首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Abstract. The position-dependent mitotic index before, and 1, 2 and 3 h after vincristine was scored. the accumulation of cells in mitosis leads to an increase in the mitotic index from 0.06 to 0.34 at crypt positions 8-12. Surprisingly, the leading edge of the position-related mitotic index distribution moves to higher crypt positions although cell division was stopped. In addition, the vertical clustering of mitotic figures in sections was recorded. the data were examined using a previously described computer crypt model. We conclude: the average mitotic phase duration is about 0.7 h (40 min) and varies little with cell position; the geometrical correction factor for overscoring mitoses in crypt sections is about 0.6-0.7 and adjacent cell columns can merge. Lateral cell displacement after mitosis, as predicted in a previous model analysis, would be a mechanism to counteract other forces that tend to reduce the crypt circumference. In the normal steady state merging and expansion processes would just balance each other. This would not follow if one mechanism was blocked. Thus we propose a new concept in which the crypt geometry would be dynamically determined by cell proliferative activity in connection with lateral positioning of new cells on one hand and contracting forces on the other hand.  相似文献   

2.
Various counts have been made of the number of mitotic figures in whole crypts and sections of crypts of the small intestine of the mouse. Samples were analysed from animals killed at different times of the day and at different times after administration of vincristine. Measurements have been made of the size of mitotic and interphase nuclei and of the radial position of mitotic figures. The correction factor, f, which is required to take into account the enhancement of mitotic counts in sections as a consequence of their centripetal position has been investigated. The results indicate the following: (1) transverse sections of the crypt differ from longitudinal sections if they involve cutting the intestine before fixation which may result in a relaxation of the crypt and its widening by 25%; (2) columnar cell nuclei have a shape that resembles a sphere flattened so that the average diameter is 20% greater in crypt transverse sections; (3) mitotic nuclei tend to be about half-way between the crypt edge and the central axis of the crypt; (4) between about four and seven times more mitotic figures have their mitotic axis parallel to the long axis of the crypt; (5) about one-third of all mitotic figures in a crypt are seen in a longitudinal section of the crypt. If this is related to the number of cells in the crypt as a whole and in a section, a correction factor fD for the mitotic index of 0.59 is obtained; (6) the correction factor fT derived from the shape and position of the mitotic figures measured in 3 microns longitudinal sections is 0.53; (7) relating cell cycle and mitotic accumulation data using a computer-based model of the crypt also permits a correction factor fmod to be estimated. This gives a value of 0.66. When sectioned material is used to calculate a mitotic index the most appropriate correction factor is fD; for mouse small intestine it is 0.59.  相似文献   

3.
We examined the effects of thermal injury on intestinal epithelial cell proliferation and death. We recorded histologically identifiable mitotic and apoptotic crypt cells in relation to cell position after a 60% full thickness cutaneous thermal injury in the rat. The injury significantly reduced mitosis (0.53 +/- 0.11 vs. 1. 50 +/- 0.70, P < 0.05) at cell positions 4-6, stem cells, 6 h after injury. A similar reduction in mitosis (1.13 +/- 0.59 vs. 3.50 +/- 0. 80, P < 0.05) was observed at higher cell positions 7-9 12 h after injury, indicating a positional cell shift. In addition, a significant increase in the number of apoptotic bodies occurred at cell positions 7-9 (2.32 +/- 0.87 vs. 0.13 +/- 0.22, P < 0.05) and 10-12 (2.2 +/- 0.12 vs. 0.00, P < 0.05) 6 h after injury. Thermal injury-induced alterations in mitotic and apoptotic activities were transient since crypts recovered with a moderate increase in mitotic activity 24 h after injury. In control and thermal-injury rats 24 h after injury, crypt cell mitosis and apoptosis did not differ significantly. This demonstrates that cutaneous thermal injury causes a transient suppression of mitosis as well as induction of apoptosis in a cell position-dependent manner in the small intestinal crypt.  相似文献   

4.
The cells of the proliferative compartment in the crypt of the small intestine undergo a step by step differentiation and/or maturation from stem cells to the functional cells on the villi. The consequent hierarchical organization of the proliferative cell population can be related to the actual position of cells within the crypt. The stem cells are found near the bottom of the crypt with the more mature cells occurring at increasingly higher positions. The sensitivity of proliferative cells in the crypt of small intestine to radiation-induced mitotic delay was investigated at each position within the crypt. Using the stathmokinetic method (vincristine accumulation), the following were noted. The yield of mitotic figures 3 h immediately after irradiation showed a strong cell position dependence with the cells at the base of the crypt being most inhibited and those at the top of the proliferative compartment least affected. The mitotic yields were largely unaffected for the first 15 min suggesting that there is a transition point (Tp) for radiosensitivity which is located about 15 min before metaphase for all crypt cells. Cells located less than 15 min from metaphase are unaffected while those more than 15 min from metaphase are inhibited from further cell cycle progression. After this initial delay all proliferative cells were inhibited in their progression through G2 but some recovered more quickly than others. The ratio of the time of division delay (Td) in stem cells to that in cells at the top of the proliferative compartment was about 3:1. In absolute values Td after 1.0 Gy was about 1 h and 2.8 h, for cells at the top of the crypt and at the base, respectively. After 2.5 Gy the corresponding values were less than 3 h and between 5 and 6 h for the mid-crypt and crypt base respectively. There is thus a dependence on dose for the duration of the mitotic inhibition which for the cells at the top of the crypt is similar to the widely quoted average value 1 h per Gy, but the duration depends strongly on cell position. Thus not all proliferative cells respond in the same way. The duration is shorter the closer the proliferative cells are to their last cell division in the proliferative hierarchy in the crypt and longest for cells situated where the stem cells are to be expected.  相似文献   

5.
Epithelial cell loss was induced in the descending colon of the rat by temporary ischaemia to investigate whether this would lead to an increase in crypt cell proliferation. Shortly after the temporary ischaemia the number of cells per crypt was markedly reduced, and it was shown that the cell loss occurred mainly from the non-proliferating upper half of the crypt. The number of cells per crypt reached control values again after 24-48 h. There was a marked increase in proliferative activity, as reflected by the labelling index after 3HTdR and by the mitotic index, with peak values at 16 and 24 h after ischaemia. After 48 h the proliferative indices were normal again. The increase in crypt cell proliferation was characterized by an increase in the labelling index as well as in the mitotic index per crypt cell position. No enlargement of the proliferative cell compartment in the crypt was observed. It is most likely then that the increase in crypt cell proliferation was brought about by a shortening of the cell cycle, since the growth fraction in the lower half of the crypt approaches 1.0. The possible implications of the present data for the control of colonic cell proliferation and colonic carcinogenesis are discussed.  相似文献   

6.
The microneedle injection technique is one of the most established procedures for the introduction of proteins into living cells. To analyse injected proteins which are important in cell cycle progression it is often necessary to determine the mitotic index. Measuring the mitotic index after microinjection is complicated because only a limited number of cells of the whole cell population is microinjected. Therefore, we attempted to establish a new method to determine the mitotic index using microinjection of fluorescently labelled alpha/beta-tubulin into mammalian cells which allows to monitor the injected cells simultaneously with the determination of the mitotic index. We demonstrated that fluorescently labelled tubulin incorporates efficiently into the mitotic spindle apparatus. Fluorescence remains stable for several hours which is sufficient to observe the progression of cells through the M-phase of the cell cycle. The determination of the mitotic index with the method presented here gave similar results to those determined using other methods. With this method also different stages of mitosis can be visualized by analysing various steps of spindle formation. Thus, this rapid method allows the monitoring of the injected cells after microneedle injection and simultaneously the determination of the mitotic index.  相似文献   

7.
Abstract. Various counts have been made of the number of mitotic figures in whole crypts and sections of crypts of the small intestine of the mouse. Samples were analysed from animals killed at different times of the day and at different times after administration of vincristine. Measurements have been made of the size of mitotic and interphase nuclei and of the radial position of mitotic figures. the correction factor, f, which is required to take into account the enhancement of mitotic counts in sections as a consequence of their centripetal position has been investigated. the results indicate the following: (1) transverse sections of the crypt differ from longitudinal sections if they involve cutting the intestime before fixation which may result in a relaxation of the crypt and its widening by 25%; (2) columnar cell nuclei have a shape that resembles a sphere flattened so that the average diameter is 20% greater in crypt transverse sections; (3) mitotic nuclei tend to be about half-way between the crypt edge and the central axis of the crypt; (4) between about four and seven times more mitotic figures have their mitotic axis parallel to the long axis of the crypt; (5) about one-third of all mitotic figures in a crypt are seen in a longitudinal section of the crypt. If this is related to the number of cells in the crypt as a whole and in a section, a correction factor fd for the mitotic index of 0.59 is obtained; (6) the correction factor fT derived from the shape and position of the mitotic figures measured in 3 μm longitudinal sections is 0.53; (7) relating cell cycle and mitotic accumulation data using a computer-based model of the crypt also permits a correction factor fmod to be estimated. This gives a value of 0.66. When sectioned material is used to calculate a mitotic index the most appropriate correction factor is fD; for mouse small intestine it is 0.59.  相似文献   

8.
Epithelia are continuously self-renewed, but how epithelial integrity is maintained during the morphological changes that cells undergo in mitosis is not well understood. Here, we show that as epithelial cells round up when they enter mitosis, they exert tensile forces on neighboring cells. We find that mitotic cell–cell junctions withstand these tensile forces through the mechanosensitive recruitment of the actin-binding protein vinculin to cadherin-based adhesions. Surprisingly, vinculin that is recruited to mitotic junctions originates selectively from the neighbors of mitotic cells, resulting in an asymmetric composition of cadherin junctions. Inhibition of junctional vinculin recruitment in neighbors of mitotic cells results in junctional breakage and weakened epithelial barrier. Conversely, the absence of vinculin from the cadherin complex in mitotic cells is necessary to successfully undergo mitotic rounding. Our data thus identify an asymmetric mechanoresponse at cadherin adhesions during mitosis, which is essential to maintain epithelial integrity while at the same time enable the shape changes of mitotic cells.  相似文献   

9.
Previous examination of dividing cells in the isthmus of the mouse pyloric antrum by using semithin (0.5-micron-thick) Epon sections revealed that the prophasic condensation of chromosomes began early in the DNA-synthesizing (S) stage. In order to examine whether the same observation could be made in other proliferating cell types, the crypt base columnar cells in mouse duodenum and the hepatocytes of the rat 48 hr after partial hepatectomy were investigated by morphologic and radioautographic techniques. When crypt base columnar cells were studied in semithin Epon sections, the four phases of mitosis showed the characteristic features described by classical cytologists. Moreover, the proportion of cells in prophase and telophase was high. To relate the mitotic phases to the stages of the cell cycle, the "frequency of labeled mitoses method" provided the duration of the cell cycle, 12.3 hr, and of the S stage, 7.3 hr. From the frequency of the occurrence of mitotic phases, it was estimated that metaphase lasted 0.3 hr and anaphase 0.11 hr, in line with previous estimates. However, the durations of prophase and telophase were long, 5.9 and 1.9 hr, respectively. The whole mitotic process took over 8 hr. From the duration of prophase and cycle stages, it was calculated that 67% of the S stage was occupied by prophasic cells. In fair agreement with this estimate, 68% of the labeled cells 10 min after a 3H-thymidine injection were found to be in prophase. In regenerating hepatocytes, the morphological features and frequency of prophase and telophase cells were similar to those observed in duodenal crypt cells. While the cycle time was not measured and, therefore, the duration of cycle stages and mitotic phases could not be estimated, it is likely that their duration would be of the same order of magnitude. In conclusion, the mitotic process in duodenal crypt cells takes over 8 hr. Moreover, the crypt cells, like antral isthmal cells, show features of early prophase soon after they enter the S stage of the cycle.  相似文献   

10.
Circadian variation in the small bowel mucosa of male Balb/c mouse was studied. The labelling was studied at 2 hourly intervals throughout a 24 h period by using autoradiographic techniques with 3HTdR. A 12 h light-dark schedule was employed. Villus and crypt cell populations, together with the mitotic index, were studied using the micro-dissection technique. Growth fractions were determined from the labelling index distribution curves. The peaks in both villus and crypt cell population occurred during the day, with maximum villus population of 3,887 cells/villus at 13.00 h and maximum crypt population of 178 cells per crypt at 09.00 h. The peaks of labelling index (Is) and mitotic index (Im) occurred during the dark period. The peak value of Is 38% at 17.00 h-19.00 h, was about 6-8 h in advance of the peak value of Im (6%). The peak in growth fraction corresponded to that of the labelling index.  相似文献   

11.
M Kallajoki  K Weber    M Osborn 《The EMBO journal》1991,10(11):3351-3362
Six monoclonal antibodies identify a 210 kDa polypeptide which shows a cell cycle specific redistribution from the nucleus to the mitotic spindle. In interphase cells this polypeptide was localized in the nucleus and behaved during differential cell extraction as a component of the nuclear matrix. It accumulated in the centrosome region at prophase, in the pole regions of the mitotic spindle at metaphase and in crescents at the poles in anaphase, and reassociated with the nuclei as they reformed in telophase. Due to its staining pattern we call the protein the Spindle Pole-Nucleus (SPN) antigen. The localization of SPN antigen during mitosis was dependent on the integrity of the spindle since treatment of cells with nocodazole resulted in the dispersal of SPN antigen into many small foci which acted as microtubule organizing centres when the drug was removed. The SPN antigen was present in nuclei and mitotic spindles of all human and mammalian cell lines and tissues so far tested. When microinjected into the cytoplasm or nuclei of HeLa cells, one antibody caused a block in mitosis. Total cell number remained constant or decreased slightly after 24 h. At this time, about half the cells were arrested in a prometaphase-like state and revealed aberrant spindles. Many other cells were multinucleate. These results show that the SPN antigen is a protein associated with mitotic spindle microtubules which has to function correctly for the cell to complete mitosis.  相似文献   

12.
During the growth of EMT6/Ro mammary tumor multicell spheroids, a large number of cells are shed into the suspension medium. The rate of cell shedding was 218 cells per square millimeter of spheroid surface per hour, or up to 1.5% of the total spheroid cell content per hour. Shed cells had a clonogenic capacity equal to that of exonential monolayer cultures and were further characterized by volume distribution, mitotic index, flow cytoflurometry, and autoradiography. The results indicated that cells are released from the spheroid surface at mitosis, presumably due to a loosening of the cell-to-cell attachment during this cycle phase. These mitotic cells, when placed in monolayer culture, attached and grew synchronously with a cell cycle time of about 13 hours. Shed cells kept in suspension culture had a similar cell cycle time, but these cells reaggregated immediately after mitosis. The results indicated that cell shedding and reaggregation both occur near the time of mitosis and are intrinsic factors regulating the initiation and subsequent growth of multicell spheroids. Although these studies were done with spheroids cultured in vitro, shedding of mitotic cells may play an important role in the in vivo process of metastasis.  相似文献   

13.
Under normal conditions, mammalian cells will not initiate mitosis in the presence of either unreplicated or damaged DNA. We report here that staurosporine, a tumor promoter and potent protein kinase inhibitor, can uncouple mitosis from the completion of DNA replication and override DNA damage-induced G2 delay. Syrian hamster (BHK) fibroblasts that were arrested in S phase underwent premature mitosis at concentrations as low as 1 ng/ml, with maximum activity seen at 50 ng/ml. Histone H1 kinase activity was increased to approximately one-half the level found in normal mitotic cells. Inhibition of protein synthesis during staurosporine treatment blocked premature mitosis and suppressed the increase in histone H1 kinase activity. In asynchronously growing cells, staurosporine transiently increased the mitotic index and histone H1 kinase activity but did not induce S phase cells to undergo premature mitosis, indicating a requirement for S phase arrest. Staurosporine also bypassed the cell cycle checkpoint that prevents the onset of mitosis in the presence of damaged DNA. The delay in mitotic onset resulting from gamma radiation was reduced when irradiation was followed immediately by exposure to 50 ng/ml of staurosporine. These findings indicate that inhibition of protein phosphorylation by staurosporine can override two important checkpoints for the initiation of mitosis in BHK cells.  相似文献   

14.
Entry into mitosis of the eukaryotic cell cycle is driven by rising cyclin-dependent kinase (Cdk) activity. During exit from mitosis, Cdk activity must again decline. Cdk downregulation by itself, however, is not able to guide mitotic exit, if not a phosphatase reverses mitotic Cdk phosphorylation events. In budding yeast, this role is played by the Cdc14 phosphatase. We are gaining an increasingly detailed picture of its regulation during anaphase, and of the way it orchestrates ordered progression through mitosis. Much less is known about protein dephosphorylation during mitotic exit in organisms other than budding yeast, but evidence is now mounting for crucial contributions of regulated phosphatases also in metazoan cells.  相似文献   

15.
Since a culture increases in cell number when dividing cells separate into two newborn cells, the fraction of mitotic cells in a growing cell population directly reflects the overall growth behavior of a cell culture. To rapidly assess the effects of growth conditions on the fraction of mitotic cells we have employed an antibody specific for the phosphorylated form of histone H3 for the identification of mitotic cells using flow cytometry. The phosphorylation of histone H3 closely correlates with the chromosomal condensation that accompanies the onset of mitosis, and, therefore, it represents a convenient marker for dividing cells. We have optimized the protocol for the staining of mitotic cells for both Chinese hamster ovary and hybridoma cell cultures. Fluorescence micrographs taken of stained cells show that cells in the various stages of mitosis can be detected based on the morphological characteristics of the chromosomes. The variation in the mitotic cell fraction has been determined throughout the batch growth phases of cultures under different growth conditions. The dynamics of the mitotic index show that balanced growth was never truly reached and that the growth rate is in fact quite variable for these cultures since large variations in the mitotic index are observed. In addition, a large increase in the fraction of mitotic cells just prior to the exponential growth phase for all cultures indicates that they are partially synchronized at the exit from the lag phase. According to a two-staged, age structured population balance model, the mitotic index is directly proportional to the growth rate of a culture. The proportionality constant for this case is shown to be the time required for cells to progress through mitosis. This time is believed to be constant for a particular cell line, as shown by experimental data. Thus, growth rates can be determined solely by measurement of the fraction of cells in mitosis. The mitotic index measurements were then used to calculate the growth in cell number of the cultures, and these simulations accurately reflect observed cell counts. Other simulations also show that changes in cell growth can be predicted before they are reflected in the cell count data. This technique can be used as a sensitive indicator of cell growth and could be useful as a process monitoring technique and for developing better feeding strategies for animal cell cultures.  相似文献   

16.
We used fluorescence in situ hybridization (FISH) to study the positions of human chromosomes on the mitotic rings of cultured human lymphocytes, MRC-5 fibroblasts, and CCD-34Lu fibroblasts. The homologous chromosomes of all three cell types had relatively random positions with respect to each other on the mitotic rings of prometaphase rosettes and anaphase cells. Also, the positions of the X and Y chromosomes, colocalized with the somatic homologues in male cells, were highly variable from one mitotic ring to another. Although random chromosomal positions were found in different pairs of CCD-34Lu and MRC-5 late-anaphases, the separations between the same homologous chromosomes in paired late-anaphase and telophase chromosomal masses were highly correlated. Thus, although some loose spatial associations of chromosomes secondary to interphase positioning may exist on the mitotic rings of some cells, a fixed order of human chromosomes and/or a rigorous separation of homologous chromosomes on the mitotic ring are not necessary for normal mitosis. Furthermore, the relative chromosomal positions on each individual metaphase plate are most likely carried through anaphase into telophase.  相似文献   

17.
Proliferation and migration of cells in the vacuolated-columnar and mucous cell lines were studied in the descending colon of adult female mice given a single injection or a continuous infusion of 3H-thymidine and killed at various intervals from one hour to 12 days. This investigation was carried out using one mum-thick Epon sections which were radioautographed after staining with the periodic acid-Schiff technique and iron-hematoxylin. In the normalized crypts with ten equal segments, labeled vacuolated cells at one hour after injection of 3H-thymidine were encountered in the lower four segments and in decreasing numbers in segments 5 through 7. From the percent labeled cells in segments of the crypt, the birth rate and fluxes of cells were computed. Moreover, it was found that a cell in the vacuolated-columnar cell line would undergo three mitotic cycles on the average from its birth at the cryptal base to its extrusion from the surface; of these three cycles, the last one which took place from segment 3 to segment 7 appeared to be a changeover from dividing cells to non-dividing cells, in accordance with the "slow cut-off" model of Cairnie et al. ('65b). Mucous cells located in segments 1 through 6 of the crypt were capable of incorporating 3H-thymidine and thus capable of undergoing mitosis. However, the rate of turnover of mucous cells based on proliferative rate was found to be much lower than the rate of turnover of mucous cells based on the transit time in the non-dividing segments of the crypt. Since there was a concomitant overproduction of cells in the vacuolated cells and newly formed mucous cells in the lower portion of the crypt, it was concluded that some vacuolated cells would give rise to mucous cells. This putative transformation occurred in the lower four segments of the crypt. Mucous cells which were formed by transformation would migrate upward along the cryptal wall and accumulate more mucus in the theca; in doing so, they would undergo two divisions, on the average, before they became non-dividing mucous cells. In ascending the cryptal walls, both vacuolated-columnar cells and mucous cells appeared to migrate at a similar speed; they moved much slower at the base of the crypt and accelerated toward the upper portion of the crypt, but they migrated at a constant speed in the non-dividing segments of the crypt.  相似文献   

18.
In murine C1300 neuroblastoma cells, clone Neuro 2A, the major fraction of the necessary increase in cell surface area during the cell cycle occurs within a short period around mitosis. During this period cell cycle-related modulations in a number of structural, dynamic and transport properties are most prominent. In this study we have examined the mechanism of rapid plasma membrane growth during mitosis, and the resulting changes in the ultrastructural features of the plasma membrane, by scanning and freeze-fracture electron microscopy as well as by electron microscopy of ultrathin sections. Our observations show that plasma membrane growth occurs by the fusion with and the incorporation into the plasma membrane of cytoplasmic multilamellar, lipidic membrane vesicles. Such vesicles are not observed at other times in the cell cycle. As a consequence, IMP-free domains appear transiently in the mitotic and early post-mitotic plasma membrane. Comparison of replicas prepared from glutaraldehyde-fixed cells and unfixed, ultrarapidly frozen cells showed that aldehyde fixation artefactually induces a bleb-like appearance of these domains. The IMP-free domains disappear in the G1-phase as a result of the mobilization and lateral redistribution of membrane components. It is argued that mitotic membrane growth by preferential incorporation of membrane lipids not only serves to accomodate for the necessary increase in cell surface area, but also provides a mechanism for plasma membrane-mediated regulation of the cell cycle.  相似文献   

19.
We reported recently that the anticonvulsant drug carbamazepine, at supratherapeutic concentrations, exerts antiproliferative effects in mammalian Vero cells, but the underlying mechanism has not been elucidated. This motivates us to examine rigorously whether growth arrest was associated with structural changes in cellular organization during mitosis. In the present work, we found that exposure of the cells to carbamazepine led to an increase in mitotic index, mainly due to the sustained block at the metaphase/anaphase boundary, with the consequent inhibition of cell proliferation. Indirect immunofluorescence, using antibodies directed against spindle apparatus proteins, revealed that mitotic arrest was associated with formation of monopolar spindles, caused by impairment of centrosome separation. The final consequence of the spindle defects induced by carbamazepine, depended on the duration of cell cycle arrest. Following the time course of accumulation of metaphase and apoptotic cells during carbamazepine treatments, we observed a causative relationship between mitotic arrest and induction of cell death. Conversely, cells released from the block of metaphase by removal of the drug, continued to progress through mitosis and resume normal proliferation. Our results show that carbamazepine shares a common antiproliferative mechanism with spindle-targeted drugs and contribute to a better understanding of the cytostatic activity previously described in Vero cells. Additional studies are in progress to extend these initial findings that define a novel mode of action of carbamazepine in cultured mammalian cells.  相似文献   

20.
The three-dimensional orientation of mitoses in mouse small intestinal crypts of Lieberkuhn was determined from multiple projections of the mitotic figures in whole mounts of isolated intestinal crypts. We found evidence of a significant orientational bias for mitoses whose daughter cells would be added along the long axis of the crypt, and thus conform to the maintenance of the cylindrical shape of the intestinal crypt. However, we also observed many mitoses whose progeny must be rearranged if the simple cylindrical shape of the intestinal crypt is to be maintained. Our results indicate that the ultimate behavior of progeny cells and hence of local tissue form may not strictly depend on the orientation of mitosis. The methods presented may also be used in the study of mitotic orientation in other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号