peptides were identified by reconstituting the peptides in 18O-water based on the principle that the cross-linked peptides would be expected to incorporate twice as many 18O atoms as the non-cross-linked peptides. Subsequent mass spectrometric analyses of the resulting peptides led to the identification of one cross-linked peptide candidate. De novo sequencing of the peptide indicated that it is a complex between residues in the C-helix of the P450 (based upon solved X-ray crystal structures of P450 2B4) and the connecting domain of the P450 reductase. To confirm this experimentally, the P450 2B6 peptide identified through the cross-linking studies was synthesized and peptide competition studies were performed. In the presence of the synthetic peptide, P450 catalytic activity was decreased by up to 60% when compared to competition studies performed using a nonsense peptide. Taken together, these studies indicate that residues in the C-helix of P450 2B6 play a major role in the interaction with the P450 reductase.  相似文献   

5.
Previous work showed that rabbit aorta metabolizes arachidonic acid via 15-lipoxygenase to 15-hydroperoxyeicosatetraenoic acid (15-HPETE), which undergoes an enzymatic rearrangement to 11-hydroxy-14,15-epoxyeicosatrienoic acid (11-H-14,15-EETA) and 15-hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-EETA). Hydrolysis of the epoxy group results in the formation of 11,14,15- and 11,12,15-trihydroxyeicosatrienoic acids (THETAs). Endothelial cells have several heme-containing enzymes including cytochromes P450 (CYP), nitric oxide synthase (eNOS), and prostacyclin (PGI(2)) synthase that catalyze the rearrangement of 15-HPETE to HEETAs. Incubation of arachidonic acid and 15-lipoxygenase, or 15-HPETE with rabbit aortic microsomes or rat liver microsomes, a rich source of CYP, resulted in the formation of a product that comigrated with THETAs and HEETAs on HPLC. Immunoblot analysis showed the presence of CYP2C8 and CYP2J2 in aortic tissue and when CYP2J2 or CYP2C8 was incubated with arachidonic acid and 15-lipoxygenase, the major products were 11,12,15- and 11,14,15-THETAs. Incubation of purified hematin, CYP2C11, eNOS or PGI(2) synthase enzymes with arachidonic acid and 15-lipoxygenase produced a different pattern of metabolites from rabbit aortic microsomes. Clotrimazole, a non-specific CYP inhibitor, and ebastine and terfenadone, specific CYP2J2 inhibitors, blocked the ability of aortic microsomes to produce THETAs while specific inhibitors of PGI(2) synthase, eNOS or CYP2C8/2C9 had no effect on THETA production. We suggest that a CYP, possibly CYP2J2, may function as the hydroperoxide isomerase converting 15-HPETE to HEETAs in rabbit vascular tissue. Further hydrolysis of the epoxy group of the HEETAs results in the formation of 11,12,15- and 11,14,15-THETAs. The HEETAs and THETAs are both vasodilators and may function as important regulators of vascular tone.  相似文献   

6.
7.
Mammalian cytochrome P450 (P450) is a membrane-bound monooxygenase whose catalytic activities require two electrons to be sequentially delivered from its redox partners: cytochrome b5 (cytb5) and cytochrome P450 reductase, both of which are membrane proteins. Although P450 functional activities are known to be affected by lipids, experimental evidence to reveal the effect of membrane on P450-cytb5 interactions is still lacking. Here, we present evidence for the influence of phospholipid bilayers on complex formation between rabbit P450 2B4 (CYP2B4) and rabbit cytb5 at the atomic level, utilizing NMR techniques. General line broadening and modest chemical shift perturbations of cytb5 resonances characterize CYP2B4-cytb5 interactions on the intermediate time scale. More significant intensity attenuation and a more specific protein-protein binding interface are observed in bicelles as compared with lipid-free solution, highlighting the importance of the lipid bilayer in stabilizing stronger and more specific interactions between CYP2B4 and cytb5, which may lead to a more efficient electron transfer. Similar results observed for the interactions between CYP2B4 lacking the transmembrane domain (tr-CYP2B4) and cytb5 imply interactions between tr-CYP2B4 and the membrane surface, which might assist in CYP2B4-cytb5 complex formation by orienting tr-CYP2B4 for efficient contact with cytb5. Furthermore, the observation of weak and nonspecific interactions between CYP2B4 and cytb5 in micelles suggests that lipid bilayer structures and low curvature membrane surface are preferable for CYP2B4-cytb5 complex formation. Results presented in this study provide structural insights into the mechanism behind the important role that the lipid bilayer plays in the interactions between P450s and their redox partners.  相似文献   

8.
9.
Hydroxy FAs, one of the gut microbial metabolites of PUFAs, have attracted much attention because of their various bioactivities. The purpose of this study was to identify lactic acid bacteria with the ability to convert linoleic acid (LA) to hydroxy FAs. A screening process revealed that a gut bacterium, Lactobacillus acidophilus NTV001, converts LA mainly into 13-hydroxy-cis-9-octadecenoic acid and resulted in the identification of the hydratase responsible, fatty acid hydratase 1 (FA-HY1). Recombinant FA-HY1 was purified, and its enzymatic characteristics were investigated. FA-HY1 could convert not only C18 PUFAs but also C20 and C22 PUFAs. C18 PUFAs with a cis carbon-carbon double bond at the Δ12 position were converted into the corresponding 13-hydroxy FAs. Arachidonic acid and DHA were converted into the corresponding 15-hydroxy FA and 14-hydroxy FA, respectively. To the best of our knowledge, this is the first report of a bacterial FA hydratase that can convert C20 and C22 PUFAs into the corresponding hydroxy FAs. These novel hydroxy FAs produced by using FA-HY1 should contribute to elucidating the bioactivities of hydroxy FAs.  相似文献   

10.
The neighbourhoods of cytochrome P450 (CYP) genes in deuterostome genomes, as well as those of the cnidarians Nematostella vectensis and Acropora digitifera and the placozoan Trichoplax adhaerens were examined to find clues concerning the evolution of CYP genes in animals. CYP genes created by the 2R whole genome duplications in chordates have been identified. Both microsynteny and macrosynteny were used to identify genes that coexisted near CYP genes in the animal ancestor. We show that all 11 CYP clans began in a common gene environment. The evidence implies the existence of a single locus, which we term the ‘cytochrome P450 genesis locus’, where one progenitor CYP gene duplicated to create a tandem set of genes that were precursors of the 11 animal CYP clans: CYP Clans 2, 3, 4, 7, 19, 20, 26, 46, 51, 74 and mitochondrial. These early CYP genes existed side by side before the origin of cnidarians, possibly with a few additional genes interspersed. The Hox gene cluster, WNT genes, an NK gene cluster and at least one ARF gene were close neighbours to this original CYP locus. According to this evolutionary scenario, the CYP74 clan originated from animals and not from land plants nor from a common ancestor of plants and animals. The CYP7 and CYP19 families that are chordate-specific belong to CYP clans that seem to have originated in the CYP genesis locus as well, even though this requires many gene losses to explain their current distribution. The approach to uncovering the CYP genesis locus overcomes confounding effects because of gene conversion, sequence divergence, gene birth and death, and opens the way to understanding the biodiversity of CYP genes, families and subfamilies, which in animals has been obscured by more than 600 Myr of evolution.  相似文献   

11.
In order to identify the cytochrome P450-binding domain for NADPH-cytochrome P450 reductase, synthetic peptide mimics of predicted surface regions of rat cytochrome P450 2B1 were constructed and evaluated for inhibition of the P450-reductase interaction. A peptide corresponding to residues 116–134, which includes the C helix, completely inhibited reductase-mediated benzphetamine demethylation by purified P450 2B1. Replacement of Arg-125 by Glu yielded a noninhibitory peptide, suggesting that this residue significantly contributes to the reductase-P450 interaction. Additional P450 peptides were prepared which correspond to combinations of regions distant in primary sequence, but predicted to be spatially proximate. A peptide derived from segments of the C and L helices was a more potent inhibitor than peptides derived from either segment alone. This topographically designed peptide not only inhibited P450 2B1 in its purified form, but also when membrane-bound in rat liver microsomes. The peptide also inhibited microsomal aryl hydrocarbon hydroxylase, aniline hydroxylase, and erythromycin demethylase activities derived from other P450s. These results indicate that the C and L helices contribute to a reductase-binding site common to multiple P450s, and present a peptide mimic for this region that is useful for inhibition of P450-mediated microsomal activities.  相似文献   

12.
Smith SJ  Munro AW  Smith WE 《Biopolymers》2003,70(4):620-627
Resonance Raman scattering from cytochrome P450 BM3 is obtained with a Raman microprobe using 406-nm excitation with an accumulation time of a few seconds. The small sample size and rapid measurement time make the routine characterization of P450 systems by resonance Raman spectroscopy easier. Addition of imidazole and imidazole derivatives as inhibitors causes the appearance of additional peaks due to vinyl modes, increases the relative intensity of symmetric modes that would be A(1g) in D(4h) symmetry, and causes a large drop in the intensity of nu(11). This information indicates that the ligation of imidazoles to the heme iron causes the alignment of the vinyl modes with the plane of the heme ring and reduces the out of plane distortion of the ring. The effect of both inhibitors is similar but there is a subtle difference in the extent of the reduction in the intensity of nu(11), which suggests that steric effects within the pocket are having some effect.  相似文献   

13.
Ganoderic acid 3-hydroxy-lanosta-8,24-dien-26-oic acid (GA-HLDOA), an antitumor triterpenoid from the traditional Chinese medicinal higher fungus Ganoderma lucidum, is considered as a key precursor for biosynthesizing other ganoderic acids (GAs) with superior antitumor activities. Our previous study identified CYP5150L8 from G. lucidum as a lanosterol oxidase, and achieved heterologous biosynthesis of GA-HLDOA in Saccharomyces cerevisiae. However, low production of GA-HLDOA in either G. lucidum or heterologous host hindered its further investigation and application. In this study, we constructed a dual tunable system for balancing the expression of CYP5150L8 and a Ganoderma P450 reductase iGLCPR, and performed a comprehensive optimization of CYP5150L8 expression, iGLCPR expression, and glycerol usage. Then, we investigated the fermentation behavior of the best strain in optimized condition in flask and achieved 154.45 mg/L GA-HLDOA production, which was 10.7-fold higher compared with previous report. This study may facilitate the wide-spread application of GA-HLDOA and the discovery of unknown cytochrome P450s in downstream GAs biosynthesis.  相似文献   

14.
alpha-Synuclein (alphaS) is an amyloidogenic neuronal protein associated with several neurodegenerative disorders. Although unstructured in solution, alphaS forms alpha-helices in the presence of negatively charged lipid surfaces. Moreover, alphaS was shown to interact with FAs in a manner that promotes protein aggregation. Here, we investigate whether alphaS has specific FA binding site(s) similar to fatty acid binding proteins (FABPs), such as the intracellular FABPs. Our NMR experiments reveal that FA addition results in i) the simultaneous loss of alphaS signal in both (1)H and (13)C spectra and ii) the appearance of a very broad FA (13)C-carboxyl signal. These data exclude high-affinity binding of FA molecules to specific alphaS sites, as in FABPs. One possible mode of binding was revealed by electron microscopy studies of oleic acid bilayers at pH 7.8; these high-molecular-weight FA aggregates possess a net negative surface charge because they contain FA anions, and they were easily disrupted to form smaller particles in the presence of alphaS, indicating a direct protein-lipid interaction. We conclude that alphaS is not likely to act as an intracellular FA carrier. Binding to negatively charged membranes, however, appears to be an intrinsic property of alphaS that is most likely related to its physiological role(s) in the cell.  相似文献   

15.
Cytochrome P450s belong to a family of heme-binding monooxygenases, which catalyze regio- and stereospecific functionalisation of C–H, C–C, and C–N bonds, including heteroatom oxidation, oxidative C–C bond cleavages, and nitrene transfer. P450s are considered useful biocatalysts for the production of pharmaceutical products, fine chemicals, and bioremediating agents. Despite having tremendous biotechnological potential, being heme-monooxygenases, P450s require either autologous or heterologous redox partner(s) to perform chemical transformations. Randomly distributed P450s throughout a bacterial genome and devoid of particular redox partners in natural products biosynthetic gene clusters (BGCs) showed an extra challenge to reveal their pharmaceutical potential. However, continuous efforts have been made to understand their involvement in antibiotic biosynthesis and their modification, and this review focused on such BGCs. Here, particularly, we have discussed the role of P450s involved in the production of macrolides and aminocoumarin antibiotics, nonribosomal peptide (NRPSs) antibiotics, ribosomally synthesized and post-translationally modified peptide (RiPPs) antibiotics, and others. Several reactions catalyzed by P450s, as well as the role of their redox partners involved in the BGCs of various antibiotics and their derivatives, have been primarily addressed in this review, which would be useful in further exploration of P450s for the biosynthesis of new therapeutics.  相似文献   

16.
Bacillus megaterium P450 BM3 (BM3) is a P450/P450 reductase fusion enzyme, where the dimer is considered the active form in NADPH-dependent fatty acid hydroxylation. The BM3 W1046A mutant was generated, removing an aromatic “shield” from its FAD isoalloxazine ring. W1046A BM3 is a catalytically active NADH-dependent lauric acid hydroxylase, with product formation slightly superior to the NADPH-driven enzyme. The W1046A BM3 Km for NADH is 20-fold lower than wild-type BM3, and catalytic efficiency of W1046A BM3 with NADH and NADPH are similar in lauric acid oxidation. Wild-type BM3 also catalyzes NADH-dependent lauric acid hydroxylation, but less efficiently than W1046A BM3. A hypothesis that W1046A BM3 is inactive [15] helped underpin a model of electron transfer from FAD in one BM3 monomer to FMN in the other in order to drive fatty acid hydroxylation in native BM3. Our data showing W1046A BM3 is a functional fatty acid hydroxylase are consistent instead with a BM3 catalytic model involving electron transfer within a reductase monomer, and from FMN of one monomer to heme of the other [12]. W1046A BM3 is an efficient NADH-utilizing fatty acid hydroxylase with potential biotechnological applications.  相似文献   

17.
Cytochrome P450 (P450 or CYP) monooxygenases play an important role in the oxidation of a number of lipophilic substrates including secondary metabolites in higher plants. Larkin reported that CYP78A1 was preferentially expressed in developing inflorescences of Zea mays (Larkin, Plant Mol. Biol. 25: 343-353, 1994). However, the enzymatic function of CYP78A1 hasn’t been clarified yet. To characterized the enzymatic activity of CYP78A1, in this study, CYP78A1 cDNA and tobacco or yeast NADPH-cytochrome P450 oxidoreductase (P450 reductase) was expressed in the yeast Saccharomyces cerevisiae AH22 cells under the control of alcohol dehydrogenase promoter I and terminator. The reduced CO-difference spectrum of a microsomal fraction prepared from the transformed yeast cells expressing CYP78A1 and yeast P450 reductase showed a peak at 449 nm. Based on the spectrum, the content of a P450 molecule was estimated to be 45 pmol P450 equivalent/mg of protein in the microsomal fraction. The recombinant yeast microsomes containing CYP78A1 and yeast P450 reductase were found to catalyze 12-monooxygenation of lauric acid. Based on these results, CYP78A1 preferentially expressed in developing inflorescences of Zea mays appeared to have participated in the monooxygenation of fatty acids.  相似文献   

18.
19.
Histamine and polyamines have been implicated in the mediation of cell proliferation. Our previous work linked the growth-modulatory effects of histamine with its binding to intracellular sites in microsomes and nuclei of various tissues. In this study, we identify cytochrome P450 enzymes as a major component of microsomal intracellular sites in hepatocytes and demonstrate that polyamines compete with high affinity for histamine binding to them. Spectral measurement of histamine binding to P450 in liver microsomes resolved high and intermediate affinity binding sites (Ks1 = 2.4 ± 1.6 μM; Ks2 = 90 ± 17 μM) that corresponded to microsomal binding sites (Kd1 = 1.0 ± 0.9 μM; Kd2 = 57 ± 13 μM) resolved by 3H-histamine binding; additional low affinity (Kd3 ∼ 3 mM), and probably physiologically irrelevant, sites were resolved only by 3H-histamine radioligand studies. As determined spectrally, treatment of microsomes with NADPH/carbon monoxide decreased histamine binding to P450 by about 90% and, as determined by 3H-histamine binding, abolished the high affinity sites and reduced by 85% the number of intermediate sites. Spermine competed potently for 3H-histamine binding: in microsomes, Ki = 9.8 ± 5.8 μM; in nuclei, Ki = 13.7 ± 3.1 μM; in chromatin, Ki = 46 ± 33 nM. Polyamines inhibited the P450/histamine absorbance complex with the rank order of potency: spermine > spermidine ≫ putrescine. In contrast, histamine did not compete for 3H- spermidine binding in nuclei or microsomes, suggesting that polyamines modulate histamine binding allosterically. We propose that certain P450 isozymes that modulate gene function by controlling the level of oxygenated lipids, represent at least one common intracellular target of growth-regulatory endogenous bioamines and, as shown previously, of exogenous growth-modulatory drugs including antiestrogens, antiandrogens, and certain antidepressants and antihistamines. J. Cell. Biochem. 69:233–243, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号