首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Ribonucleoprotein (RNP) granules are cytoplasmic, microscopically visible structures composed of RNA and protein with proposed functions in mRNA decay and storage. Trypanosomes have several types of RNP granules, but lack most of the granule core components identified in yeast and humans. The exception is SCD6/Rap55, which is essential for processing body (P-body) formation. In this study, we analyzed the role of trypanosome SCD6 in RNP granule formation. Upon overexpression, the majority of SCD6 aggregates to multiple granules enriched at the nuclear periphery that recruit both P-body and stress granule proteins, as well as mRNAs. Granule protein composition depends on granule distance to the nucleus. In contrast to findings in yeast and humans, granule formation does not correlate with translational repression and can also take place in the nucleus after nuclear targeting of SCD6. While the SCD6 Lsm domain alone is both necessary and sufficient for granule induction, the RGG motif determines granule type and number: the absence of an intact RGG motif results in the formation of fewer granules that resemble P-bodies. The differences in granule number remain after nuclear targeting, indicating translation-independent functions of the RGG domain. We propose that, in trypanosomes, a local increase in SCD6 concentration may be sufficient to induce granules by recruiting mRNA. Proteins that bind selectively to the RGG and/or Lsm domain of SCD6 could be responsible for regulating granule type and number.  相似文献   

4.
The formation of mRNPs controls the interaction of the translation and degradation machinery with individual mRNAs. The yeast Scd6 protein and its orthologs regulate translation and mRNA degradation in yeast, C.?elegans, D.?melanogaster, and humans by an unknown mechanism. We demonstrate that Scd6 represses translation by binding the eIF4G subunit of eIF4F in a manner dependent on its RGG domain, thereby forming an mRNP repressed for translation initiation. Strikingly, several other RGG domain-containing proteins in yeast copurify with eIF4E/G and we demonstrate that two such proteins, Npl3 and Sbp1, also directly bind eIF4G and repress translation in a manner dependent on their RGG motifs. These observations identify the mechanism of Scd6 function through its RGG motif and indicate that eIF4G plays an important role as a scaffolding protein for the recruitment of translation repressors.  相似文献   

5.
The targeting of messenger RNAs (mRNAs) to specific subcellular sites for local translation plays an important role in diverse cellular and developmental processes in eukaryotes, including axis formation, cell fate determination, spindle pole regulation, cell motility, and neuronal synaptic plasticity. Recently, a new conserved class of Lsm proteins, the Scd6 family, has been implicated in controlling mRNA function. Depletion or mutation of members of the Scd6 family, Caenorhabditis elegans CAR-1 and Drosophila melanogaster trailer hitch, lead to a variety of developmental phenotypes, which in some cases can be linked to alterations in the endoplasmic reticulum (ER). Scd6/Lsm proteins are RNA binding proteins and are found in RNP complexes associated with translational control of mRNAs, and these complexes can colocalize with the ER. These findings raise the possibility that localization and translational regulation of mRNAs at the ER plays a role in controlling the organization of this organelle.  相似文献   

6.
The stress response of eukaryotic cells often causes an attenuation of bulk translation activity and the accumulation of non-translating mRNAs into cytoplasmic mRNP (messenger ribonucleoprotein) granules termed cytoplasmic P-bodies (processing bodies) and SGs (stress granules). We examined effects of acidic stress on the formation of mRNP granules compared with other forms of stress such as glucose deprivation and a high Ca2+ level in Saccharomyces cerevisiae. Treatment with lactic acid clearly caused the formation of P-bodies, but not SGs, and also caused an attenuation of translation initiation, albeit to a lesser extent than glucose depletion. P-body formation was also induced by hydrochloric acid and sulfuric acid. However, lactic acid in SD (synthetic dextrose) medium with a pH greater than 3.0, propionic acid and acetic acid did not induce P-body formation. The results of the present study suggest that the assembly of yeast P-bodies can be induced by external conditions with a low pH and the threshold was around pH?2.5. The P-body formation upon acidic stress required Scd6 (suppressor of clathrin deficiency 6), a component of P-bodies, indicating that P-bodies induced by acidic stress have rules of assembly different from those induced by glucose deprivation or high Ca2+ levels.  相似文献   

7.
8.
The cold-inducible RNA-binding protein (CIRP) is a nuclear 18-kDa protein consisting of an amino-terminal RNA Recognition Motif (RRM) and a carboxyl-terminal domain containing several RGG motifs. First characterized for its overexpression upon cold shock, CIRP is also induced by stresses such as UV irradiation and hypoxia. Here, we investigated the expression as well as the subcellular localization of CIRP in response to other stress conditions. We demonstrate that oxidative stress leads to the migration of CIRP to stress granules (SGs) without alteration of expression. Stress granules are dynamic cytoplasmic foci at which stalled translation initiation complexes accumulate in cells subjected to environmental stress. Relocalization of CIRP into SGs also occurs upon other cytoplasmic stresses (osmotic pressure or heat shock) as well as in response to stresses of the endoplasmic reticulum. CIRP migration into SGs is independent from TIA-1 which has been previously reported to be a general mediator of SG formation, thereby suggesting the existence of multiple pathways leading to SG formation. Moreover, deletion mutants revealed that both RGG and RRM domains can independently promote CIRP migration into SGs. However, the methylation of arginine residues in the RGG domain is necessary for CIRP to exit the nucleus to be further recruited into SGs. By RNA-tethering experiments, we also show that CIRP down-regulates mRNA translation and that this activity is carried by the carboxyl-terminal RG-enriched domain. Altogether, our findings further reveal the diversity of mechanisms by which CIRP is regulated by environmental stresses and provide new insights into CIRP cytoplasmic function.  相似文献   

9.
Albrecht M  Lengauer T 《FEBS letters》2004,569(1-3):18-26
Sm and Sm-like proteins of the Lsm (like Sm) domain family are generally involved in essential RNA-processing tasks. While recent research has focused on the function and structure of small family members, little is known about Lsm domain proteins carrying additional domains. Using an integrative bioinformatics approach, we discovered five novel groups of Lsm domain proteins (Lsm12-16) with long C-terminal tails and investigated their functions. All of them are evolutionarily conserved in eukaryotes with an N-terminal Lsm domain to bind nucleic acids followed by as yet uncharacterized C-terminal domains and sequence motifs. Based on known yeast interaction partners, Lsm12-16 may play important roles in RNA metabolism. Particularly, Lsm12 is possibly involved in mRNA degradation or tRNA splicing, and Lsm13-16 in the regulation of the mitotic G2/M phase. Lsm16 proteins have an additional C-terminal YjeF_N domain of as yet unknown function. The identification of an additional methyltransferase domain at the C-terminus of one of the Lsm12 proteins also led to the recognition of three new groups of methyltransferases, presumably dependent on S-adenosyl-l-methionine. Further computational analyses revealed that some methyltransferases contain putative RNA-binding helix-turn-helix domains and zinc fingers.  相似文献   

10.
11.
The regulation of translation and mRNA degradation in eukaryotic cells involves the formation of cytoplasmic mRNP granules referred to as P-bodies and stress granules. The yeast Pbp1 protein and its mammalian ortholog, Ataxin-2, localize to stress granules and promote their formation. In Saccharomyces cerevisiae, Pbp1 also interacts with the Pab1, Lsm12, Pbp4, and Dhh1 proteins. In this work, we determined whether these Pbp1 interacting proteins also accumulated in stress granules and/or could affect their formation. These experiments revealed the following observations. First, the Lsm12, Pbp4, and Dhh1 proteins all accumulate in stress granules, whereas only the Dhh1 protein is a constitutive P-body component. Second, deletion or over-expression of the Pbp4 and Lsm12 proteins did not dramatically affect the formation of stress granules or P-bodies. In contrast, Pbp1 and Dhh1 over-expression inhibits cell growth, and for Dhh1, leads to the accumulation of stress granules. Finally, a strain lacking the Pab1 protein was reduced at forming stress granules, although they could still be detected. This indicates that Pab1 affects, but is not absolutely required for, stress granule formation. These observations offer new insight into the function of stress granule components with roles in stress granule assembly and mRNP regulation.  相似文献   

12.
Lsm proteins are a ubiquitous family of proteins characterized by the Sm-domain. They exist as hexa- or heptameric RNA-binding complexes and carry out RNA-related functions. The Sm-domain is thought to be sufficient for the RNA-binding activity of these proteins. The highly conserved eukaryotic Lsm1 through Lsm7 proteins are part of the cytoplasmic Lsm1-7-Pat1 complex, which is an activator of decapping in the conserved 5'-3' mRNA decay pathway. This complex also protects mRNA 3'-ends from trimming in vivo. Purified Lsm1-7-Pat1 complex is able to bind RNA in vitro and exhibits a unique binding preference for oligoadenylated RNA (over polyadenylated and unadenylated RNA). Lsm1 is a key subunit that determines the RNA-binding properties of this complex. The normal RNA-binding activity of this complex is crucial for mRNA decay and 3'-end protection in vivo and requires the intact Sm-domain of Lsm1. Here, we show that though necessary, the Sm-domain of Lsm1 is not sufficient for the normal RNA-binding ability of the Lsm1-7-Pat1 complex. Deletion of the C-terminal domain (CTD) of Lsm1 (while keeping the Sm-domain intact) impairs mRNA decay in vivo and results in Lsm1-7-Pat1 complexes that are severely impaired in RNA binding in vitro. Interestingly, the mRNA decay and 3'-end protection defects of such CTD-truncated lsm1 mutants could be suppressed in trans by overexpression of the CTD polypeptide. Thus, unlike most Sm-like proteins, Lsm1 uniquely requires both its Sm-domain and CTD for its normal RNA-binding function.  相似文献   

13.
Yuichi Matsushima 《BBA》2009,1787(5):290-20499
The mitochondrial replicative DNA helicase is an essential cellular protein that shows high similarity with the bifunctional primase-helicase of bacteriophage T7, the gene 4 protein (T7 gp4). The N-terminal primase domain of T7 gp4 comprises seven conserved sequence motifs, I, II, III, IV, V, VI, and an RNA polymerase basic domain. The putative primase domain of metazoan mitochondrial DNA helicases has diverged from T7 gp4 and in particular, the primase domain of vertebrates lacks motif I, which comprises a zinc binding domain. Interestingly, motif I is conserved in insect mtDNA helicases. Here, we evaluate the effects of overexpression in Drosophila cell culture of variants carrying mutations in conserved amino acids in the N-terminal region, including the zinc binding domain. Overexpression of alanine substitution mutants of conserved amino acids in motifs I, IV, V and VI and the RNA polymerase basic domain results in increased mtDNA copy number as is observed with overexpression of the wild type enzyme. In contrast, overexpression of three N-terminal mutants W282L, R301Q and P302L that are analogous to human autosomal dominant progressive external ophthalmoplegia mutations results in mitochondrial DNA depletion, and in the case of R301Q, a dominant negative cellular phenotype. Thus whereas our data suggest lack of a DNA primase activity in Drosophila mitochondrial DNA helicase, they show that specific N-terminal amino acid residues that map close to the central linker region likely play a physiological role in the C-terminal helicase function of the protein.  相似文献   

14.
Severe stress causes plant and animal cells to form large cytoplasmic granules containing RNA and proteins. Here, we demonstrate the existence of stress-induced cytoplasmic RNA granules in Schizosaccharomyces pombe. Homologs to several known protein components of mammalian processing bodies and stress granules are found in fission yeast RNA granules. In contrast to mammalian cells, poly(A)-binding protein (Pabp) colocalizes in stress-induced granules with decapping protein. After glucose deprivation, protein kinase A (PKA) is required for accumulation of Pabp-positive granules and translational down-regulation. This is the first demonstration of a role for PKA in RNA granule formation. In mammals, the translation initiation protein eIF2α is a key regulator of formation of granules containing poly(A)-binding protein. In S. pombe, nonphosphorylatable eIF2α does not block but delays granule formation and subsequent clearance after exposure to hyperosmosis. At least two separate pathways in S. pombe appear to regulate stress-induced granules: pka1 mutants are fully proficient to form granules after hyperosmotic shock; conversely, eIF2α does not affect granule formation in glucose starvation. Further, we demonstrate a Pka1-dependent link between calcium perturbation and RNA granules, which has not been described earlier in any organism.  相似文献   

15.
16.
The Sm/Lsm proteins associate with small nuclear RNA to form the core of small nuclear ribonucleoproteins, required for processes as diverse as pre-mRNA splicing, mRNA degradation and telomere formation. The Lsm proteins from archaea are likely to represent the ancestral Sm/Lsm domain. Here, we present the crystal structure of the Lsm alpha protein from the thermophilic archaeon Methanobacterium thermoautotrophicum at 2.0 A resolution. The Lsm alpha protein crystallizes as a heptameric ring comprised of seven identical subunits interacting via beta-strand pairing and hydrophobic interactions. The heptamer can be viewed as a propeller-like structure in which each blade consists of a seven-stranded antiparallel beta-sheet formed from neighbouring subunits. There are seven slots on the inner surface of the heptamer ring, each of which is lined by Asp, Asn and Arg residues that are highly conserved in the Sm/Lsm sequences. These conserved slots are likely to form the RNA-binding site. In archaea, the gene encoding Lsm alpha is located next to the L37e ribosomal protein gene in a putative operon, suggesting a role for the Lsm alpha complex in ribosome function or biogenesis.  相似文献   

17.
mRNAs in eukaryotic cells are presumed to always associate with a set of proteins to form mRNPs. In Xenopus oocytes, a large pool of maternal mRNAs is masked from the translational apparatus as storage mRNPs. Here we identified Xenopus RAP55 (xRAP55) as a component of RNPs that associate with FRGY2, the principal component of maternal mRNPs. RAP55 is a member of the Scd6 or Lsm14 family. RAP55 localized to cytoplasmic foci in Xenopus oocytes and the processing bodies (P-bodies) in cultured human cells: in the latter cells, RAP55 is an essential constituent of the P-bodies. We isolated xRAP55-containing complexes from Xenopus oocytes and identified xRAP55-associated proteins, including a DEAD-box protein, Xp54, and a protein arginine methyltransferase, PRMT1. Recombinant xRAP55 repressed translation, together with Xp54, in an in vitro translation system. In addition, xRAP55 repressed translation in oocytes when tethered with a reporter mRNA. Domain analyses revealed that the N-terminal region of RAP55, including the Lsm domain, is important for the localization to P-bodies and translational repression. Taken together, our results suggest that xRAP55 is involved in translational repression of mRNA as a component of storage mRNPs.  相似文献   

18.
P bodies promote stress granule assembly in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Recent results indicate that nontranslating mRNAs in eukaryotic cells exist in distinct biochemical states that accumulate in P bodies and stress granules, although the nature of interactions between these particles is unknown. We demonstrate in Saccharomyces cerevisiae that RNA granules with similar protein composition and assembly mechanisms as mammalian stress granules form during glucose deprivation. Stress granule assembly is dependent on P-body formation, whereas P-body assembly is independent of stress granule formation. This suggests that stress granules primarily form from mRNPs in preexisting P bodies, which is also supported by the kinetics of P-body and stress granule formation both in yeast and mammalian cells. These observations argue that P bodies are important sites for decisions of mRNA fate and that stress granules, at least in yeast, primarily represent pools of mRNAs stalled in the process of reentry into translation from P bodies.  相似文献   

19.
Two highly conserved cationic amphipathic alpha-helical motifs, designated lentivirus lytic peptides 1 and 2 (LLP-1 and LLP-2), have been characterized in the carboxyl terminus of the transmembrane (TM) envelope glycoprotein (Env) of lentiviruses. Although various properties have been attributed to these domains, their structural and functional significance is not clearly understood. To determine the specific contributions of the Env LLP domains to Env expression, processing, and incorporation and to viral replication and syncytium induction, site-directed LLP mutants of a primary dualtropic infectious human immunodeficiency virus type 1 (HIV-1) isolate (ME46) were examined. Substitutions were made for highly conserved arginine residues in either the LLP-1 or LLP-2 domain (MX1 or MX2, respectively) or in both domains (MX4). The HIV-1 mutants with altered LLP domains demonstrated distinct phenotypes. The LLP-1 mutants (MX1 and MX4) were replication defective and showed an average of 85% decrease in infectivity, which was associated with an evident decrease in gp41 incorporation into virions without a significant decrease in Env expression or processing in transfected 293T cells. In contrast, MX2 virus was replication competent and incorporated a full complement of Env into its virions, indicating a differential role for the LLP-1 domain in Env incorporation. Interestingly, the replication-competent MX2 virus was impaired in its ability to induce syncytia in T-cell lines. This defect in cell-cell fusion did not correlate with apparent defects in the levels of cell surface Env expression, oligomerization, or conformation. The lack of syncytium formation, however, correlated with a decrease of about 90% in MX2 Env fusogenicity compared to that of wild-type Env in quantitative luciferase-based cell-cell fusion assays. The LLP-1 mutant MX1 and MX4 Envs also exhibited an average of 80% decrease in fusogenicity. Altogether, these results demonstrate for the first time that the highly conserved LLP domains perform critical but distinct functions in Env incorporation and fusogenicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号