首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.

Background

Proteins that are required for anchorage-independent survival of tumor cells represent attractive targets for therapeutic intervention since this property is believed to be critical for survival of tumor cells displaced from their natural niches. Anchorage-independent survival is induced by growth factor receptor hyperactivation in many cell types. We aimed to identify molecules that critically regulate IGF-1-induced anchorage-independent survival.

Methods and Results

We conducted a high-throughput siRNA screen and identified PTK6 as a critical component of IGF-1 receptor (IGF-1R)-induced anchorage-independent survival of mammary epithelial cells. PTK6 downregulation induces apoptosis of breast and ovarian cancer cells deprived of matrix attachment, whereas its overexpression enhances survival. Reverse-phase protein arrays and subsequent analyses revealed that PTK6 forms a complex with IGF-1R and the adaptor protein IRS-1, and modulates anchorage-independent survival by regulating IGF-1R expression and phosphorylation. PTK6 is highly expressed not only in the previously reported Her2+ breast cancer subtype, but also in high grade ER+, Luminal B tumors and high expression is associated with adverse outcomes.

Conclusions

These findings highlight PTK6 as a critical regulator of anchorage-independent survival of breast and ovarian tumor cells via modulation of IGF-1 receptor signaling, thus supporting PTK6 as a potential therapeutic target for multiple tumor types. The combined genomic and proteomic approaches in this report provide an effective strategy for identifying oncogenes and their mechanism of action.  相似文献   

4.
Bau DT  Tsai CW  Lin CC  Tsai RY  Tsai MH 《PloS one》2011,6(9):e16374

Background

Alpha B-crystallin (CRYAB) is a protein that functions as “molecular chaperone” in preserving intracellular architecture and cell membrane. Also, CRYAB is highly antiapoptotic. Abnormal CRYAB expression is a prognostic biomarker for oral cancer, while its genomic variations and the association with carcinogenesis have never been studied.

Methodology/Finding

Therefore, we hypothesized that CRYAB single nucleotide polymorphisms may be associated with oral cancer risk. In this hospital-based study, the association of CRYAB A-1215G (rs2228387), C-802G (rs14133) and intron2 (rs2070894) polymorphisms with oral cancer in a Taiwan population was investigated. In total, 496 oral cancer patients and 992 age- and gender-matched healthy controls were genotyped and analyzed. A significantly different frequency distribution was found in CRYAB C-802G genotypes, but not in A-1215G and intron2 genotypes, between the oral cancer and control groups. The CRYAB C-802G G allele conferred an increased risk of oral cancer (P = 1.49×10−5). Patients carrying CG/GG at CRYAB C-802G were of lower 5-year survival and higher recurrence rate than those of CC (P<0.05).

Conclusion/Significance

Our results provide the first evidence that the G allele of CRYAB C-802G is correlated with oral cancer risk and this polymorphism may be a useful marker for oral cancer recurrence and survival prediction for clinical reference.  相似文献   

5.
Lin CW  Hsieh YS  Hsin CH  Su CW  Lin CH  Wei LH  Yang SF  Chien MH 《PloS one》2012,7(4):e35078

Background

Oral cancer, which is the fourth most common cancer in Taiwanese men, is associated with environmental carcinogens. The possibility that genetic predisposition in nuclear factor-kappa B (NF-κB)-signaling pathways activation is linked to the development of oral squamous cell carcinoma (OSCC) requires investigation. The current study examines associations between polymorphisms within promoter regions of NFKB1 encoding NF-κB1 and NFKBIA encoding IkappaBalpha (IκBα) with both the susceptibility to develop OSCC and the clinicopathological characteristics of the tumors.

Methodology/Principal Findings

Genetic polymorphisms of NFKB1 and NFKBIA were analyzed by a real-time polymerase chain reaction (real-time PCR) for 462 patients with oral cancer and 520 non-cancer controls. We found that NFKB1 −94 ATGG1/ATGG2, −94 ATGG2/ATGG2, and the combination of −94 ATGG1/ATGG2 and ATGG2/ATGG2 genotypes NFKBIA −826 T (CT+TT) and −881 G (AG+GG) allelic carriages, were more prevalent in OSCC patients than in non-cancer participants. Moreover, we found that NFKB1 or NFKBIA gene polymorphisms seem to be related to susceptibility to develop oral cancer linked to betel nut and tobacco consumption. Finally, patients with oral cancer who had at least one −519 T allele of the NFKBIA gene were at higher risk for developing distant metastasis (P<.05), compared with those patients CC homozygotes.

Conclusions

Our results suggest that NFKB1 −94 ATTG2, NFKBIA −826 T, and −881 G alleles are associated with oral carcinogenesis. The combination of NFKB1 or NFKBIA gene polymorphisms and environmental carcinogens appears related to an increased risk of oral cancer. More importantly, the genetic polymorphism of NFKBIA −519 might be a predictive factor for the distal metastasis of OSCC in Taiwanese.  相似文献   

6.

Purpose

Prostate cancer (PCa) is characterized by deregulated expression of several tumor suppressor or oncogenic miRNAs. The objective of this study was the identification and characterization of miR-let-7c as a potential tumor suppressor in PCa.

Experimental Design

Levels of expression of miR-let-7c were examined in human PCa cell lines and tissues using qRT-PCR and in situ hybridization. Let-7c was overexpressed or suppressed to assess the effects on the growth of human PCa cell lines. Lentiviral-mediated re-expression of let-7c was utilized to assess the effects on human PCa xenografts.

Results

We identified miR-let-7c as a potential tumor suppressor in PCa. Expression of let-7c is downregulated in castration-resistant prostate cancer (CRPC) cells. Overexpression of let-7c decreased while downregulation of let-7c increased cell proliferation, clonogenicity and anchorage-independent growth of PCa cells in vitro. Suppression of let-7c expression enhanced the ability of androgen-sensitive PCa cells to grow in androgen-deprived conditions in vitro. Reconstitution of Let-7c by lentiviral-mediated intratumoral delivery significantly reduced tumor burden in xenografts of human PCa cells. Furthermore, let-7c expression is downregulated in clinical PCa specimens compared to their matched benign tissues, while the expression of Lin28, a master regulator of let-7 miRNA processing, is upregulated in clinical PCa specimens.

Conclusions

These results demonstrate that microRNA let-7c is downregulated in PCa and functions as a tumor suppressor, and is a potential therapeutic target for PCa.  相似文献   

7.
8.

Background

The Maillard reaction is a chemical reaction occurring between a reducing sugar and an amino acid, generally requiring thermal processing. Maillard reaction products (MRPs) have antioxidant, antimutagenic, and antibacterial effects though 2,4-bis (p-hydroxyphenyl)-2-butenal (HPB242), a fructose-tyrosine MRP, appears to inhibit proliferation of cancer cells, its mechanism of action has not been studied in detail. The purpose of this study was to investigate the anti-proliferative effects of 2,4-bis (p-hydroxyphenyl)-2-butenal (HPB242) on two oral squamous cell carcinoma (OSCC) cell lines, HN22 and HSC4, through regulation of specificity protein 1 (Sp1).

Results

HPB242 treatment dramatically reduced the cell growth rate and apoptotic cell morphologies. Sp1 was significantly inhibited by HPB242 in a dose-dependent manner. Furthermore, cell cycle regulating proteins and anti-apoptotic proteins, which are known as Sp1 target genes, were altered at the molecular levels. The key important regulators in the cell cycle such as p27 were increased, whereas cell proliferation- and survival-related proteins such as cyclin D1, myeloid leukemia sequence 1 (Mcl-1) and survivin were significantly decreased by HPB242 or suppressed Sp1 levels, however pro-apoptotic proteins caspase3 and PARP were cleaved in HN22 and HSC4.

Conclusions

HPB242 may be useful as a chemotherapeutic agent for OSCC for the purpose of treatment and prevention of oral cancer and for the improvement of clinical outcomes.  相似文献   

9.

Background

We aimed to examine the expression level of Nucleophosmin (NPM1) protein in colon cancer tissues and to investigate the potential role of NPM1 in the regulation of cell migration and invasiveness.

Methods

Immunohistochemical assay was performed to examine the expression pattern of NPM1 in 31 groups of colonic carcinoma samples, including colon tumors, adjacent normal tissues, and matched metastatic lymph nodes from the same patients. Small interfering RNA technique and exogenous expression of wild type NPM1 methods were used to further verify the function of NPM1.

Results

High-expression of NPM1 correlates with lymph node metastasis (P = 0.0003) and poor survival rate of human colon cancer patients (P = 0.017). SiRNA-mediated reduction of NPM1 was also shown to inhibit the migration and invasiveness of metastatic colon cancer HCT116 cell line. In addition, the exogenous expression of NPM1 in HT29 cells, a NPM1 low expression and low invasive colon cancer cell line, enhanced cell migration and invasiveness along with increased cell proliferation.

Conclusions

The current study uncovered the critical role of NPM1 in the regulation of colon cancer cells migration and invasion, and NPM1 may serve as a potential marker for the prognosis of colon cancer patients.  相似文献   

10.
Wong CC  Wong CM  Ko FC  Chan LK  Ching YP  Yam JW  Ng IO 《PloS one》2008,3(7):e2779

Aims

Deleted in liver cancer 1 (DLC1), a member of RhoGTPase activating protein (GAP) family, is known to have suppressive activities in tumorigenicity and cancer metastasis. However, the underlying molecular mechanisms of how DLC1 suppresses cell motility have not been fully elucidated. Rho-kinase (ROCK) is an immediate down-stream effector of RhoA in mediating cellular cytoskeletal events and cell motility. In the present study, we aimed to investigate the effects of DLC1 on Rho/ROCK signaling pathway in hepatocellular carcinoma (HCC).

Methodology/Principal Findings

We demonstrated that DLC1 negatively regulated ROCK-dependent actomyosin contractility. From immumofluorescence study, we found that ectopic expression of DLC1 abrogated Rho/ROCK-mediated cytoskeletal reorganization including formation of stress fibers and focal adhesions. It also downregulated cortical phosphorylation of myosin light chain 2 (MLC2). These inhibitory events by DLC1 were RhoGAP-dependent, as RhoGAP-deficient mutant of DLC1 (DLC1 K714E) abolished these inhibitory events. In addition, from western study, DLC1 inhibited ROCK-related myosin light chain phosphatase targeting unit 1 (MYPT1) phosphorylation at Threonine 853. By examining cell morphology under microscope, we found that ectopic expression of dominant-active ROCK released cells from DLC1-induced cytoskeletal collapse and cell shrinkage.

Conclusion

Our data suggest that DLC1 negatively regulates Rho/ROCK/MLC2. This implicates a ROCK-mediated pathway of DLC1 in suppressing metastasis of HCC cells and enriches our understanding in the molecular mechanisms involved in the progression of hepatocellular carcinoma.  相似文献   

11.
Zeng T  Gao H  Yu P  He H  Ouyang X  Deng L  Zhang Y 《PloS one》2011,6(9):e25343

Background

Kin17 is ubiquitously expressed at low levels in human tissue and participates in DNA replication, DNA repair and cell cycle control. Breast cancer cells are characterized by enabling replicative immortality and accumulated DNA damage. However, whether kin17 contributes to breast carcinogenesis remains unknown.

Methodology/Principal Findings

In this study, we show for the first time that kin17 is an important molecule related to breast cancer. Our results show that kin17 expression was markedly increased in clinical breast tumors and was associated with tumor grade, Ki-67 expression, p53 mutation status and progesterone receptor expression, which were assessed in a clinicopathologic characteristics review. Knockdown of kin17 inhibited DNA replication and repair, blocked cell cycle progression and inhibited anchorage-independent growth, while increasing sensitivity to chemotherapy in breast cancer cells. Moreover, kin17 silencing decreased EGF-stimulated cell growth. Furthermore, overexpression of kin17 promoted DNA replication and cell proliferation in MCF-10A.

Conclusions/Significance

Our findings indicate that up-regulation of kin17 is strongly associated with cellular proliferation, DNA replication, DNA damage response and breast cancer development. The increased level of kin17 was not only a consequence of immortalization but also associated with tumorigenesis. Therefore, kin17 could be a novel therapeutic target for inhibiting cell growth in breast cancer.  相似文献   

12.

Background

We have previously shown that serum/glucocorticoid regulated kinase 1 (SGK1) is down-regulated in colorectal cancers (CRC) with respect to normal tissue. As hyper-methylation of promoter regions is a well-known mechanism of gene silencing in cancer, we tested whether the SGK1 promoter region was methylated in colonic tumour samples.

Methodology/Principal Findings

We investigated the methylation profile of the two CpG islands present in the promoter region of SGK1 in a panel of 5 colorectal cancer cell lines by sequencing clones of bisulphite-treated DNA samples. We further confirmed our findings in a panel of 10 normal and 10 tumour colonic tissue samples of human origin. We observed CpG methylation only in the smaller and more distal CpG island in the promoter region of SGK1 in both normal and tumour samples of colonic origin. We further identified a single nucleotide polymorphism (SNP, rs1743963) which affects methylation of the corresponding CpG.

Conclusions/Significance

Our results show that even though partial methylation of the promoter region of SGK1 is present, this does not account for the different expression levels seen between normal and tumour tissue.  相似文献   

13.

Background

Spinal cord injury (SCI) often results in permanent functional loss. This physical trauma leads to secondary events, such as the deposition of inhibitory chondroitin sulfate proteoglycan (CSPG) within astroglial scar tissue at the lesion.

Methodology/Principal Findings

We examined whether local delivery of constitutively active (CA) Rho GTPases, Cdc42 and Rac1 to the lesion site alleviated CSPG-mediated inhibition of regenerating axons. A dorsal over-hemisection lesion was created in the rat spinal cord and the resulting cavity was conformally filled with an in situ gelling hydrogel combined with lipid microtubes that slowly released constitutively active (CA) Cdc42, Rac1, or Brain-derived neurotrophic factor (BDNF). Treatment with BDNF, CA-Cdc42, or CA-Rac1 reduced the number of GFAP-positive astrocytes, as well as CSPG deposition, at the interface of the implanted hydrogel and host tissue. Neurofilament 160kDa positively stained axons traversed the glial scar extensively, entering the hydrogel-filled cavity in the treatments with BDNF and CA-Rho GTPases. The treated animals had a higher percentage of axons from the corticospinal tract that traversed the CSPG-rich regions located proximal to the lesion site.

Conclusion

Local delivery of CA-Cdc42, CA-Rac1, and BDNF may have a significant therapeutic role in overcoming CSPG-mediated regenerative failure after SCI.  相似文献   

14.
Zhao Y  Kong X  Li X  Yan S  Yuan C  Hu W  Yang Q 《PloS one》2011,6(12):e29363

Background

Breast cancer is the most prevalent cancer in women worldwide and metastatic breast cancer has very poor prognosis. Inflammation has been implicated in migration and metastasis of breast cancer, although the exact molecular mechanism remains elusive.

Principal Findings

We show that the pro-inflammatory endotoxin Lipopolysaccharide (LPS) upregulates the expression of Metadherin (MTDH), a recently identified oncogene, in a number of breast cancer lines. Stable knockdown of MTDH by shRNA in human breast MDA-MB-231 cells abolishes LPS-induced cell migration and invasion as determined by several in vitro assays. In addition, knockdown of MTDH diminishes Nuclear Factor-kappa B (NF-κB) activation by LPS and inhibited LPS-induced IL-8 and MMP-9 production.

Conclusions

These results strongly suggest that MTDH is a pivotal molecule in inflammation-mediated tumor metastasis. Since NF-κB, IL-8 and MMP-9 play roles in LPS-induced invasion or metastasis, the mechanism of MTDH-promoted invasion and metastasis may be through the activation of NF-κB, IL-8 and MMP-9, also suggesting a role of MTDH in regulating both inflammatory responses and inflammation-associated tumor invasion. These findings indicate that MTDH is involved in inflammation-induced tumor progression, and support that MTDH targeting therapy may hold promising prospects in treating breast cancer.  相似文献   

15.
16.
Xavier MJ  Williams MJ 《PloS one》2011,6(5):e19504

Background

When the parasitoid wasp Leptopilina boulardi lays an egg in a Drosophila larva, phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. The Drosophila β-integrin Myospheroid (Mys) is necessary for lamellocytes to adhere to the cellular capsule surrounding L. boulardi eggs. Integrins are heterodimeric adhesion receptors consisting of α and β subunits, and similar to other plasma membrane receptors undergo ligand-dependent endocytosis. In mammalian cells it is known that integrin binding to the extracellular matrix induces the activation of Rac GTPases, and we have previously shown that Rac1 and Rac2 are necessary for a proper encapsulation response in Drosophila larvae. We wanted to test the possibility that Myospheroid and Rac GTPases interact during the Drosophila anti-parasitoid immune response.

Results

In the current study we demonstrate that Rac1 is required for the proper localization of Myospheroid to the cell periphery of haemocytes after parasitization. Interestingly, the mislocalization of Myospheroid in Rac1 mutants is rescued by hyperthermia, involving the heat shock protein Hsp83. From these results we conclude that Rac1 and Hsp83 are required for the proper localization of Mys after parasitization.

Significance

We show for the first time that the small GTPase Rac1 is required for Mysopheroid localization. Interestingly, the necessity of Rac1 in Mys localization was negated by hyperthermia. This presents a problem, in Drosophila we quite often raise larvae at 29°C when using the GAL4/UAS misexpression system. If hyperthermia rescues receptor endosomal recycling defects, raising larvae in hyperthermic conditions may mask potentially interesting phenotypes.  相似文献   

17.

Background and Aims

Increasing evidence has suggested that hepatocellular carcinoma (HCC) might originate from a distinct subpopulation called cancer stem cells (CSCs), which are responsible for the limited efficacy of conventional therapies. We have previously demonstrated that granulin-epithelin precursor (GEP), a pluripotent growth factor, is upregulated in HCC but not in the adjacent non-tumor, and that GEP is a potential therapeutic target for HCC. Here, we characterized its expression pattern and stem cell properties in fetal and cancerous livers.

Methods

Protein expression of GEP in fetal and adult livers was examined in human and mouse models by immunohistochemical staining and flow cytometry. Liver cancer cell lines, isolated based on their GEP and/or ATP-dependent binding cassette (ABC) drug transporter ABCB5 expression, were evaluated for hepatic CSC properties in terms of colony formation, chemoresistance and tumorigenicity.

Results

We demonstrated that GEP was a hepatic oncofetal protein that expressed in the fetal livers, but not in the normal adult livers. Importantly, GEP+ fetal liver cells co-expressed the embryonic stem (ES) cell-related signaling molecules including β-catenin, Oct4, Nanog, Sox2 and DLK1, and also hepatic CSC-markers CD133, EpCAM and ABCB5. Phenotypic characterization in HCC clinical specimens and cell lines revealed that GEP+ cancer cells co-expressed these stem cell markers similarly as the GEP+ fetal liver cells. Furthermore, GEP was shown to regulate the expression of ES cell-related signaling molecules β-catenin, Oct4, Nanog, and Sox2. Isolated GEPhigh cancer cells showed enhanced colony formation ability and chemoresistance when compared with the GEPlow counterparts. Co-expression of GEP and ABCB5 better defined the CSC populations with enhanced tumorigenic ability in immunocompromised mice.

Conclusions

Our findings demonstrate that GEP is a hepatic oncofetal protein regulating ES cell-related signaling molecules. Co-expression of GEP and ABCB5 further enriches a subpopulation with enhanced CSC properties. The current data provide new insight into the therapeutic strategy.  相似文献   

18.
19.

Background

The effective therapies for oral cancer patients of stage III and IV are generally surgical excision and radiation combined with adjuvant chemotherapy using 5-Fu and Cisplatin. However, the five-year survival rate is still less than 30% in Taiwan. Therefore, evaluation of effective drugs for oral cancer treatment is an important issue. Many studies indicated that aurora kinases (A, B and C) were potential targets for cancer therapies. Reversine was proved to be a novel aurora kinases inhibitor with lower toxicity recently. In this study, the potentiality for reversine as an anticancer agent in oral squamous cell carcinoma (OSCC) was evaluated.

Methods

Effects of reversine on cell growth, cell cycle progress, apoptosis, and autophagy were evaluated mainly by cell counting, flow cytometry, immunoblot, and immunofluorescence.

Results

The results demonstrated that reversine significantly suppressed the proliferation of two OSCC cell lines (OC2 and OCSL) and markedly rendered cell cycle arrest at G2/M stage. Reversine also induced cell death via both caspase-dependent and -independent apoptosis. In addition, reversine could inhibit Akt/mTORC1 signaling pathway, accounting for its ability to induce autophagy.

Conclusions

Taken together, reversine suppresses growth of OSCC via multiple mechanisms, which may be a unique advantage for developing novel therapeutic regimens for treatment of oral cancer in the future.  相似文献   

20.

Background

Breast cancer is a heterogeneous disease that is not totally eradicated by current therapies. The classification of breast tumors into distinct molecular subtypes by gene profiling and immunodetection of surrogate markers has proven useful for tumor prognosis and prediction of effective targeted treatments. The challenge now is to identify molecular biomarkers that may be of functional relevance for personalized therapy of breast tumors with poor outcome that do not respond to available treatments. The Mitochondrial Tumor Suppressor (MTUS1) gene is an interesting candidate whose expression is reduced in colon, pancreas, ovary and oral cancers. The present study investigates the expression and functional effects of MTUS1 gene products in breast cancer.

Methods and Findings

By means of gene array analysis, real-time RT-PCR and immunohistochemistry, we show here that MTUS1/ATIP3 is significantly down-regulated in a series of 151 infiltrating breast cancer carcinomas as compared to normal breast tissue. Low levels of ATIP3 correlate with high grade of the tumor and the occurrence of distant metastasis. ATIP3 levels are also significantly reduced in triple negative (ER- PR- HER2-) breast carcinomas, a subgroup of highly proliferative tumors with poor outcome and no available targeted therapy. Functional studies indicate that silencing ATIP3 expression by siRNA increases breast cancer cell proliferation. Conversely, restoring endogenous levels of ATIP3 expression leads to reduced cancer cell proliferation, clonogenicity, anchorage-independent growth, and reduces the incidence and size of xenografts grown in vivo. We provide evidence that ATIP3 associates with the microtubule cytoskeleton and localizes at the centrosomes, mitotic spindle and intercellular bridge during cell division. Accordingly, live cell imaging indicates that ATIP3 expression alters the progression of cell division by promoting prolonged metaphase, thereby leading to a reduced number of cells ungergoing active mitosis.

Conclusions

Our results identify for the first time ATIP3 as a novel microtubule-associated protein whose expression is significantly reduced in highly proliferative breast carcinomas of poor clinical outcome. ATIP3 re-expression limits tumor cell proliferation in vitro and in vivo, suggesting that this protein may represent a novel useful biomarker and an interesting candidate for future targeted therapies of aggressive breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号