首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fuzzy C-means method for clustering microarray data   总被引:9,自引:0,他引:9  
MOTIVATION: Clustering analysis of data from DNA microarray hybridization studies is essential for identifying biologically relevant groups of genes. Partitional clustering methods such as K-means or self-organizing maps assign each gene to a single cluster. However, these methods do not provide information about the influence of a given gene for the overall shape of clusters. Here we apply a fuzzy partitioning method, Fuzzy C-means (FCM), to attribute cluster membership values to genes. RESULTS: A major problem in applying the FCM method for clustering microarray data is the choice of the fuzziness parameter m. We show that the commonly used value m = 2 is not appropriate for some data sets, and that optimal values for m vary widely from one data set to another. We propose an empirical method, based on the distribution of distances between genes in a given data set, to determine an adequate value for m. By setting threshold levels for the membership values, genes which are tigthly associated to a given cluster can be selected. Using a yeast cell cycle data set as an example, we show that this selection increases the overall biological significance of the genes within the cluster. AVAILABILITY: Supplementary text and Matlab functions are available at http://www-igbmc.u-strasbg.fr/fcm/  相似文献   

2.
We have designed and established a low-density (295 genes) cDNA microarray for the prediction of IFN efficacy in hepatitis C patients. To obtain a precise and consistent microarray data, we collected a data set from three spots for each gene (mRNA) and using three different scanning conditions. We also established an artificial reference RNA representing pseudo-inflammatory conditions from established hepatocyte cell lines supplemented with synthetic RNAs to 48 inflammatory genes. We also developed a novel algorithm that replaces the standard hierarchical-clustering method and allows handling of the large data set with ease. This algorithm utilizes a standard space database (SSDB) as a key scale to calculate the Mahalanobis distance (MD) from the center of gravity in the SSDB. We further utilized sMD (divided by parameter k: MD/k) to reduce MD number as a predictive value. The efficacy prediction of conventional IFN mono-therapy was 100% for non-responder (NR) vs. transient responder (TR)/sustained responder (SR) (P < 0.0005). Finally, we show that this method is acceptable for clinical application.  相似文献   

3.
The development of microarray technology has enabled scientists to measure the expression of thousands of genes simultaneously, resulting in a surge of interest in several disciplines throughout biology and medicine. While data clustering has been used for decades in image processing and pattern recognition, in recent years it has joined this wave of activity as a popular technique to analyze microarrays. To illustrate its application to genomics, clustering applied to genes from a set of microarray data groups together those genes whose expression levels exhibit similar behavior throughout the samples, and when applied to samples it offers the potential to discriminate pathologies based on their differential patterns of gene expression. Although clustering has now been used for many years in the context of gene expression microarrays, it has remained highly problematic. The choice of a clustering algorithm and validation index is not a trivial one, more so when applying them to high throughput biological or medical data. Factors to consider when choosing an algorithm include the nature of the application, the characteristics of the objects to be analyzed, the expected number and shape of the clusters, and the complexity of the problem versus computational power available. In some cases a very simple algorithm may be appropriate to tackle a problem, but many situations may require a more complex and powerful algorithm better suited for the job at hand. In this paper, we will cover the theoretical aspects of clustering, including error and learning, followed by an overview of popular clustering algorithms and classical validation indices. We also discuss the relative performance of these algorithms and indices and conclude with examples of the application of clustering to computational biology.Key Words: Clustering, genomics, profiling, microarray, validation index.  相似文献   

4.
MOTIVATION: Consensus clustering, also known as cluster ensemble, is one of the important techniques for microarray data analysis, and is particularly useful for class discovery from microarray data. Compared with traditional clustering algorithms, consensus clustering approaches have the ability to integrate multiple partitions from different cluster solutions to improve the robustness, stability, scalability and parallelization of the clustering algorithms. By consensus clustering, one can discover the underlying classes of the samples in gene expression data. RESULTS: In addition to exploring a graph-based consensus clustering (GCC) algorithm to estimate the underlying classes of the samples in microarray data, we also design a new validation index to determine the number of classes in microarray data. To our knowledge, this is the first time in which GCC is applied to class discovery for microarray data. Given a pre specified maximum number of classes (denoted as K(max) in this article), our algorithm can discover the true number of classes for the samples in microarray data according to a new cluster validation index called the Modified Rand Index. Experiments on gene expression data indicate that our new algorithm can (i) outperform most of the existing algorithms, (ii) identify the number of classes correctly in real cancer datasets, and (iii) discover the classes of samples with biological meaning. AVAILABILITY: Matlab source code for the GCC algorithm is available upon request from Zhiwen Yu.  相似文献   

5.
MOTIVATION: Grouping genes having similar expression patterns is called gene clustering, which has been proved to be a useful tool for extracting underlying biological information of gene expression data. Many clustering procedures have shown success in microarray gene clustering; most of them belong to the family of heuristic clustering algorithms. Model-based algorithms are alternative clustering algorithms, which are based on the assumption that the whole set of microarray data is a finite mixture of a certain type of distributions with different parameters. Application of the model-based algorithms to unsupervised clustering has been reported. Here, for the first time, we demonstrated the use of the model-based algorithm in supervised clustering of microarray data. RESULTS: We applied the proposed methods to real gene expression data and simulated data. We showed that the supervised model-based algorithm is superior over the unsupervised method and the support vector machines (SVM) method. AVAILABILITY: The program written in the SAS language implementing methods I-III in this report is available upon request. The software of SVMs is available in the website http://svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi  相似文献   

6.
When applying hierarchical clustering algorithms to cluster patient samples from microarray data, the clustering patterns generated by most algorithms tend to be dominated by groups of highly differentially expressed genes that have closely related expression patterns. Sometimes, these genes may not be relevant to the biological process under study or their functions may already be known. The problem is that these genes can potentially drown out the effects of other genes that are relevant or have novel functions. We propose a procedure called complementary hierarchical clustering that is designed to uncover the structures arising from these novel genes that are not as highly expressed. Simulation studies show that the procedure is effective when applied to a variety of examples. We also define a concept called relative gene importance that can be used to identify the influential genes in a given clustering. Finally, we analyze a microarray data set from 295 breast cancer patients, using clustering with the correlation-based distance measure. The complementary clustering reveals a grouping of the patients which is uncorrelated with a number of known prognostic signatures and significantly differing distant metastasis-free probabilities.  相似文献   

7.
MOTIVATION: With the advent of microarray chip technology, large data sets are emerging containing the simultaneous expression levels of thousands of genes at various time points during a biological process. Biologists are attempting to group genes based on the temporal pattern of their expression levels. While the use of hierarchical clustering (UPGMA) with correlation 'distance' has been the most common in the microarray studies, there are many more choices of clustering algorithms in pattern recognition and statistics literature. At the moment there do not seem to be any clear-cut guidelines regarding the choice of a clustering algorithm to be used for grouping genes based on their expression profiles. RESULTS: In this paper, we consider six clustering algorithms (of various flavors!) and evaluate their performances on a well-known publicly available microarray data set on sporulation of budding yeast and on two simulated data sets. Among other things, we formulate three reasonable validation strategies that can be used with any clustering algorithm when temporal observations or replications are present. We evaluate each of these six clustering methods with these validation measures. While the 'best' method is dependent on the exact validation strategy and the number of clusters to be used, overall Diana appears to be a solid performer. Interestingly, the performance of correlation-based hierarchical clustering and model-based clustering (another method that has been advocated by a number of researchers) appear to be on opposite extremes, depending on what validation measure one employs. Next it is shown that the group means produced by Diana are the closest and those produced by UPGMA are the farthest from a model profile based on a set of hand-picked genes. Availability: S+ codes for the partial least squares based clustering are available from the authors upon request. All other clustering methods considered have S+ implementation in the library MASS. S+ codes for calculating the validation measures are available from the authors upon request. The sporulation data set is publicly available at http://cmgm.stanford.edu/pbrown/sporulation  相似文献   

8.
MOTIVATION: A promising and reliable approach to annotate gene function is clustering genes not only by using gene expression data but also literature information, especially gene networks. RESULTS: We present a systematic method for gene clustering by combining these totally different two types of data, particularly focusing on network modularity, a global feature of gene networks. Our method is based on learning a probabilistic model, which we call a hidden modular random field in which the relation between hidden variables directly represents a given gene network. Our learning algorithm which minimizes an energy function considering the network modularity is practically time-efficient, regardless of using the global network property. We evaluated our method by using a metabolic network and microarray expression data, changing with microarray datasets, parameters of our model and gold standard clusters. Experimental results showed that our method outperformed other four competing methods, including k-means and existing graph partitioning methods, being statistically significant in all cases. Further detailed analysis showed that our method could group a set of genes into a cluster which corresponds to the folate metabolic pathway while other methods could not. From these results, we can say that our method is highly effective for gene clustering and annotating gene function.  相似文献   

9.
MOTIVATION: To evaluate microarray data, clustering is widely used to group biological samples or genes. However, problems arise when comparing heterologous databases. As the clustering algorithm searches for similarities between experiments, it will most likely first separate the data sets, masking relationships that exist between samples from different databases. RESULTS: We developed a program, Venn Mapper, to calculate the statistical significance of the number of co-occurring differentially expressed genes in any of the two experiments. For proof of principle, we analysed a heterologous data set of 170 microarrays including breast and prostate cancer microarray analyses. Significant overlap was found in an unsupervised analysis between metastasized prostate cancer and metastasized breast cancer and BRCA mutated breast cancer. A comparison between single microarray data and the averaged breast and prostate data sets was also evaluated. This analysis suggests that genes expressed higher in stromal cells are also implicated in metastatic prostate cancer and BRCA mutated breast cancer. The Venn Mapper program identifies overlaps between samples from heterologous data sets and directly extracts the genes responsible for the overlap. From this information novel biological hypotheses may be addressed. AVAILABILITY: Venn Mapper is freely available on http://www.erasmusmc.nl/gatcplatform. SUPPLEMENTARY INFORMATION: http://www.erasmusmc.nl/gatcplatform/vennmapper.html.  相似文献   

10.
Paul TK  Iba H 《Bio Systems》2005,82(3):208-225
Recently, DNA microarray-based gene expression profiles have been used to correlate the clinical behavior of cancers with the differential gene expression levels in cancerous and normal tissues. To this end, after selection of some predictive genes based on signal-to-noise (S2N) ratio, unsupervised learning like clustering and supervised learning like k-nearest neighbor (k NN) classifier are widely used. Instead of S2N ratio, adaptive searches like Probabilistic Model Building Genetic Algorithm (PMBGA) can be applied for selection of a smaller size gene subset that would classify patient samples more accurately. In this paper, we propose a new PMBGA-based method for identification of informative genes from microarray data. By applying our proposed method to classification of three microarray data sets of binary and multi-type tumors, we demonstrate that the gene subsets selected with our technique yield better classification accuracy.  相似文献   

11.
Fuzzy J-Means and VNS methods for clustering genes from microarray data   总被引:4,自引:0,他引:4  
MOTIVATION: In the interpretation of gene expression data from a group of microarray experiments that include samples from either different patients or conditions, special consideration must be given to the pleiotropic and epistatic roles of genes, as observed in the variation of gene coexpression patterns. Crisp clustering methods assign each gene to one cluster, thereby omitting information about the multiple roles of genes. RESULTS: Here, we present the application of a local search heuristic, Fuzzy J-Means, embedded into the variable neighborhood search metaheuristic for the clustering of microarray gene expression data. We show that for all the datasets studied this algorithm outperforms the standard Fuzzy C-Means heuristic. Different methods for the utilization of cluster membership information in determining gene coregulation are presented. The clustering and data analyses were performed on simulated datasets as well as experimental cDNA microarray data for breast cancer and human blood from the Stanford Microarray Database. AVAILABILITY: The source code of the clustering software (C programming language) is freely available from Nabil.Belacel@nrc-cnrc.gc.ca  相似文献   

12.

Background  

DNA microarray technology allows for the measurement of genome-wide expression patterns. Within the resultant mass of data lies the problem of analyzing and presenting information on this genomic scale, and a first step towards the rapid and comprehensive interpretation of this data is gene clustering with respect to the expression patterns. Classifying genes into clusters can lead to interesting biological insights. In this study, we describe an iterative clustering approach to uncover biologically coherent structures from DNA microarray data based on a novel clustering algorithm EP_GOS_Clust.  相似文献   

13.
MOTIVATION: Current Self-Organizing Maps (SOMs) approaches to gene expression pattern clustering require the user to predefine the number of clusters likely to be expected. Hierarchical clustering methods used in this area do not provide unique partitioning of data. We describe an unsupervised dynamic hierarchical self-organizing approach, which suggests an appropriate number of clusters, to perform class discovery and marker gene identification in microarray data. In the process of class discovery, the proposed algorithm identifies corresponding sets of predictor genes that best distinguish one class from other classes. The approach integrates merits of hierarchical clustering with robustness against noise known from self-organizing approaches. RESULTS: The proposed algorithm applied to DNA microarray data sets of two types of cancers has demonstrated its ability to produce the most suitable number of clusters. Further, the corresponding marker genes identified through the unsupervised algorithm also have a strong biological relationship to the specific cancer class. The algorithm tested on leukemia microarray data, which contains three leukemia types, was able to determine three major and one minor cluster. Prediction models built for the four clusters indicate that the prediction strength for the smaller cluster is generally low, therefore labelled as uncertain cluster. Further analysis shows that the uncertain cluster can be subdivided further, and the subdivisions are related to two of the original clusters. Another test performed using colon cancer microarray data has automatically derived two clusters, which is consistent with the number of classes in data (cancerous and normal). AVAILABILITY: JAVA software of dynamic SOM tree algorithm is available upon request for academic use. SUPPLEMENTARY INFORMATION: A comparison of rectangular and hexagonal topologies for GSOM is available from http://www.mame.mu.oz.au/mechatronics/journalinfo/Hsu2003supp.pdf  相似文献   

14.
MOTIVATION: Genome sequencing projects and high-through-put technologies like DNA and Protein arrays have resulted in a very large amount of information-rich data. Microarray experimental data are a valuable, but limited source for inferring gene regulation mechanisms on a genomic scale. Additional information such as promoter sequences of genes/DNA binding motifs, gene ontologies, and location data, when combined with gene expression analysis can increase the statistical significance of the finding. This paper introduces a machine learning approach to information fusion for combining heterogeneous genomic data. The algorithm uses an unsupervised joint learning mechanism that identifies clusters of genes using the combined data. RESULTS: The correlation between gene expression time-series patterns obtained from different experimental conditions and the presence of several distinct and repeated motifs in their upstream sequences is examined here using publicly available yeast cell-cycle data. The results show that the combined learning approach taken here identifies correlated genes effectively. The algorithm provides an automated clustering method, but allows the user to specify apriori the influence of each data type on the final clustering using probabilities. AVAILABILITY: Software code is available by request from the first author. CONTACT: jkasturi@cse.psu.edu.  相似文献   

15.
16.
MOTIVATION: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. RESULTS: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. AVAILABILITY: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request.  相似文献   

17.
Clustering of microarray gene expression data is performed routinely, for genes as well as for samples. Clustering of genes can exhibit functional relationships between genes; clustering of samples on the other hand is important for finding e.g. disease subtypes, relevant patient groups for stratification or related treatments. Usually this is done by first filtering the genes for high-variance under the assumption that they carry most of the information needed for separating different sample groups. If this assumption is violated, important groupings in the data might be lost. Furthermore, classical clustering methods do not facilitate the biological interpretation of the results. Therefore, we propose to methodologically integrate the clustering algorithm with prior biological information. This is different from other approaches as knowledge about classes of genes can be directly used to ease the interpretation of the results and possibly boost clustering performance. Our approach computes dendrograms that resemble decision trees with gene classes used to split the data at each node which can help to find biologically meaningful differences between the sample groups. We have tested the proposed method both on simulated and real data and conclude its usefulness as a complementary method, especially when assumptions of few differentially expressed genes along with an informative mapping of genes to different classes are met.  相似文献   

18.
We present a new class discovery method for microarray gene expression data. Based on a collection of gene expression profiles from different tissue samples, the method searches for binary class distinctions in the set of samples that show clear separation in the expression levels of specific subsets of genes. Several mutually independent class distinctions may be found, which is difficult to obtain from most commonly used clustering algorithms. Each class distinction can be biologically interpreted in terms of its supporting genes. The mathematical characterization of the favored class distinctions is based on statistical concepts. By analyzing three data sets from cancer gene expression studies, we demonstrate that our method is able to detect biologically relevant structures, for example cancer subtypes, in an unsupervised fashion.  相似文献   

19.
MOTIVATION: Hierarchical clustering is a common approach to study protein and gene expression data. This unsupervised technique is used to find clusters of genes or proteins which are expressed in a coordinated manner across a set of conditions. Because of both the biological and technical variability, experimental repetitions are generally performed. In this work, we propose an approach to evaluate the stability of clusters derived from hierarchical clustering by taking repeated measurements into account. RESULTS: The method is based on the bootstrap technique that is used to obtain pseudo-hierarchies of genes from resampled datasets. Based on a fast dynamic programming algorithm, we compare the original hierarchy to the pseudo-hierarchies and assess the stability of the original gene clusters. Then a shuffling procedure can be used to assess the significance of the cluster stabilities. Our approach is illustrated on simulated data and on two microarray datasets. Compared to the standard hierarchical clustering methodology, it allows to point out the dubious and stable clusters, and thus avoids misleading interpretations. AVAILABILITY: The programs were developed in C and R languages.  相似文献   

20.
MOTIVATION: Over the last decade, a large variety of clustering algorithms have been developed to detect coregulatory relationships among genes from microarray gene expression data. Model-based clustering approaches have emerged as statistically well-grounded methods, but the properties of these algorithms when applied to large-scale data sets are not always well understood. An in-depth analysis can reveal important insights about the performance of the algorithm, the expected quality of the output clusters, and the possibilities for extracting more relevant information out of a particular data set. RESULTS: We have extended an existing algorithm for model-based clustering of genes to simultaneously cluster genes and conditions, and used three large compendia of gene expression data for Saccharomyces cerevisiae to analyze its properties. The algorithm uses a Bayesian approach and a Gibbs sampling procedure to iteratively update the cluster assignment of each gene and condition. For large-scale data sets, the posterior distribution is strongly peaked on a limited number of equiprobable clusterings. A GO annotation analysis shows that these local maxima are all biologically equally significant, and that simultaneously clustering genes and conditions performs better than only clustering genes and assuming independent conditions. A collection of distinct equivalent clusterings can be summarized as a weighted graph on the set of genes, from which we extract fuzzy, overlapping clusters using a graph spectral method. The cores of these fuzzy clusters contain tight sets of strongly coexpressed genes, while the overlaps exhibit relations between genes showing only partial coexpression. AVAILABILITY: GaneSh, a Java package for coclustering, is available under the terms of the GNU General Public License from our website at http://bioinformatics.psb.ugent.be/software  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号