首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
摘要 目的:运用CRISPR/Cas9基因编辑工具研究靶向SW620细胞系中KRAS或TP53突变对细胞增殖活性的影响。方法:针对SW620细胞中KRAS和TP53的突变位点设计sgRNA,并利用TIDE法检测sgRNA的切割效率。通过细胞增殖实验检测靶向KRAS或TP53突变后SW620细胞增殖活性的改变,并应用Annexin V-FITC/PI双染法检测细胞凋亡水平的变化。结果:分别构建了靶向SW620细胞系中KRAS和TP53突变的sgRNA质粒,并通过TIDE分析验证了sgRNA的内源切割效率;细胞增殖实验及细胞凋亡检测显示,靶向突变的KRAS或TP53基因后,SW620细胞增殖活性明显减弱,凋亡水平明显升高(P<0.05)。结论:本研究基于CRISPR/Cas9技术实现了对SW620细胞系中突变的KRAS和TP53的基因编辑,发现靶向KRAS或TP53突变能够明显抑制SW620细胞的增殖活性并促进细胞凋亡,为结直肠癌相关靶点治疗提供了体外实验依据。  相似文献   

3.
KRAS is the most commonly mutated oncogene in human tumors, especially in lung, pancreatic, and colorectal cancers. Small-molecule inhibitors targeting mutant KRASG12C demonstrated promising anti-tumor effect in patients with non-small cell lung cancer harboring KRASG12C mutation, while the intrinsic and acquired drug resistance occurred frequently and might be inevitable. Unlike the protein-level inhibition approach, gene silencing/editing tools for DNA-level knockout and RNA-level knockdown of mutant KRAS may be advantageous since these approaches directly eliminate the production of mutant KRAS-encoded protein. An in-depth understanding of KRAS biology, drug resistance to KRASG12C inhibitors and gene silencing/editing methods applied for anti-KRAS therapy may give new insight into the therapeutic strategy for cancer treatment.  相似文献   

4.
In colorectal cancers with oncogenic GTPase Kras (KRAS) mutations, inhibition of downstream MEK/ERK signaling has shown limited efficacy, in part because of failure to induce a robust apoptotic response. We studied the mechanism of apoptosis resistance in mutant KRAS cells and sought to enhance the efficacy of a KRAS-specific MEK/ERK inhibitor, GDC-0623. GDC-0623 was shown to potently up-regulate BIM expression to a greater extent versus other MEK inhibitors in isogenic KRAS HCT116 and mutant KRAS SW620 colon cancer cells. ERK silencing enhanced BIM up-regulation by GDC-0623 that was due to its loss of phosphorylation at Ser69, confirmed by a BIM-EL phosphorylation-defective mutant (S69G) that increased protein stability and blocked BIM induction. Despite BIM and BIK induction, the isogenic KRAS mutant versus wild-type cells remained resistant to GDC-0623-induced apoptosis, in part because of up-regulation of BCL-XL. KRAS knockdown by a doxycycline-inducible shRNA attenuated BCL-XL expression. BCL-XL knockdown sensitized KRAS mutant cells to GDC-0623-mediated apoptosis, as did the BH3 mimetic ABT-263. GDC-0623 plus ABT-263 induced a synergistic apoptosis by a mechanism that includes release of BIM from its sequestration by BCL-XL. Furthermore, mutant KRAS activated p-STAT3 (Tyr705) in the absence of IL-6 secretion, and STAT3 knockdown reduced BCL-XL mRNA and protein expression. These data suggest that BCL-XL up-regulation by STAT3 contributes to mutant KRAS-mediated apoptosis resistance. Such resistance can be overcome by potent BIM induction and concurrent BCL-XL antagonism to enable a synergistic apoptotic response.  相似文献   

5.
IntroductionAnti-EGFR targeted therapy is of increasing importance in advanced colorectal cancer and prior KRAS mutation testing is mandatory for therapy. However, at which occasions this should be performed is still under debate. We aimed to assess in patients with locally advanced rectal cancer whether there is intra-specimen KRAS heterogeneity prior to and upon preoperative chemoradiotherapy (CRT), and if there are any changes in KRAS mutation status due to this intervention.ResultsFor 20 (43%) out of the 47 patients, a KRAS mutation was detected. With 12 out of 20, the majority of these mutations affected codon 35. We did not obtained evidence that CRT results in changes of the KRAS mutation pattern. In addition, no intratumoral heterogeneity in the KRAS mutational status could be proven. This was true for both the biopsies prior to CRT and the resection specimens thereafter. The discrepancy observed in some samples when using the SNaPshot™ assay was due to insufficient sensitivity of this technique upon massive tumor regression by CRT as application of the therascreen® KRAS test revealed concordant results.ConclusionOur results indicate that the KRAS mutation status at the primary tumor site of rectal cancer is homogenous. Its assessment for therapeutic decisions is feasible in pre-therapeutic biopsies as well as in post-therapeutic resected specimens. The amount of viable tumor cells seems to be an important determinant for assay sensitivity and should thus be considered for selection of the analytical method.  相似文献   

6.
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and second in females worldwide. Unfortunately 40-50% of patients already have metastatic disease at presentation when prognosis is poor with a 5-year survival of <10%. Reactive oxygen species (ROS) have been proposed to play a crucial role in tumor metastasis. We now show that higher levels of ROS accumulation are found in a colorectal cancer-derived metastatic cell line (SW620) compared with a cell line (SW480) derived from the primary lesion from the same patient. In addition, ROS accumulation can affect both the migratory and invasive capacity of SW480 and SW620 cells. To explore the molecular mechanism underlying ROS-induced migration and invasion in CRC, we have compared protein expression patterns between SW480 and SW620 cells using a two-dimensional electrophoresis-based proteomics strategy. A total of 63 altered proteins were identified from tandem MS analysis. Cluster analysis revealed dysregulated expression of multiple redox regulative or ROS responsive proteins, implicating their functional roles in colorectal cancer metastasis. Molecular and pathological validation demonstrated that altered expression of PGAM1, GRB2, DJ-1, ITGB3, SOD-1, and STMN1 was closely correlated with the metastatic potential of CRC. Functional studies showed that ROS markedly up-regulated expression of ITGB3, which in turn promoted an aggressive phenotype in SW480 cells, with concomitant up-regulated expression of STMN1. In contrast, knockdown of ITGB3 expression could mitigate the migratory and invasive potential of SW620 or H(2)O(2)-treated SW480 cells, accompanied by down-regulated expression of STMN1. The function of ITGB3 was dependent on the surface expression of integrin αvβ3 heterodimer. Furthermore, STMN1 expression and the PI3K-Akt-mTOR pathway were found to be involved in ROS-induced and ITGB3-mediated migration and invasion of colorectal cancer cells. Taken together, these studies suggest that ITGB3 plays an important role in ROS-induced migration and invasion in CRC.  相似文献   

7.
BackgroundColon cancer treatments include surgery, radiotherapy, and chemotherapy. Chemotherapy using 5-fluorouracil (5-FU) has been widely applied to treat colorectal cancer (CRC). However, it is important to explore the use of chemotherapy drugs in combination with other agents to decrease severe adverse effects.PurposeThis study aimed to investigate the effects of curcumin in combination with 5-FU on the proliferation, migration, and apoptosis of CRC SW620 cell line both in vitro and in vivo.MethodsFlow cytometry was used to study the effect of curcumin on chemotherapy-induced apoptosis in CRC cells. The mechanism of curcumin's enhanced antitumor effect in vivo was investigated using gene knockdown, TUNEL, western blot, qRT-PCR and immunohistochemistry.ResultsThe results showed a synergistic effect of the two compounds on CRC cells. Considerable reduction in the proliferation and migration of SW620 cells was observed in the combination treatment group. Significantly increased apoptosis rate extended the survival of immunodeficient mice in the combination group as compared to that of the 5-FU group (p < 0.05). The results showed that curcumin significantly inhibited pERK signaling and downregulated L1 expression in SW620 cells.ConclusionsWe conclude that curcumin promotes chemosensitivity of CRC cells to 5-FU by downregulating L1 expression. Our findings provide experimental evidence for the synergism between curcumin and 5-FU, which can be utilized in clinical applications for reducing the toxicity and adverse effects of 5-FU.  相似文献   

8.
Exosomes are extracellular membrane vesicles of 50- to 130-nm diameter secreted by most tumor cells. Exosomes can mediate the intercellular transfer of proteins and RNAs, including microRNAs (miRNAs), and promote both tumorigenesis and premetastatic niche formation. In this study, we performed exosomal RNA sequencing to identify candidate exosomal miRNAs that could be associated with colorectal cancer (CRC) and its distant metastasis. The expression profiles of exosomal miRNA, as secreted by isogenic human primary CRC cell line SW480 and highly metastatic cell line SW620, were analyzed and the potential targets related to tumorigenesis and metastatic progression were investigated. We found that 25 miRNAs had been up-regulated and 5 miRNAs had been down-regulated in exosomes purified from SW620 culture supernatant. Candidate miRNAs were further evaluated for CRC diagnosis using quantitative real-time polymerase chain reaction in CRC patients. Higher expression levels of circulating exosomal miR-17-5p and miR-92a-3p were significantly associated with pathologic stages and grades of the CRC patients. CONCLUSIONS: Circulating exosomal miR-17-5p and miR-92a-3p may provide a promising noninvasive prognostic biomarker for primary and metastatic CRC.  相似文献   

9.
10.

Background

Liver metastasis is the most common cause of death in patients with colorectal cancer. Despite extensive research into the biology of cancer progression, the molecular mechanisms that drive colorectal cancer metastasis are not well characterized.

Methods

HT29 LM1, HT29 LM2, HT29 LM3 cell lines were derived from the human colorectal cancer cell line HT29 following multiple rounds of in vivo selection in immunodeficient mice.

Results

CD44 expression, a transmembrane glycoprotein involved in cell-cell and cell-matrix adhesions, and cancer cells adhesion to endothelial cells was increased in all in vivo selected cell lines, with maximum CD44 expression and cancer cells adhesion to endothelial cells in the highly metastatic HT29 LM3 cell line. Activation of c-Met upon hepatocyte growth factor (HGF) stimulation in the in vivo selected cell lines is CD44 independent. In vitro separation of CD44 high and low expression cells from HT29 LM3 cell line with FACS sorting confirmed that c-Met activation is CD44 independent upon hepatocyte growth factor stimulation. Furthermore, in vivo evaluation of CD44 low and high expressing HT29 LM3 cells demonstrated no difference in liver metastasis penetrance.

Conclusions

Taken together, our findings indicate that the aggressive metastatic phenotype of in vivo selected cell lines is associated with overexpression of CD44 and activation of c-MET. We demonstrate that c-Met activation is CD44 independent upon hepatocyte growth factor stimulation and confirm that CD44 expression in HT29 LM3 cell line is not responsible for the increase in metastatic penetrance in HT29 LM3 cell line.  相似文献   

11.
Oncogenic KRAS, an important target for antitumor therapy, contributes to pancreatic cancer tumorigenesis, progression and maintenance. However, intracellular compensation regulation can help cells to resist the targeted therapy. Gene knockdown method such as RNAi may help to understand this intracellular regulatory system and discover novel therapeutic approach. In this study, two stable transfected cell lines were constructed through lentivirus-mediated shRNA targeting KRAS of PANC-1 cells, to investigate cell response to the knockdown of KRAS. Human whole genome microarray was then used to compare the gene expression profile. As a result, ribosomal proteins L26 and L29 (RPL26 and RPL29) were dramatically upregulated by KRAS-shRNA specifically. To identify whether RPL26 or RPL29 was critical for PANC-1 cells, siRNAs against RPL26 and RPL29 were designed and transfected in vitro. The results showed that knockdown of RPL26 or RPL29 expression significantly suppressed cell proliferation, induced cell arrest at G0/G1 phase and enhanced cell apoptosis. Reactive oxygen species (ROS) assay indicated that silencing of RPL26 or RPL29 markedly decreased the intracellular ROS generation. Our findings imply that siRNA interference against RPL26 and RPL29 is of potential value for intervention of pancreatic cancer.  相似文献   

12.
The cellular products obtained following electrofusion (EF) of dendritic cells (DC) and tumour cells have shown promise as cancer vaccines. The immunogenicity of these preparations has been attributed to the presence of small numbers of DC-tumour hybrids and the contribution of the non-hybrid tumour cells present has received little attention. In this report, we investigated the effect of the EF process on the immunogenicity of allogeneic human cells, in particular the colorectal cell line, SW620. EF conditions were optimised to yield the maximum number of DC-SW620 hybrids co-expressing tumour associated antigen (TAA) and DC associated antigens. Exposure of SW620 to EF induced significant increases (P<0.05) in apoptosis and necrosis. Pre-exposure of SW620 to the EF buffer alone [0.3 M glucose, 0.1 mM Ca(CH3COO)2 and 0.5 mM Mg(CH3COO)2] resulted in significant increases in TAA uptake by DC during co-culture (P<0.05). DC phenotype was, however, not altered by exposure to EF treated tumour cells. In co-cultures of PBMC responders with SW620, the levels of IFN release and cytotoxic activity were significantly increased (P<0.05) by pre-exposure of the SW620 to EF. Pre-exposure of allogeneic non-T cells, the colorectal cell line Lovo and a breast cancer cell line (MCF7) to EF also significantly (P<0.05) increased the levels of IFN release by responding PBMC. These results demonstrate that the EF process itself can increase the immunogenicity of at least some human cell types independently of hybrid formation. These findings suggest that EF protocols should be evaluated with regard to the possibility that DC-tumour hybrids may not contribute all, or even most, of the immunostimulatory capacity present in preparations of EF treated cells.BH and GR contributed equally as senior authors  相似文献   

13.
14.
Background: IFN regulatory factor 4-binding protein (IBP) is a novel type of activator of Rho GTPases. It has been linked with differentiation and apoptosis of lymphocytes, but its function in oncogenesis remains unclear. Here we studied the expression of endogenous IBP in four human colorectal cancer cell lines, normal, adenoma and tumor colorectal tissues. Methods: Molecular (Western blot and RT-PCR), and confocal analyses were used to investigate IBP expression in human colorectal cancer cell lines. Matched normal and tumor tissue sections of 63 patients and 15 adenoma tissue sections were analyzed for IBP expression by immunohistochemistry (IHC). Results: IBP was ubiquitely expressed in human colorectal cancer cell lines. The expression of IBP can be detected at both the mRNA and protein level in SW480, SW620 and HT29 cells. Clinically, IBP were elevated in human colorectal cancer specimens in comparison to normal colorectal tissues. Substantial high expression of IBP was observed in colorectal cancer tissues (67%), whereas corresponding normal tissues and 15 adenoma tissues showed consistently absent immunoreactivity of IBP. Moreover, IBP expression is correlated with the differentiation level of colorectal cancer cells (p < 0.05) and clinical stage of patients (p < 0.01). Conclusions: Our data show, for the first time, a dysregulated expression of IBP in human colorectal cancer, offering new perspectives for its role in cancer development and progression. IBP may be a novel tumor marker and a therapeutic target for colorectal cancer.  相似文献   

15.
Salinomycin, a polyether antibiotic, is a well-known inhibitor of human cancer stem cells. Chemical modification of the allylic C20 hydroxyl of salinomycin has enabled access to synthetic analogs that display increased cytotoxic activity compared to the native structure. The aim of this study was to investigate the activity of a cohort of C20-O-acyl analogs of salinomycin on human colorectal cancer cell lines in vitro. Two human colorectal cancer cell lines (SW480 and SW620) were exposed to three C20-O-acylated analogs and salinomycin. The impact of salinomycin and its analogs on tumor cell number, migration, cell death, and cancer stem cell specifity was analyzed. Exposure of human colorectal cancer cells to the C20-O-acylated analogs of salinomycin resulted in reduced tumor cell number and impaired tumor cell migration at lower concentrations than salinomycin. When used at higher (micromolar) concentrations, these effects were accompanied by induction of apoptotic cell death. Salinomycin analogs further expose improved activity against cancer stem cells compared to salinomycin.  相似文献   

16.
This study investigated the mechanisms of migration inhibitory factor (MIF) and solute carrier family 3 member 2 (SLC3A2) in colorectal cancer progression. The levels of MIF and SLC3A2 expression in cells were measured by RT‐qPCR. SW480 and SW620 cells were transfected with sh‐MIF and sh‐SLC3A2, respectively. MIF, SLC3A2, GPX4, E‐cadherin and N‐cadherin expression were detected by immunofluorescence (IF). CCK8 and Transwell assays were performed to detect cell proliferation and migration. Co‐immunoprecipitation (CoIP) was used to measure the binding activity of MIF and SLC3A2. Finally, a nude mouse tumorigenicity assay was used to confirm the functions of MIF and SLC3A2 in colorectal cancer. Results showed that the levels of MIF and SLC3A2 expression were up‐regulated in colorectal cancer cells. Inhibition of MIF or SLC3A2 expression prevented cell proliferation, migration, epithelial‐mesenchymal transition (EMT) and invasion. In addition, knockdown of MIF and SLC3A2 promoted iron death in SW480 and SW620 cells. CoIP results showed that MIF and SLC3A2 directly interact with each other. Knockdown of both MIF and SLC3A2 inhibited tumour growth and metastasis via the AKT/GSK‐3β pathway in vivo. The Akt/GSK‐3β pathway was found to participate in regulating MIF and SLC3A2 both in vivo and in vitro. MIF and SLC3A2 might be potential biomarkers for monitoring the treatment of colorectal cancer.  相似文献   

17.
Biphenolic components in the Magnolia family have shown several pharmacological activities such as antitumor effects. This study investigated the effects of 4-O-methylhonokiol (MH), a constituent of Magnolia officinalis, on human colon cancer cell growth and its action mechanism. 4-O-methylhonokiol (0–30 μM) decreased constitutive activated nuclear factor (NF)-κB DNA binding activity and inhibited growth of human colon (SW620 and HCT116) cancer cells. It also caused G0–G1 phase cell cycle arrest followed by an induction of apoptotic cell death. However, knockdown with small interfering RNA (siRNA) of p21 or transfection with cyclin D1/Cdk4 binding site-mutated p21 abrogated MH-induced cell growth inhibition, inhibition of NF-κB activity as well as expression of cyclin D1 and Cdk4. Conversely, inhibition of NF-κB with specific inhibitor or siRNA augmented MH-induced apoptotic cell death. 4-O-methylhonokiol inhibited tumor growth, NF-κB activity and expression of antiapoptotic proteins; however, it increased the expression of apoptotic proteins as well as p21 in xenograft nude mice bearing SW620 cancer cells. The present study reveals that MH causes p21-mediated human colon cancer cell growth inhibition through suppression of NF-κB and indicates that this compound by itself or in combination with other anticancer agents could be useful for the treatment of cancer.  相似文献   

18.
In non-clinical studies, the proteasome inhibitor ixazomib inhibits cell growth in a broad panel of solid tumor cell lines in vitro. In contrast, antitumor activity in xenograft tumors is model-dependent, with some solid tumors showing no response to ixazomib. In this study we examined factors responsible for ixazomib sensitivity or resistance using mouse xenograft models. A survey of 14 non-small cell lung cancer (NSCLC) and 6 colon xenografts showed a striking relationship between ixazomib activity and KRAS genotype; tumors with wild-type (WT) KRAS were more sensitive to ixazomib than tumors harboring KRAS activating mutations. To confirm the association between KRAS genotype and ixazomib sensitivity, we used SW48 isogenic colon cancer cell lines. Either KRAS-G13D or KRAS-G12V mutations were introduced into KRAS-WT SW48 cells to generate cells that stably express activated KRAS. SW48 KRAS WT tumors, but neither SW48-KRAS-G13D tumors nor SW48-KRAS-G12V tumors, were sensitive to ixazomib in vivo. Since activated KRAS is known to be associated with metabolic reprogramming, we compared metabolite profiling of SW48-WT and SW48-KRAS-G13D tumors treated with or without ixazomib. Prior to treatment there were significant metabolic differences between SW48 WT and SW48-KRAS-G13D tumors, reflecting higher oxidative stress and glucose utilization in the KRAS-G13D tumors. Ixazomib treatment resulted in significant metabolic regulation, and some of these changes were specific to KRAS WT tumors. Depletion of free amino acid pools and activation of GCN2-eIF2α-pathways were observed both in tumor types. However, changes in lipid beta oxidation were observed in only the KRAS WT tumors. The non-clinical data presented here show a correlation between KRAS genotype and ixazomib sensitivity in NSCLC and colon xenografts and provide new evidence of regulation of key metabolic pathways by proteasome inhibition.  相似文献   

19.
According to the cancer stem cell (CSC) model, higher CD133 expression in tumor tissue is associated with metastasis and poor prognosis in colon cancer. As such, the CD133-positive (CD133+) subpopulation of cancer cells is believed to play a central role in tumor development and metastatic progression. Although CD133+ cells are believed to display more CSC-like behavior and be solely responsible for tumor colonization, recent research indicates that CD133 cells from metastatic colon tumors not only also possess colonization capacity but also promote the growth of larger tumors in a mouse model than CD133+ cells, suggesting that an alternative mechanism of metastasis exists. This study investigated this possibility by examining the cell viability, tumorigenicity, and proliferation and growth capacity of the CD133+ and CD133 subpopulations of the SW620 cell line, a human metastatic colon cancer cell line, in both an in vitro cell model and an in vivo mouse model. While both SW620 CD133− and SW620CD133+ cells were found to engage in bidirectional cell-type switching in reaction to exposure to environmental stressors, including hypoxia, a cell adhesion-free environment, and extracellular matrix stimulation, both in vitro and in vivo, CD133 cells were found to have a growth advantage during early colonization due to their greater resistance to proliferation inhibition. Based on these findings, a hypothetical model in which colon cancer cells engage in cell-type switching in reaction to exposure to environmental stressors is proposed. Such switching may provide a survival advantage during early colonization, as well as that explain previous conflicting observations.  相似文献   

20.
The aim of this study was to compare the potential of two plant lectins [peanut agglutinin (PNA) and wheat germ agglutinin (WGA)], monoclonal antibody (anti-Thy-1.2), its F(ab')(2) fragments, and galactosamine as targeting moieties bound to the polymer drug carrier to deliver a xenobiotic, doxorubicin, to selected cancer cell lines. We have used primary (SW 480, HT 29) and metastatic (SW 620) human colorectal cancer cell lines and a transfectant, genetically engineered SW 620 cell line with mouse gene Thy-1.2 (SW 620/T) to test the possibility of marking human cancer with xenogeneic mouse gene and use it for effective site-specific targeting. The targeting moieties and doxorubicin were conjugated to a water-soluble copolymer based on N-(2-hydroxypropyl)methacrylamide (HPMA) acting as a carrier responsible for controlled intracellular release of the targeted drug. FACS analysis showed a strong binding of WGA-FITC to all tested cell lines. Binding of PNA-FITC was considerably weaker. The in vitro antiproliferative effect of lectin-targeted HPMA carrier-bound doxorubicin evaluated as [(3)H]TdR incorporation reflected both the intensity of the binding and the different sensitivity of the tested cancer cells lines to doxorubicin. The antiproliferative effect of conjugates targeted with WGA was comparable to that with the conjugates targeted with the anti-Thy-1.2 monoclonal antibody or their F(ab')(2) fragments. The magnitude of the cytotoxic effect of HPMA-doxorubicin targeted with PNA was lower in all tested cell lines. While the conjugates with WGA were more cytotoxic, the conjugates with PNA were more specific as their binding is limited to cancer cells and to the sites of inflammation. Noncytotoxic conjugates with a very low concentration of doxorubicin and targeted with PNA, anti-Thy-1.2, or their F(ab')(2) fragments exerted in some lines (SW 480, SW 620) low mitogenic activity. The Thy-1.2 gene-transfected SW 620 metastatic colorectal cancer cell line was sensitive to the antiproliferative effect of Thy-1.2-targeted doxorubicin as was shown for the Thy-1. 2(+) EL4 cell line and for Thy-1.2(+) concanavalin A-stimulated mouse T lymphocytes. These results represent the first indication of the suitability of transfection of human cancer cells with selected targeting genes for site-specific therapy of malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号