首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Basal and receptor-regulated changes in cytoplasmic calcium concentration ([Ca2+]i) were monitored by fluorescence analysis in individual rat pituitary gonadotrophs loaded with the calcium-sensitive dye indo-1. Most gonadotrophs exhibited low amplitude spontaneous oscillations in basal [Ca2+]i that were interspersed by quiescent periods and abolished by removal of extracellular Ca2+ or addition of calcium channel blockers. Such random fluctuations in [Ca2+]i, which reflect the operation of a plasma membrane oscillator, were not coupled to basal gonadotropin secretion. The physiological agonist GnRH induced high amplitude [Ca2+]i oscillations; when a threshold [Ca2+]i level was reached, a cytoplasmic oscillator began to generate extremely regular Ca2+ transients. The time required to reach the threshold [Ca2+]i level was inversely correlated with agonist dose; the frequency, but not the amplitude, of agonist-induced Ca2+ spiking increased with agonist concentration. The duration of the latent period decreased and the frequency of Ca2+ spiking increased with the increase in ambient temperature. At high GnRH concentrations, the calcium transients merged into biphasic responses similar to those observed in cell suspensions at all GnRH concentrations. The presence of spontaneous fluctuations in basal [Ca2+]i did not significantly change the patterns of agonist-induced [Ca2+]i responses. Also, removal of extracellular Ca2+ did not interfere with the frequency or amplitude of Ca2+ spikes, but caused the loss of the plateau phase. Blockade of intracellular Ca(2+)-ATPase pumps by thapsigargin was usually accompanied by a subthreshold increase in [Ca2+]i. In such cells the agonist-induced oscillatory pattern was transformed into the biphasic response. In about 10% of the cells, however, high thapsigargin concentrations induced coarse [Ca2+]i oscillations; subsequent stimulation of such cells with GnRH was ineffective. The cytoplasmic oscillatory and biphasic responses may represent a mechanism for differential activation of Ca(2+)-dependent enzymes and their dependent cellular processes, including hormone secretion. The membrane oscillator is probably responsible for refilling of agonist-sensitive pools during and after agonist stimulation.  相似文献   

2.
Changes of cytosolic free Ca2+ [( Ca2+]i) in response to receptor activation were studied at the single cell level by using digital imaging fluorescence microscopy of fura-2-loaded primary cultured hepatocytes. In response to phenylephrine and vasopressin, individual hepatocytes displayed dose-dependent oscillations of [Ca2+]i similar to those observed in aequorin-injected hepatocytes by Woods et al. (Woods, N. M., Cuthbertson, K. S. R., and Cobbold, P. H. (1986) Nature 329, 719-721). With increasing agonist concentration, the frequency of oscillations increased and the latent period decreased. For a given cell, peak [Ca2+]i was independent of applied agonist concentration. However, there was considerable variation from cell to cell in the absolute value of peak [Ca2+]i. There was also marked intercellular heterogeneity in the latency, frequency, and overall pattern of the Ca2+ responses. Such asynchronous responses can be explained in part by the apparent differential agonist sensitivity of individual cells for latency and frequency. At high doses, phenylephrine maintained an oscillatory pattern, whereas vasopressin produced a complex mixture of spiking and sustained [Ca2+]i responses. Vasopressin and phenylephrine also displayed differently shaped [Ca2+]i oscillations at submaximal doses, due primarily to a slower rate of decay with vasopressin. Despite the large cell-cell variation in the patterns of [Ca2+]i oscillations, successive readditions of the same agonist elicited identical cell-specific patterns of oscillation. In the absence of extracellular Ca2+ the frequency but not the magnitude of [Ca2+]i oscillations was decreased. Buffering of [Ca2+]i by increasing the fura-2 load of single hepatocytes also decreased the frequency of oscillations without affecting the peak Ca2+ level. These data provide further support for the importance of frequency modulation in agonist-induced Ca2+ responses and suggest that Ca2+ itself plays an important role in regulating the frequency of [Ca2+]i oscillations. Furthermore, the data demonstrate a broad heterogeneity in hepatocyte [Ca2+]i oscillations which may underlie the nonoscillatory responses of cell populations.  相似文献   

3.
Gonadotropin-releasing hormone (GnRH)-stimulated changes in the cytosolic free Ca2+ concentration ([Ca2+]i) were studied in gonadotrophs cultured from 3-week ovariectomized rat pituitaries. One animal was used per cell preparation. [Ca2+]i was monitored in individual gonadotrophs by dual emission microspectrofluorimetry, using Indo-1 as the intracellular fluorescent Ca2+ probe. A short stimulation with GnRH evoked a complex concentration-dependent Ca2+ response in individual gonadotrophs. 0.1-1 nM GnRH triggered a series of sinusoidal-like [Ca2+]i oscillations superimposed upon a modest slow [Ca2+]i rise--the oscillating response mode--while 10-100 nM GnRH caused a biphasic increase in [Ca2+]i consisting of a monophasic transient and oscillations--the transient/oscillating response mode. Despite the consistency of Ca2+ responses, an inter-preparation heterogeneity of [Ca2+]i oscillations frequency was noticed. Moreover, we observed that, within a given cell preparation, the frequency of [Ca2+]i oscillations was independent of GnRH concentration whereas both peak [Ca2+]i and area under the [Ca2+]i versus time curve were concentration-dependent. Thus, in gonadotrophs, the presence of the GnRH signal would lead to [Ca2+]i oscillations, while the amplitude of the [Ca2+]i responses would code for the concentration of agonist. Both transient and oscillating components of GnRH responses depended on releasing activity of Ca(2+)-sequestering pools in as much as GnRH responses were unaffected by brief removal of external Ca2+, but suppressed by chelating intracellular free Ca2+ with BAPTA. However, prolonged exposure to a Ca(2+)-free medium suppressed the transient component while leaving the oscillating component unaffected. We therefore propose that gonadotrophs employ Ca(2+)-sequestering pools, whose maintenance depends on a slow Ca(2+)-entry, to give an amplitude-coded Ca2+ rise in response to a short GnRH stimulation.  相似文献   

4.
Single pituitary gonadotrophs exhibit episodes of spontaneous fluctuations in cytoplasmic calcium concentration [( Ca2+]i) due to entry through voltage-sensitive calcium channels (VSCC) and show prominent agonist-induced oscillations in [Ca2+]i that are generated by periodic release of intracellular Ca2+. Gonadotropin releasing hormone (GnRH) elicited three types of Ca2+ responses: at low doses, subthreshold, with an increase in basal [Ca2+]i; at intermediate doses, oscillatory, with dose-dependent modulation of spiking frequency; and at high doses, biphasic, without oscillations. Elevation of [Ca2+]i or activation of protein kinase C (PKC) did not influence the frequency of agonist-induced [Ca2+]i spikes but caused dose-dependent reductions in amplitude for all types of Ca2+ response. Stimulation of transient Ca2+ spikes by GnRH was followed by inhibition of the spontaneous fluctuations. GnRH also reduced the ability of high extracellular K+ to promote Ca2+ influx through VSCC. Activation of PKC by phorbol esters stimulated Ca2+ influx in quiescent cells but inhibited influx when VSCC were already activated, either spontaneously or by high K+. In contrast to their biphasic actions on [Ca2+]i, phorbol esters exerted only stimulatory actions on gonadotropin release, even when Ca2+ influx was concomitantly reduced. However, pituitary cells had to be primed with an appropriate [Ca2+]i level before exocytosis could be amplified by PKC. In PKC-depleted cells, all actions of phorbol esters on Ca2+ entry and amplitude modulation, and on LH release, were abolished. GnRH-induced LH secretion was also significantly reduced, especially the plateau phase of the response. These data indicate that Ca2+ and PKC serve as interacting signals during the cascade of cellular events triggered by agonist stimulation, in which Ca2+ turns cell responses on or off, and PKC amplifies the positive and negative effects of Ca2+.  相似文献   

5.
The free intracellular calcium ion concentration ([Ca2+]i) was measured in single cells of a population containing 65-80% somatotrophs, using the fluorescent Ca(2+)-indicator Fura-2 and digital imaging microscopy. Spontaneous oscillations in [Ca2+]i ranging in frequency up to 1.5 oscillations per minute were observed in 30% of somatotrophs. These Ca2+ oscillations were blocked by the Ca2+ channel blocker CoCl2 and were thus proposed to be the result of influx of Ca2+ into the cell, possibly as the result of spontaneous electrical activity. GHRH (10-100 nM) increased [Ca2+]i in 61% of the cells studied, although the amplitude and dynamics of the response varied from cell to cell. Typically [Ca2+]i rose from 170 +/- 26 nM to 321 +/- 44 nM (n = 13) in response to a challenge with 66 nM GHRH. GHRH also increased the frequency of Ca2+ oscillations in a number of cells, and some previously quiescent cells showed Ca2+ oscillations following addition of GHRH. Forskolin, which raises cAMP levels in bovine anterior pituitary cells, also stimulated a sustained rise in [Ca2+]i in 10 out of 14 cells tested. Somatostatin (SS) (10-80 nM) rapidly reduced basal [Ca2+]i, blocked Ca2+ oscillations, and blocked the [Ca2+]i response to GHRH. The Ca2+ channel blocker CoCl2 (4 mM) had similar actions on [Ca2+]i to those of SS. These results suggest that GHRH and SS may regulate GH release by modulating Ca2+ entry into the cell through the cell membrane. The [Ca2+]i oscillations seen in a proportion of the somatotrophs were modulated in frequency by GHRH and SS, and are probably generated by influx of Ca2+ through channels in the cell membrane. Thus GH secretion may be regulated by changes in the mean level of [Ca2+]i, which in turn, may be influenced by the frequency of [Ca2+]i oscillations in bovine somatotrophs.  相似文献   

6.
This study evaluated the relationship between regional elevation in intracellular calcium concentration ([Ca2+]i) induced by acetylcholine (ACh) and the global cellular responses in porcine tracheal smooth muscle (TSM) cells. Regional (approximately 1.5 microm3) and global (whole cell) changes in [Ca2+]i were measured in fluo-3 loaded TSM cells using real-time confocal microscopy. Regional responses appeared as propagating [Ca2+]i oscillations whereas global responses reflected the spatiotemporal integration of these regional responses. Within a region, [Ca2+]i oscillations were 'biphasic' with initial higher frequencies, followed by slower steady-state oscillations. With increasing ACh concentration, the peak (maximum value relative to 0 nM) of regional [Ca2+]i oscillations remained relatively constant, whereas both frequency and propagation velocity increased. In contrast, the global spatiotemporal integration of the regional oscillatory responses appeared as a concentration-dependent increase in peak as well as mean cellular [Ca2+]i. We conclude that the significance of ACh-induced [Ca2+]i oscillations lies in the establishment of mean [Ca2+]i level for slower Ca2+-dependent physiological processes via modulation of oscillation frequency and propagation velocity.  相似文献   

7.
Receptor regulation of [Ca2+]i was monitored in individual BC3H-1 muscle cells with intracellularly trapped fura-2 using digital imaging analysis techniques. Activation of alpha 1-adrenergic or H1-histaminergic receptors resulted in multiple bursts, or oscillations, of elevated [Ca2+]i with an average interval frequency of approximately 1.8 min-1. The duration of oscillatory behavior was generally more prolonged in response to phenylephrine than in response to histamine. Additionally, a larger fraction of the cells responded with [Ca2+]i oscillations to phenylephrine (approximately 90%) than to histamine (approximately 60%), although the majority of cells produced oscillations in response to both agonists. In most cells, the receptor-mediated [Ca2+]i oscillations continued for several minutes in the absence of extracellular Ca2+, although the amplitude of the individual peaks gradually decreased. The activation of [Ca2+]i oscillations by H1-receptors was more dependent upon extracellular Ca2+ than those elicited by alpha 1-receptors, reflecting the greater dependency of the histaminergic response on Ca2+ influx. Readdition of Ca2+ to the incubation buffer resulted in the resumption of the [Ca2+]i oscillations. These results indicate that considerable cycling of Ca2+ between the cytoplasm and the endoplasmic reticulum must occur. Receptor-mediated [Ca2+]i oscillations were much more prevalent in subconfluent cells than in confluent cells, possibly due to increased coupling of the cells at higher densities. The cells were capable of responding independently of one another, since sister cells displayed unique temporal responses immediately following cell division. Thus, the linkage of receptor occupancy to [Ca2+]i elevation is a functionally unique property for each individual cell and can be influenced by epigenetic factors.  相似文献   

8.
Digital image analysis was employed for resolving the temporal and spatial variations of the cytoplasmic Ca2+ concentration ([Ca2+]i) in pancreatic beta-cells loaded with the Ca(2+)-indicator Fura-2. Glucose-stimulated individual beta-cells exhibited large amplitude oscillations of [Ca2+]i with a mean frequency of 0.33 min-1. When Ca2+ diffusion was restricted by increasing the Ca2+ buffering capacity, the sugar-induced rise of [Ca2+]i preferentially affected the peripheral cytoplasm. When glucagon was present glucose also caused less prominent oscillations with about a 10-fold higher frequency superimposed on an elevated [Ca2+]i. In small clusters of 6-14 cells the average frequency of the large amplitude oscillations increased to 0.60 min-1. The clusters were found to contain micro-domains of electrically coupled cells with synchronized oscillations. After increasing the glucose concentration, adjacent domains became functionally coupled. The oscillations originated from different cells in the cluster. Also the fast glucagon-dependent oscillations were synchronized between cells and had different origins. The results indicate that coupling of beta-cells leads to an increased frequency of the large amplitude oscillations, and that the oscillatory characteristics are determined collectively among electrically coupled beta-cells rather than by particular pacemaker cells. In the light of these data it is necessary to reconsider the previous ideas that glucose-induced oscillations of membrane potential and [Ca2+]i require coupling between many beta-cells, and that the peak [Ca2+]i values reached during oscillations should increase with the size of the coupled cluster.  相似文献   

9.
Single rat hepatocytes, microinjected with the Ca(2+)-sensitive photoprotein aequorin, respond to agonists acting through the phosphoinositide signalling pathway by the generation of oscillations in cytosolic free Ca2+ concentration ([Ca2+]i). The duration of [Ca2+]i transients generated is characteristic of the stimulating agonist; the differences lie in the rate of fall of [Ca2+]i from its peak. We considered that differential sensitivity of the InsP3 receptor may underlie agonist specificity. The thiol reagent, thimerosal, is known to increase the sensitivity of the Ca2+ stores to InsP3 by increasing the affinity of the InsP3 receptor for InsP3 in rat hepatocytes. We show here that a low dose of thimerosal (1 microM), insufficient alone to elevate [Ca2+]i, potentiates [Ca2+]i oscillations induced by phenylephrine or ATP in single, aequorin-injected, rat hepatocytes. Moreover, thimerosal enhances both the frequency and amplitude of phenylephrine-induced oscillations, whereas, in contrast, ATP-induced oscillations undergo an increase in the duration of the falling phase of individual [Ca2+]i transients. Thimerosal, therefore, enhances, rather than eliminates, agonist-specific differences in the hepatocyte [Ca2+]i oscillator.  相似文献   

10.
Evans JH  Sanderson MJ 《Cell calcium》1999,26(3-4):103-110
The effect of ATP-induced Ca2+ oscillations on ciliary activity was examined in airway epithelial cells by simultaneously measuring the ciliary beat frequency (CBF) and the intracellular Ca2+ concentration ([Ca2+]i) near the base of the cilia. Exposure to extracellular ATP (ATPo) induces a rapid and large increase in both [Ca2+]i and CBF, followed by oscillations in [Ca2+]i and a sustained elevation in CBF. After each Ca2+ oscillation, the [Ca2+]i returned to near basal values. By contrast, the CBF remained elevated during these Ca2+ oscillations, although each Ca2+ oscillation induced small variations in CBF. During Ca2+ oscillations, increases in CBF closely followed the rising phase of increases in [Ca2+]i, but declines in CBF lagged behind declines in [Ca2+]i. Higher frequency Ca2+ oscillations reduced variations in CBF, producing a stable and sustained elevation in CBF. The maximal CBF was induced by Ca2+ oscillations and was 15% greater than the CBF induced by the substantially larger initial [Ca2+]i increase. These data demonstrate that the rate of CBF is not directly dependent on the absolute [Ca2+]i, but is dependent on the differential changes in [Ca2+]i and suggest that CBF in airway epithelial cells is regulated by frequency-modulated Ca2+ signaling.  相似文献   

11.
The relative contribution of voltage-sensitive Ca2+ channels, Ca(2+)-ATPases, and Ca2+ release from intracellular stores to spontaneous oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) observed in secretory cells is not well characterized owing to a lack of specific inhibitors for a novel thapsigargin (Tg)-insensitive Ca(2+)-ATPase expressed in these cells. We show that spontaneous [Ca2+]i oscillations in GH3 cells were unaffected by Ca2+ depletion in inositol-1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores by the treatment of Tg, but could be initiated by application of caffeine. Moreover, we demonstrate for the first time that these spontaneous [Ca2+]i oscillations were highly temperature dependent. Decreasing the temperature from 22 to 17 degrees C resulted in an increase in the frequency, a reduction in the amplitude, and large inhibition of [Ca2+]i oscillations. Furthermore, the rate of ATP-dependent 45Ca2+ uptake into GH3-derived microsomes was greatly reduced at 17 degrees C. The effect of decreased temperatures on extracellular Ca2+ influx was minor because the frequency and amplitude of spontaneous action potentials, which activate L-type Ca2+ channels, was relatively unchanged at 17 degrees C. These results suggest that in GH3 secretory cells, Ca2+ influx via L-type Ca2+ channels initiates spontaneous [Ca2+]i oscillations, which are then maintained by the combined activity of Ca(2+)-ATPase and Ca(2+)-induced Ca2+ release from Tg/IP3-insensitive intracellular stores.  相似文献   

12.
Calcium fluxes in T lymphocytes.   总被引:3,自引:0,他引:3  
Mechanisms controlling Ca2+ fluxes through the plasma membrane of lymphocytes have been characterized in a human T-cell clone and in the Jurkat T-cell line. Due to endogenous buffers, about 1/125 of the Ca2+ ions that enter the cell are free. Ca2+ fluxes were estimated from the variations in intracellular Ca2+ concentration ([Ca2+]i) elicited by concentration jumps in extracellular Ca2+ ([Ca2+]o). Thapsigargin was used to inhibit Ca2+ uptake into intracellular stores and to stimulate Ca2+ entry. Ca2+ extrusion was strictly due to the activity of plasma membrane Ca(2+)-ATPases since there was no detectable Na+/Ca2+ exchange activity in these cells. The rate of Ca2+ extrusion was mainly influenced by [Ca2+]i and less by [Ca2+]o but was insensitive to cell depolarization. In depolarized cells, thapsigargin-induced Ca2+ influx was reduced to 10% of the value measured in normally polarized cells, suggesting that depolarization not only reduces the electrochemical gradient for Ca2+ ions, but also inhibits Ca2+ permeation. When Ca2+ ions enter the cell, they bind to a site inside the channel, with a Kd of 3.3 mM. Stimulation of clonal T-cells with low concentrations of either anti-CD3 antibodies or thapsigargin elicited Ca2+ oscillations. Both the amplitude and the frequency of CD3-induced Ca2+ oscillations were sensitive to [Ca2+]o. These oscillations were immediately interrupted when extracellular Ca2+ was removed. The properties of Ca2+ oscillations in T lymphocytes suggest that they are mainly due to variations of Ca2+ influx, modulated by variations in [Ca2+]i.  相似文献   

13.
Treatment of hepatocytes with agonists which act via the second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), results in increases of cytosolic free Ca2+ [( Ca2+]i) which are manifest as a series of discrete [Ca2+]i transients or oscillations. With increasing agonist dose [Ca2+]i oscillation frequency increases and the initial latent period decreases, but the amplitude of the [Ca2+]i oscillations remains constant. Studies of these [Ca2+]i oscillations at the subcellular level have indicated that the [Ca2+]i changes do not occur synchronously throughout the cell, but initiate at a specific subcellular domain, adjacent to a region of the plasma membrane, and then propagate through the cell as a [Ca2+]i wave. For a given ceil, the locus of [Ca2+]i wave initiation is constant for every oscillation in a series and is also identical when the cell is sequentially stimulated with different agonists or when the phospholipase C-linked G protein is activated directly using AIF4-. The kinetics of the [Ca2+]i waves indicate that a Ca(2+)-activated mechanism is involved in propagating the oscillatory [Ca2+]i increases throughout the cell, and the data appear to be most consistent with a process of Ca(2+)-induced Ca2+ release. It is proposed that the ability to propagate [Ca2+]i oscillations into regions of the cell distal to the region in which the signal transduction apparatus is localized could serve an important function in allowing all parts of the cell to respond to the stimulus.  相似文献   

14.
Oscillations of free intracellular Ca2+ concentration ([Ca2+]i) are known to occur in many cell types during physiological cell signaling. To identify the basis for the oscillations, we measured both [Ca2+]i and extracellular Ca2+ concentration ([Ca2+]o) to follow the fate of Ca2+ during stimulation of [Ca2+]i oscillations in pancreatic acinar cells. [Ca2+]i oscillations were initiated by either t-butyloxycarbonyl-Tyr(SO3)-Nle-Gly-Tyr-Nle-Asp-2-phenylethyl ester (CCK-J), which mobilized Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-insensitive pool, or low concentration of cholecystokinin octapeptide (CCK-OP), which mobilized Ca2+ from the IP3-sensitive internal pool. Little Ca2+ efflux occurred during the oscillations triggered by CCK-J or CCK-OP in spite of a large average increase in [Ca2+]i. When internal store Ca2+ pumps were inhibited with thapsigargin (Tg) during [Ca2+]i oscillations, a rapid Ca2+ efflux occurred similar to that measured in intensely stimulated, nonoscillatory cells. Tg also stimulated 45Ca efflux from internal pools of cells stimulated with CCK-J or a low concentration of CCK-OP. Hence, a large fraction of the Ca2+ released during each spike is reincorporated by the internal store Ca2+ pumps. Surprisingly, when the increase in [Ca2+]i during stimulation of oscillations was prevented by loading the cells with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, a persistent activation of Ca2+ release and Ca2+ efflux occurred. This was reflected as a persistent increase in [Ca2+]o in cells suspended at low [Ca2+]o or persistent efflux of 45Ca from internal stores of cells maintained at high [Ca2+]o. Since agonist-stimulated Ca2+ release evidently remains activated when [Ca2+]i is highly buffered, the primary mechanism determining Ca2+ oscillations must include an inhibition of Ca2+ release by [Ca2+]i. Loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid had no apparent effect on the levels or kinetics of IP3 formation in agonist-stimulated cells. This suggests that [Ca2+]i regulated the oscillation by inhibition of Ca2+ release independent of its possible effects on cellular levels of IP3.  相似文献   

15.
In order to define the differences in the distribution of cytosolic free Ca2+ ([Ca2+]i) in pancreatic beta-cells stimulated with the fuel secretagogue glucose or the Ca(2+)-mobilizing agents carbachol and ATP, we applied digital video imaging to beta-cells loaded with fura-2.83% of the cells responded to glucose with an increase in [Ca2+]i after a latency of 117 +/- 24 s (mean +/- S.E., 85 cells). Of these cells, 16% showed slow wave oscillations (frequency 0.35/min). In order to assess the relationship between membrane potential and the distribution of the [Ca2+]i rise, digital image analysis and perforated patch-clamp methods were applied simultaneously. The system used allowed sufficient temporal resolution to visualize a subplasmalemmal Ca2+ transient due to a single glucose-induced action potential. Glucose could also elicit a slow depolarization which did not cause Ca2+ influx until the appearance of the first of a train of action potentials. [Ca2+]i rose progressively during spike firing. Inhibition of Ca2+ influx by EGTA abolished the glucose-induced rise in [Ca2+]i. In contrast, the peak amplitude of the [Ca2+]i response to carbachol was not significantly different in normal or in Ca(2+)-deprived medium. Occasionally, the increase of the [Ca2+]i rise was polarized to one area of the cell different from the subplasmalemmal rise caused by glucose. The amplitude of the response and the number of responding cells were significantly increased when carbachol was applied after the addition of high glucose (11.2 mM). ATP also raised [Ca2+]i and promoted both Ca2+ mobilization and Ca2+ influx. The intracellular distribution of [Ca2+]i was homogeneous during the onset of the response. A polarity in the [Ca2+]i distribution could be detected either in the descending phase of the peak or in subsequent peaks during [Ca2+]i oscillations caused by ATP. In the absence of extracellular Ca2+, the sequential application of ATP and carbachol revealed that carbachol was still able to raise [Ca2+]i after exhaustion of the ATP response. This may be due to desensitization to the former agonist, since the response occurred in the same area of the cell. These results reveal subtle differences in [Ca2+]i distribution following membrane depolarization with glucose or the application of Ca(2+)-mobilizing agonists.  相似文献   

16.
Microspectrofluorometry of fura-2 was utilized to monitor [Ca2+]i in single acinar cells stimulated with a cholinergic agonist and cholecystokinin. A similar amplitude of agonist induced Ca mobilization between single cell and populational approaches was observed. New findings in single cells not observable in populations of cells include: 1) the maintenance of a sustained elevation in [Ca2+]i above basal levels throughout agonist application, 2) the reloading of the agonist-sensitive Ca pool only following removal of the agonist and 3) the presence of oscillations of [Ca2+]i in response to agonist application which is enhanced at lower agonist concentrations.  相似文献   

17.
Messerli MA  Robinson KR 《Planta》2003,217(1):147-157
Two mechanisms have been proposed as the primary control of oscillating tip growth in Lilium longiflorum Thunb. pollen tubes: changes in cell wall strength (Holdaway-Clarke et al. 1997) or alternatively, changes in turgor pressure (Messerli et al. 2000). Here we have modified the ionic and osmotic concentrations of the growth medium to test predictions derived from both models. Raising the [Ca2+]o tenfold above normal reduced the amplitude of the [Ca2+]i oscillations and growth oscillations while it raised the basal [Ca2+]i and growth rate such that the average growth rate did not change. Raising the [H+] of the growth medium tenfold reversibly decreased and sometimes eliminated the [Ca2+]i and growth oscillations without changing the average growth rate. Lowering the [H+] tenfold led to irregular frequency and amplitude [Ca2+]i oscillations, reduced the average growth rate of tubes and led to cell bursting in 33% of tubes. Addition of 50 mM H+ buffer, MES, to prevent pH changes in the cell wall increased the period, amplitude and duration of both [Ca2+]i and growth oscillations. Changing the [K+]o did not markedly effect [Ca2+]i oscillations. Reducing the osmolarity of the medium led to transient large-amplitude [Ca2+]i and growth oscillations while reducing large-amplitude oscillations over long periods. In many different conditions under which growth still occurs, lily pollen tubes maintain growth oscillations, albeit with modified frequency, amplitude and duration. We conclude that modifications to both proposed models are necessary to explain oscillating growth in this system.  相似文献   

18.
The present study investigates the potential role of the Ca2+-calmodulin-dependent type I phosphodiesterase (PDE)-cGMP-protein kinase G (PKG) pathway in spontaneous [Ca2+]i oscillations in GH3 cells using fura-2 single cell videoimaging. Vinpocetine (2.5-50 microM), a selective inhibitor of type I PDE, induced a concentration-dependent inhibition of spontaneous [Ca2+]i oscillations in these pituitary cells, and at the same time produced an increase of the intracellular cGMP content. The cell permeable cGMP analog N2,2'-O-dibutyryl-cGMP (dB-cGMP) (1 mM) caused a progressive reduction of the frequency and the amplitude of spontaneous [Ca2+]i oscillations when added to the medium. KT5823 (400 nM), a selective inhibitor of cGMP-dependent protein kinase (PKG), produced an increase of baseline [Ca2+]i and the disappearance of spontaneous [Ca2+]i oscillations. When KT5823 was added before vinpocetine, the PKG inhibitor counteracted the [Ca2+]i lowering effect of the cGMP catabolism inhibitor. Finally, the removal of extracellular Ca2+ or the blockade of L-type voltage-sensitive calcium channels (VSCC) by nimodipine produced a decrease of cytosolic cGMP levels. Collectively, the results of the present study suggest that spontaneous [Ca2+]i oscillations in GH3 cells may be regulated by the activity of type I PDE-cGMP-PKG pathway.  相似文献   

19.
Stimulus-Induced Oscillations in Guard Cell Cytosolic Free Calcium   总被引:20,自引:0,他引:20       下载免费PDF全文
Ca2+ is implicated as a second messenger in the response of stomata to a range of stimuli. However, the mechanism by which stimulus-induced increases in guard cell cytosolic free Ca2+ ([Ca2+]i) are transduced into different physiological responses remains to be explained. Oscillations in [Ca2+]i may provide one way in which this can occur. We used photometric and imaging techniques to examine this hypothesis in guard cells of Commelina communis. External Ca2+ ([Ca2+]e), which causes an increase in [Ca2+]i, was used as a closing stimulus. The total increase in [Ca2+]i was directly related to the concentration of [Ca2+]e, both of which correlated closely with the degree of stomatal closure. Increases were oscillatory in nature, with the pattern of the oscillations dependent on the concentration of [Ca2+]e. At 0.1 mM, [Ca2+]e induced symmetrical oscillations. In contrast, 1.0 mM [Ca2+]e induced asymmetric oscillations. Oscillations were stimulus dependent and modulated by changing [Ca2+]e. Experiments using Ca2+ channel blockers and Mn2+-quenching studies suggested a role for Ca2+ influx during the oscillatory behavior without excluding the possible involvement of Ca2+ release from intracellular stores. These data suggest a mechanism for encoding the information required to distinguish between a number of different Ca2+-mobilizing stimuli in guard cells, using stimulus-specific patterns of oscillations in [Ca2+]i.  相似文献   

20.
Intracellular Ca2+ signalling is pivotal to cell function and [Ca2+]i oscillations permit precise and prolonged modulation of an array of Ca2+-sensitive processes without the need for extended, global elevations in [Ca2+]i. We have studied [Ca2+]i signalling in primary rat marrow stromal cells exposed to foetal calf serum (FCS) constituents at concentrations up to those required to promote growth and differentiation in culture. Spontaneous [Ca2+]i signalling was not observed, but exposure to 1% FCS induced regular, sustained Ca2+ oscillations in 41 +/- 3% of cells. Incidence of FCS-induced oscillations was dose-dependent, saturating at 0.5%. These oscillations were arrested by disruption of Ca2+ stores with 100 nM-1 microM thapsigargin or discharge of mitochondrial membrane potential and were sensitive to blockade of IP3-receptors by 50 microM 2-amino-ethoxydiphenyl borate (2-APB) and inhibition of phospholipase C with 5 microM U73122. The oscillations decreased in frequency and amplitude following inhibition of Ca2+ influx with EGTA or La3+ but were poorly sensitive to nifedipine (1-10 microM) and Bay K 8644 (300 nM). The factor(s) responsible for inducing [Ca2+]i oscillations are heat stable, insensitive to disulphide bond reduction with 20 mM dithioerythritol and retained by a 30 kDa molecular weight filter. Serum is routinely present in culture medium at 10%-15% [v/v] and marrow stromal cells maintained under culture conditions exhibited sustained oscillations. This is the first demonstration of agonist-induced complex Ca2+ signals in marrow stromal cells. We conclude that Ca2+ oscillations occur constantly in these cells in culture and are potentially important regulators of cell proliferation and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号