首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many positive-strand RNA viruses generate 3'-coterminal subgenomic mRNAs to allow translation of 5'-distal open reading frames. It is unclear how viral genomic and subgenomic mRNAs compete with each other for the cellular translation machinery. Translation of the uncapped Barley yellow dwarf virus genomic RNA (gRNA) and subgenomic RNA1 (sgRNA1) is driven by the powerful cap-independent translation element (BTE) in their 3' untranslated regions (UTRs). The BTE forms a kissing stem-loop interaction with the 5' UTR to mediate translation initiation at the 5' end. Here, using reporter mRNAs that mimic gRNA and sgRNA1, we show that the abundant sgRNA2 inhibits translation of gRNA, but not sgRNA1, in vitro and in vivo. This trans inhibition requires the functional BTE in the 5' UTR of sgRNA2, but no translation of sgRNA2 itself is detectable. The efficiency of translation of the viral mRNAs in the presence of sgRNA2 is determined by proximity to the mRNA 5' end of the stem-loop that kisses the 3' BTE. Thus, the gRNA and sgRNA1 have "tuned" their expression efficiencies via the site in the 5' UTR to which the 3' BTE base pairs. We conclude that sgRNA2 is a riboregulator that switches off translation of replication genes from gRNA while permitting translation of structural genes from sgRNA1. These results reveal (i) a new level of control of subgenomic-RNA gene expression, (ii) a new role for a viral subgenomic RNA, and (iii) a new mechanism for RNA-mediated regulation of translation.  相似文献   

2.
3.
4.
5.
Translation is a tightly regulated process and is predominantly controlled at the level of its initiation. Translation initiation mostly occurs in a cap-dependent manner. Under stress conditions when cap-dependent translation is hampered, internal ribosome entry sites (IRESes) allow for cap-independent translation of certain mRNAs. IRES-dependent translation is commonly regulated by RNA-interacting proteins, known as IRES trans-acting factors (ITAFs). In the present study, we found the 5′ untranslated region (UTR) of the thioredoxin-interacting protein (TXNIP) mRNA to be bound by the ITAF hnRNPA1. Upon verification of an IRES element within the 5′UTR of TXNIP, we determined additional interacting proteins, which predominantly appeared to interact with the IRES-regulatory second half of the 5′UTR. Amongst these PTB emerged as an inhibitory ITAF, whereas FBP3 and GEMIN5 appeared to contain TXNIP IRES-enhancing properties. In summary, we identified and characterized a novel IRES within the 5′UTR of TXNIP, which is regulated by the ITAFs PTB, FBP3, and GEMIN5.  相似文献   

6.
RNA plant viruses use various translational regulatory mechanisms to control their gene expression. Translational enhancement of viral mRNAs that leads to higher levels of protein synthesis from specific genes may be essential for the virus to successfully compete for cellular translational machinery. The control elements have yet to be analyzed for members of the genus Carmovirus, a small group of plant viruses with positive-sense RNA genomes. In this study, we examined the 3' untranslated region (UTR) of hibiscus chlorotic ringspot virus (HCRSV) genomic RNA (gRNA) and subgenomic RNA (sgRNA) for its role in the translational regulation of viral gene expression. The results showed that the 3' UTR of HCRSV significantly enhanced the translation of several open reading frames on gRNA and sgRNA and a viral gene in a bicistronic construct with an inserted internal ribosome entry site. Through deletion and mutagenesis studies of both the bicistronic construct and full-length gRNA, we demonstrated that a six-nucleotide sequence, GGGCAG, that is complementary to the 3' region of the 18S rRNA and a minimal length of 180 nucleotides are required for the enhancement of translation induced by the 3' UTR.  相似文献   

7.
A number of RNA-containing viruses such as hepatitis C (HCV) and poliovirus (PV) that infect human beings and cause serious diseases use a common mechanism for synthesis of viral proteins, termed internal ribosome entry site (IRES)-mediated translation. This mode of translation initiation involves entry of 40S ribosome internally to the 5' untranslated region (UTR) of viral RNA. Cap-dependent translation of cellular mRNAs, on the other hand, requires recognition of mRNA 5' cap by the translation machinery. In this review, we discuss two inhibitors that specifically inhibit viral IRES-mediated translation without interfering with cellular cap-dependent translation. We present evidence, which suggest that one of these inhibitors, a small RNA (called IRNA) originally isolated from the yeast Saccharomyces cerevisiae, inhibits viral IRES-mediated translation by sequestering both noncanonical transacting factors and canonical initiation factors required for IRES-mediated translation. The other inhibitor, a small peptide from the lupus autoantigen La (called LAP), appears to block binding of cellular transacting factors to viral IRES elements. These results suggest that it might be possible to target viral IRES-mediated translation for future development of therapeutic agents effective against a number of RNA viruses including HCV that exclusively use cap-independent translation for synthesis of viral proteins.  相似文献   

8.
Translation of the full-length messenger RNA (mRNA) of the human immunodeficiency virus type 1 (HIV-1) generates the precursor of the viral enzymes via a programmed -1 ribosomal frameshift. Here, using dual-luciferase reporters, we investigated whether the highly structured 5' untranslated region (UTR) of this mRNA, which interferes with translation initiation, can modulate HIV-1 frameshift efficiency. We showed that, when the 5' UTR of HIV-1 mRNA occupies the 5' end of the reporter mRNA, HIV-1 frameshift efficiency is increased about fourfold in Jurkat T-cells, compared with a control dual-luciferase reporter with a short unstructured 5' UTR. This increase was related to an interference with cap-dependent translation initiation by the TAR-Poly(A) region at the 5' end of the messenger. HIV-1 mRNA 5' UTR also contains an internal ribosome entry site (IRES), but we showed that, when the cap-dependent initiation mode is available, the IRES is not used or is weakly used. However, when the ribosomes have to use the IRES to translate the dual-luciferase reporter, the frameshift efficiency is comparable to that of the control dual-luciferase reporter. The decrease in cap-dependent initiation and the accompanying increase in frameshift efficiency caused by the 5' UTR of HIV-1 mRNA is antagonized, in a dose-dependent way, by the Tat viral protein. Tat also stimulates the IRES-dependent initiation and decreases the corresponding frameshift efficiency. A model is presented that accounts for the variations in frameshift efficiency depending on the 5' UTR and the presence of Tat, and it is proposed that a range of frameshift efficiencies is compatible with the virus replication.  相似文献   

9.
According to the generally accepted scanning model proposed by M. Kozak, the secondary structure of the 5′-untranslated region (5′-UTR) of eukaryotic mRNA can only inhibit the translation initiation by counteracting migration of the 40S ribosomal subunit along the mRNA polynucleotide chain. The existence of efficiently translatable mRNAs with long and highly structured 5′-UTRs is incompatible with the cap-dependent scanning mechanism. Such mRNAs are expected to use alternative ways of translation initiation to be efficiently translated, primarily the mechanism of internal ribosome entry mediated by internal ribosome entry sites (IRESs), special RNA structures that reside in the 5′-UTR. The paper shows that this viewpoint is incorrect and is probably based on experiments with mRNA translation in rabbit reticulocyte lysate. This cell-free system fails to adequately reflect the relative translation efficiencies observed for different mRNAs in vivo. Five structurally similar mRNAs with either short leaders of the β-globin and β-actin mRNAs or long and highly structured 5′-UTRs of the c-myc, LINE-1, and Apaf-1 mRNAs displayed comparable translation activities in transfected cells and an entire cytoplasmic extract of cultivated cells. Translation activity proved to strongly depend on the presence of a cap at the 5′ end.  相似文献   

10.
11.
Viruses have developed numerous mechanisms to usurp the host cell translation apparatus. Dengue virus (DEN) and other flaviviruses, such as West Nile and yellow fever viruses, contain a 5' m7GpppN-capped positive-sense RNA genome with a nonpolyadenylated 3' untranslated region (UTR) that has been presumed to undergo translation in a cap-dependent manner. However, the means by which the DEN genome is translated effectively in the presence of capped, polyadenylated cellular mRNAs is unknown. This report demonstrates that DEN replication and translation are not affected under conditions that inhibit cap-dependent translation by targeting the cap-binding protein eukaryotic initiation factor 4E, a key regulator of cellular translation. We further show that under cellular conditions in which translation factors are limiting, DEN can alternate between canonical cap-dependent translation initiation and a noncanonical mechanism that appears not to require a functional m7G cap. This DEN noncanonical translation is not mediated by an internal ribosome entry site but requires the interaction of the DEN 5' and 3' UTRs for activity, suggesting a novel strategy for translation of animal viruses.  相似文献   

12.
13.
Initiation is a highly regulated rate-limiting step of mRNA translation. During cap-dependent translation, the cap-binding protein eIF4E recruits the mRNA to the ribosome. Specific elements in the 5′UTR of some mRNAs referred to as Internal Ribosome Entry Sites (IRESes) allow direct association of the mRNA with the ribosome without the requirement for eIF4E. Cap-independent initiation permits translation of a subset of cellular and viral mRNAs under conditions wherein cap-dependent translation is inhibited, such as stress, mitosis and viral infection. DAP5 is an eIF4G homolog that has been proposed to regulate both cap-dependent and cap-independent translation. Herein, we demonstrate that DAP5 associates with eIF2β and eIF4AI to stimulate IRES-dependent translation of cellular mRNAs. In contrast, DAP5 is dispensable for cap-dependent translation. These findings provide the first mechanistic insights into the function of DAP5 as a selective regulator of cap-independent translation.  相似文献   

14.
Some 20 years ago, the study of picornaviral RNA translation led to the characterization of an alternative mechanism of initiation by direct ribosome binding to the 5′ UTR. By using a bicistronic vector, it was shown that the 5′ UTR of the poliovirus (PV) or the Encephalomyelitis virus (EMCV) had the ability to bind the 43S preinitiation complex in a 5′ and cap-independent manner. This is rendered possible by an RNA domain called IRES for Internal Ribosome Entry Site which enables efficient translation of an mRNA lacking a 5′ cap structure. IRES elements have now been found in many different viral families where they often confer a selective advantage to allow ribosome recruitment under conditions where cap-dependent protein synthesis is severely repressed. In this review, we compare and contrast the structure and function of IRESes that are found within 4 distinct family of RNA positive stranded viruses which are the (i) Picornaviruses; (ii) Flaviviruses; (iii) Dicistroviruses; and (iv) Lentiviruses.  相似文献   

15.
16.
17.
Ribosome recruitment to eukaryotic mRNAs is generally thought to occur by a scanning mechanism, whereby the 40S ribosomal subunit binds in the vicinity of the 5'cap structure of the mRNA and scans until an AUG codon is encountered in an appropriate sequence context. Study of the picornaviruses allowed the characterization of an alternative mechanism of translation initiation. Picornaviruses can initiate translation via an internal ribosome entry segment (IRES), an RNA structure that directly recruits the 40S ribosomal subunits in a cap and 5' end independent fashion. Since its discovery, the notion of IRESs has extended to a number of different virus families and cellular RNAs. This review summarizes features of both cap-dependent and IRES-dependent mechanisms of translation initiation and discusses the role of cis-acting elements, which include the 5' cap, the 5'-untranslated region (UTR) and the poly(A) tail as well as the possible roles of IRESs as part of a cellular stress response mechanism and in the virus replication cycle.  相似文献   

18.
19.
We describe a novel experimental approach to investigate mRNA translation. Antisense 2'-O-allyl oligoribonucleotides (oligos) efficiently arrest translation of targeted mRNAs in rabbit reticulocyte lysate and wheat germ extract while displaying minimal non-specific effects on translation. Oligo/mRNA-hybrids positioned anywhere within the 5' UTR or the first approximately 20 nucleotides of the open reading frame block cap-dependent translation initiation with high specificity. The thermodynamic stability of hybrids between 2'-O-alkyl oligos and RNA permits translational inhibition with oligos as short as 10 nucleotides. This inhibition is independent of RNase H cleavage or modifications which render the mRNA untranslatable. We show that 2'-O-alkyl oligos can also be employed to interfere with cap-independent internal initiation of translation and to arrest translation elongation. The latter is accomplished by UV-crosslinking of psoralen-tagged 2'-O-methyloligoribonucleotides to the mRNA within the open reading frame. The utility of 2'-O-alkyloligoribonucleotides to arrest translation from defined positions within an mRNA provides new approaches to investigate mRNA translation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号