首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollinators, honey bees in particular, are continuously exposed to various mixtures of pesticides, which contribute to their population decline. Both amitraz and thiacloprid have been proven less toxic to honey bees and are frequently applied in- and out-hive, respectively. We examined the sub-lethal effects of amitraz, thiacloprid and their sequential exposure on learning, memory and sugar responsiveness in Apis mellifera using the Proboscis extension response (PER). Sub-lethal doses of amitraz (0.1, 0.2 and 0.4 µg/bee) and thiacloprid (0.05, 0.1 and 0.2 µg/bee) were tested. Sub-lethal effects were observed only at the highest doses of each pesticide treatment; amitraz (0.4 µg/bee) and thiacloprid (0.2 µg/bee) but not in lower doses. In sequential treatment of amitraz and thiacloprid, reduced acquisition and memory retention were significant across all tested doses. The same profile was also obtained on sugar responsiveness of foragers. Our results suggest that the sequential exposure would pose higher risk to honey bee compared to single pesticide exposure by reducing the bees’ appetitive olfactory learning, memory and sugar acuity more than individual pesticide exposures.  相似文献   

2.
Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large numbers and high levels of pesticides found in honey bee colonies. Thus it is crucial to determine how field-relevant combinations and loads of pesticides affect bee health. We collected pollen from bee hives in seven major crops to determine 1) what types of pesticides bees are exposed to when rented for pollination of various crops and 2) how field-relevant pesticide blends affect bees’ susceptibility to the gut parasite Nosema ceranae. Our samples represent pollen collected by foragers for use by the colony, and do not necessarily indicate foragers’ roles as pollinators. In blueberry, cranberry, cucumber, pumpkin and watermelon bees collected pollen almost exclusively from weeds and wildflowers during our sampling. Thus more attention must be paid to how honey bees are exposed to pesticides outside of the field in which they are placed. We detected 35 different pesticides in the sampled pollen, and found high fungicide loads. The insecticides esfenvalerate and phosmet were at a concentration higher than their median lethal dose in at least one pollen sample. While fungicides are typically seen as fairly safe for honey bees, we found an increased probability of Nosema infection in bees that consumed pollen with a higher fungicide load. Our results highlight a need for research on sub-lethal effects of fungicides and other chemicals that bees placed in an agricultural setting are exposed to.  相似文献   

3.
Mounting evidence suggests that pollinators worldwide are experiencing dramatic population declines, and exposure to pesticides is one of the factors that can account for this. By making use of a database containing more than two decades of honey bee (Apis mellifera) hive poisoning incidents from the United Kingdom (Wildlife Incident Investigation Scheme [WIIS]) and corresponding pesticide use surveys, we attempted to explain honey bee poisoning incidents in the field using models derived from pesticide use information, laboratory-generated bee toxicity data (defined as a hazard ratio; application rate divided by LD(50)), and physico-chemical properties of the applied pesticides. Logistic regression analyses were used to assess the relationship between honey bee poisoning incidents in the field and these parameters. In analyzing models with multiple dimensions, we selected the best model by the best subset method, an iterative method based on maximum likelihood estimation, and Akaike's information criterion. Results suggested that the size of the area treated and hazard ratios calculated from application rates and oral or contact toxicity (but the latter especially) can be used to predict the likelihood that honey bee mortality will occur. Model predictions also suggest that some insecticides carry an extreme risk for bees, despite the lack of documented incidents.  相似文献   

4.
There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy‐consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions.  相似文献   

5.
Recently, the widespread distribution of pesticides detected in the hive has raised serious concerns about pesticide exposure on honey bee (Apis mellifera L.) health. A larval rearing method was adapted to assess the chronic oral toxicity to honey bee larvae of the four most common pesticides detected in pollen and wax - fluvalinate, coumaphos, chlorothalonil, and chloropyrifos - tested alone and in all combinations. All pesticides at hive-residue levels triggered a significant increase in larval mortality compared to untreated larvae by over two fold, with a strong increase after 3 days of exposure. Among these four pesticides, honey bee larvae were most sensitive to chlorothalonil compared to adults. Synergistic toxicity was observed in the binary mixture of chlorothalonil with fluvalinate at the concentrations of 34 mg/L and 3 mg/L, respectively; whereas, when diluted by 10 fold, the interaction switched to antagonism. Chlorothalonil at 34 mg/L was also found to synergize the miticide coumaphos at 8 mg/L. The addition of coumaphos significantly reduced the toxicity of the fluvalinate and chlorothalonil mixture, the only significant non-additive effect in all tested ternary mixtures. We also tested the common ‘inert’ ingredient N-methyl-2-pyrrolidone at seven concentrations, and documented its high toxicity to larval bees. We have shown that chronic dietary exposure to a fungicide, pesticide mixtures, and a formulation solvent have the potential to impact honey bee populations, and warrants further investigation. We suggest that pesticide mixtures in pollen be evaluated by adding their toxicities together, until complete data on interactions can be accumulated.  相似文献   

6.
Thiamethoxam is a widely used neonicotinoid pesticide that, as agonist of the nicotinic acetylcholine receptors, has been shown to elicit a variety of sublethal effects in honey bees. However, information concerning neonicotinoid effects on honey bee thermoregulation is lacking. Thermoregulation is an essential ability for the honey bee that guarantees the success of foraging and many in-hive tasks, especially brood rearing. We tested the effects of acute exposure to thiamethoxam (0.2, 1, 2 ng/bee) on the thorax temperatures of foragers exposed to low (22 °C) and high (33 °C) temperature environments. Thiamethoxam significantly altered honey bee thorax temperature at all doses tested; the effects elicited varied depending on the environmental temperature and pesticide dose to which individuals were exposed. When bees were exposed to the high temperature environment, the high dose of thiamethoxam increased their thorax temperature 1–2 h after exposure. When bees were exposed to the low temperature, the higher doses of the neonicotinoid reduced bee thorax temperatures 60–90 min after treatment. In both experiments, the neonicotinoid decreased the temperature of bees the day following the exposure. After a cold shock (5 min at 4 °C), the two higher doses elicited a decrease of the thorax temperature, while the lower dose caused an increase, compared to the control. These alterations in thermoregulation caused by thiamethoxam may affect bee foraging activity and a variety of in-hive tasks, likely leading to negative consequences at the colony level. Our results shed light on sublethal effect of pesticides which our bees have to deal with.  相似文献   

7.
Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species.  相似文献   

8.
Nosema ceranae and pesticide exposure can contribute to honey bee health decline. Bees reared from brood comb containing high or low levels of pesticide residues were placed in two common colony environments. One colony was inoculated weekly with N. ceranae spores in sugar syrup and the other colony received sugar syrup only. Worker honey bees were sampled weekly from the treatment and control colonies and analyzed for Nosema spore levels. Regardless of the colony environment (spores+syrup added or syrup only added), a higher proportion of bees reared from the high pesticide residue brood comb became infected with N. ceranae, and at a younger age, compared to those reared in low residue brood combs. These data suggest that developmental exposure to pesticides in brood comb increases the susceptibility of bees to N. ceranae infection.  相似文献   

9.
The decline of insect pollinators threatens global food security. A major potential cause of decline is considered to be the interaction between environmental stressors, particularly between exposure to pesticides and pathogens. To explore pesticide–pathogen interactions in an important pollinator insect, the honey bee, we used two new nicotinic acetylcholine receptor agonist insecticides (nACHRs), flupyradifurone (FPF) and sulfoxaflor (SULF), at sublethal and field-realistic doses in a fully crossed experimental design with three common viral honey bee pathogens, Black queen cell virus (BQCV) and Deformed wing virus (DWV) genotypes A and B. Through laboratory experiments in which treatments were administered singly or in combination to individual insects, we recorded harmful effects of FPF and pathogens on honey bee survival and immune gene expression. Though we found no evidence of synergistic interactions among stressors on either honey bee survival or viral load, the combined treatment SULF and DWV-B led to a synergistic upregulation of dicer-like gene expression. We conclude that common viral pathogens pose a major threat to honey bees, while co-exposure to these novel nACHR insecticides does not significantly exacerbate viral impacts on host survival in the laboratory.  相似文献   

10.
The increasing demand for insect pollinated crops and high recent losses of honey bee colonies raise concerns about food security. Systemic insecticides are recognized as one of the drivers of worldwide honey and wild bee declines. Particularly honey bees in agricultural environments are exposed to pesticides when they collect crop pollen and nectar. However, landscape scale studies which analyze pollen use and foraging distances of honey bees on mass-flowering crops like maize to evaluate potential exposure risks are currently lacking. In an experimental approach on a landscape scale we took advantage of intra-colonial dance communication to gather information about the location of utilized pollen resources. During maize flowering, four observation hives were placed in and rotated between 11 different landscapes which covered a gradient from low to high maize acreage. A higher frequency of dances for foraging locations on maize fields compared to other land use types shows that maize is an intensively used pollen resource for honey bee colonies. Mean foraging distances were significantly shorter for maize pollen than for other pollen origins. The percentage of maize pollen foragers did not increase with maize acreage in the landscape. The proportion of grassland area providing alternative pollen sources did not reduce the percentage of maize pollen foragers. Our findings allow estimating the distance-related exposure risk of honey bee colonies to pollen from surrounding maize fields treated with systemic insecticides. Similarly, the results can be used to estimate the exposure to transgenic maize pollen, which is relevant for honey production in European countries. Provision of alternative pollen resources within agri-environmental schemes could potentially reduce exposure risk to pesticide contaminated crop pollen.  相似文献   

11.
Bee populations are exposed to multiple stressors, including land-use change, biological invasions, climate change, and pesticide exposure, that may interact synergistically. We analyze the combined effects of climate warming and sublethal insecticide exposure in the solitary bee Osmia cornuta. Previous Osmia studies show that warm wintering temperatures cause body weight loss, lipid consumption, and fat body depletion. Because the fat body plays a key role in xenobiotic detoxification, we expected that bees exposed to climate warming scenarios would be more sensitive to pesticides. We exposed O. cornuta females to three wintering treatments: current scenario (2007–2012 temperatures), near-future (2021–2050 projected temperatures), and distant-future (2051–2080). Upon emergence in spring, bees were orally exposed to three sublethal doses of an insecticide (Closer, a.i. sulfoxaflor; 0, 4.55 and 11.64 ng a.i./bee). We measured the combined effects of wintering and insecticide exposure on phototactic response, syrup consumption, and longevity. Wintering treatment by itself did not affect winter mortality, but body weight loss increased with increasing wintering temperatures. Similarly, wintering treatment by itself hardly influenced phototactic response or syrup consumption. However, bees wintered at the warmest temperatures had shorter longevity, a strong fecundity predictor in Osmia. Insecticide exposure, especially at the high dose, impaired the ability of bees to respond to light, and resulted in reduced syrup consumption and longevity. The combination of the warmest winter and the high insecticide dose resulted in a 70% longevity decrease. Smaller bees, resulting from smaller pollen–nectar provisions, had shorter longevity suggesting nutritional stress may further compromise fecundity in O. cornuta. Our results show a synergistic interaction between two major drivers of bee declines, and indicate that bees will become more sensitive to pesticides under the current global warming scenario. Our findings have important implications for pesticide regulation and underscore the need to consider multiple stressors to understand bee declines.  相似文献   

12.
Analysis of pollen trapped from honey bees as they return to their hives provides a method of monitoring fluctuations in one route of pesticide exposure over location and time. We collected pollen from apiaries in five locations in Connecticut, including urban, rural, and mixed agricultural sites, for periods from two to five years. Pollen was analyzed for pesticide residues using a standard extraction method widely used for pesticides (QuEChERS) and liquid chromatography/mass spectrometric analysis. Sixty pesticides or metabolites were detected. Because the dose lethal to 50% of adult worker honey bees (LD50) is the only toxicity parameter available for a wide range of pesticides, and among our pesticides there were contact LD50 values ranging from 0.006 to >1000 μg per bee (range 166,000X), and even among insecticides LD50 values ranged from 0.006 to 59.8 μg/bee (10,000X); therefore we propose that in studies of honey bee exposure to pesticides that concentrations be reported as Hazard Quotients as well as in standard concentrations such as parts per billion. We used both contact and oral LD50 values to calculate Pollen Hazard Quotients (PHQ = concentration in ppb ÷ LD50 as μg/bee) when both were available. In this study, pesticide Pollen Hazard Quotients ranged from over 75,000 to 0.01. The pesticides with the greatest Pollen Hazard Quotients at the maximum concentrations found in our study were (in descending order): phosmet, Imidacloprid, indoxacarb, chlorpyrifos, fipronil, thiamethoxam, azinphos-methyl, and fenthion, all with at least one Pollen Hazard Quotient (using contact or oral LD50) over 500. At the maximum rate of pollen consumption by nurse bees, a Pollen Hazard Quotient of 500 would be approximately equivalent to consuming 0.5% of the LD50 per day. We also present an example of a Nectar Hazard Quotient and the percentage of LD50 per day at the maximum nectar consumption rate.  相似文献   

13.
European honey bees Apis mellifera are important commercial pollinators that have suffered greater than normal overwintering losses since 2007 in North America and Europe. Contributing factors likely include a combination of parasites, pesticides, and poor nutrition. We examined diet diversity, diet nutritional quality, and pesticides in honey bee‐collected pollen from commercial colonies in the Canadian Maritime Provinces in spring and summer 2011. We sampled pollen collected by honey bees at colonies in four site types: apple orchards, blueberry fields, cranberry bogs, and fallow fields. Proportion of honey bee‐collected pollen from crop versus noncrop flowers was high in apple, very low in blueberry, and low in cranberry sites. Pollen nutritional value tended to be relatively good from apple and cranberry sites and poor from blueberry and fallow sites. Floral surveys ranked, from highest to lowest in diversity, fallow, cranberry, apple, and blueberry sites. Pesticide diversity in honey bee‐collected pollen was high from apple and blueberry sites and low from cranberry and fallow sites. Four different neonicotinoid pesticides were detected, but neither these nor any other pesticides were at or above LD50 levels. Pollen hazard quotients were highest in apple and blueberry sites and lowest in fallow sites. Pollen hazard quotients were also negatively correlated with the number of flower taxa detected in surveys. Results reveal differences among site types in diet diversity, diet quality, and pesticide exposure that are informative for improving honey bee and land agro‐ecosystem management.  相似文献   

14.
生态条件的多样性变化对蜜蜂生存的影响   总被引:1,自引:0,他引:1  
侯春生  张学锋 《生态学报》2011,31(17):5061-5070
蜜蜂在整个生态系统中起着重要的传花授粉作用,是生态链中不可或缺的物种。随着现代农业的发展,蜜蜂赖以生存的环境遭到破坏,继而引发蜜蜂数量大幅减少,影响了蜂种的生存与可持续发展。总结了近年来生态条件的变化,归纳了影响蜜蜂生存的主要因素,分析了蜜蜂生存艰难的原因,提出了蜜蜂生存的关键问题,并展望了未来维持蜜蜂强群的主要研究方向。  相似文献   

15.
Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple (Malus domestica) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services.  相似文献   

16.
Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees.  相似文献   

17.
Two organophosphate compounds, coumaphos and diazinon, were examined for effects of sublethal exposure on odor learning and generalization in honey bees, Apis mellifera L. Using proboscis extension response training as a measure of odor learning and discrimination, a series of two experiments tested whether these compounds would inhibit bees from learning a new odor or discriminating between different odors. Bees were exposed to coumaphos or diazinon in acetone applied to the thorax, or to coumaphos or diazinon in hexane injected intracranially. At no dose tested or exposure method used was coumaphos shown to inhibit acquisition of a novel odor stimulus, although it was shown to slightly reduce discriminatory ability when given by intracranial injection. Diazinon had effects on odor learning at several small doses, and a small injected dose was shown to significantly inhibit learning of an odor stimulus paired with a sucrose reward. When bee head acetylcholineasterase activity was measured after dermal applications of both pesticides, only the higher doses of diazinon showed reduced activity, indicating that externally-applied coumaphos shows no significant effect on bee brain acetylcholinesterase activity. These data suggest that acute application of coumaphos has only slight nonlethal effects upon the behavior of honey bees and should have little effect upon bee tasks that involve odor learning.  相似文献   

18.
Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed treatments.  相似文献   

19.
Imidacloprid Alters Foraging and Decreases Bee Avoidance of Predators   总被引:1,自引:0,他引:1  
Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species.  相似文献   

20.
Declines in pollinator colonies represent a worldwide concern. The widespread use of agricultural pesticides is recognized as a potential cause of these declines. Previous studies have examined the effects of neonicotinoid insecticides such as imidacloprid on pollinator colonies, but these investigations have mainly focused on adult honey bees. Native stingless bees (Hymenoptera: Apidae: Meliponinae) are key pollinators in neotropical areas and are threatened with extinction due to deforestation and pesticide use. Few studies have directly investigated the effects of pesticides on these pollinators. Furthermore, the existing impact studies did not address the issue of larval ingestion of contaminated pollen and nectar, which could potentially have dire consequences for the colony. Here, we assessed the effects of imidacloprid ingestion by stingless bee larvae on their survival, development, neuromorphology and adult walking behavior. Increasing doses of imidacloprid were added to the diet provided to individual worker larvae of the stingless bee Melipona quadrifasciata anthidioides throughout their development. Survival rates above 50% were only observed at insecticide doses lower than 0.0056 μg active ingredient (a.i.)/bee. No sublethal effect on body mass or developmental time was observed in the surviving insects, but the pesticide treatment negatively affected the development of mushroom bodies in the brain and impaired the walking behavior of newly emerged adult workers. Therefore, stingless bee larvae are particularly susceptible to imidacloprid, as it caused both high mortality and sublethal effects that impaired brain development and compromised mobility at the young adult stage. These findings demonstrate the lethal effects of imidacloprid on native stingless bees and provide evidence of novel serious sublethal effects that may compromise colony survival. The ecological and economic importance of neotropical stingless bees as pollinators, their susceptibility to insecticides and the vulnerability of their larvae to insecticide exposure emphasize the importance of studying these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号