首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The N-terminal native sequence tripeptide of alpha-fetoprotein, L-threonyl-L-leucyl-L-histidine N-methylamide, was synthesized and its interaction with Cu(II) ions was investigated by potentiometric titration at 25 degrees C in 0.15 M-NaCl and by visible-absorption, e.p.r. and n.m.r. spectroscopy. Analyses of the results in the pH range 4-10 indicated the presence of multiple complex species in solution: MHL, MH-2L, MHL2, ML2 and MH-1L2, where M, H and L represent metal ion, proton and ligand anion respectively. Only the species MH-2L and MH-1L2 are present in significant amounts at physiological pH. The results of the visible-absorption spectroscopy are consistent with the findings of species distribution that MH-2L is the major complex species detected above physiological pH that has the spectral characteristics of lambda max. = 523 nm and epsilon max. = 98 M-1.cm-1. The nine superhyperfine lines in e.p.r. spectra of the major species MH-2L strongly support the co-ordination of four nitrogen atoms by Cu(II). Both 1H- and 13C-n.m.r. studies suggest that the species MH-2L is a square-planar complex. The results from the equilibrium-dialysis experiments showed that this peptide is able to compete with albumin for Cu(II) ions. At equimolar concentrations of albumin and the peptide, about 52% of the Cu(II) was bound to the peptide. The possibility that alpha-fetoprotein plays an important role as the Cu(II)-transport protein in fetal life is discussed.  相似文献   

2.
EPR spectra were obtained for the type 2 Cu2+ site in particulate methane monooxygenase (pMMO) from Methylomicrobium album BG8 grown on K15NO3 and 63Cu(NO3)2. The concentration of the type 2 Cu2+ signal was approximately 200 microM per 25 mg/ml protein in packed cells and membrane fractions, a concentration that is consistent with its attribution to pMMO, and the EPR parameters were consistent with electron paramagnetic resonance (EPR) parameters previously assigned to pMMO. The superhyperfine structure due to nitrogen is better resolved because I = 1/2 for 15N whereas I = 1 for 14N and A(15N)/A(14N) = 1.4. Under these conditions, superhyperfine structure is resolved in the g region of the X-band spectrum. At low microwave frequency (S-band) the resolution of the nitrogen superhyperfine structure improves. Signals are attributed to type 2 Cu2+ in which cupric ion is bound to four (less likely three) nitrogen donor atoms.  相似文献   

3.
Electron spin resonance spectra of the first Cu(II) complexes of human serum albumin, dog serum albumin, l-aspartyl-l-histidine N-methylamide and glycyl-glycyl-l-histidine N-methylamide have been studied using isotopically pure 65Cu in its chloride form. At 77° K, the esr spectra of Cu(II) complex of human serum albumin exhibited only one form of esr signal between pH 6.5 and 11. No intermediate forms were detected. The presence of an equally spaced nine-line superhyperfine structure with spacing ~15 G indicated considerable covalent bonding between Cu(II) and four nitrogen atoms derived from the protein. The esr spectrum form of Cu(II) bound to human serum albumin detected at neutral pH would be consistent with the participation of four nitrogens from the α-NH2 group, two peptide groups, and the imidazole group of a histidine residue. In contrast, the esr spectra of Cu(II)-dog serum albumin complex showed a transition from a low pH form to a high pH form as the pH was increased to 9.5. These spectral changes were found to be reversible upon lowering the pH. Ligand superhyperfine splittings in the low pH form of the esr signal of Cu(II)-dog albumin were not resolved. The distinct pH dependence of the esr signals observed in human and dog serum albumin complexes could be correlated to their respective optical spectra changes as a function of pH. At room temperature and in the pH range between 6 and 11, the esr spectra of Cu(II) complexes of l-aspartyl-l-alanyl-l-histidine N-methylamide and glycyl-glycyl-l-histidine N-methylamide exhibited a well-resolved nine-line superhyperfine structure indicating metal coordination with four equivalent nitrogen atoms of peptide.  相似文献   

4.
ESR spectra of the tight binding Cu(II) complex of bovine serum albumin (BSA) has been studied using S-band. At physiological pH, only one form of copper binding to BSA was detected from the ESR spectra. From previous X-band ESR spectra, nitrogen superhyperfine splittings were observable in the g perpendicular region; however, the resolution of the g parallel region was not sufficient to confirm the exact donor atoms of the complex. Using low-frequency ESR (2-4 GHz) at 77 K, we have resolved the nitrogen superhyperfine structure in the g parallel region. A computer simulation method has been developed for distinguishing between three and four nitrogen donor atoms. The Hyde-Froncisz theory of g and A strain broadening has been modified to use a field-swept calculation for the line shape. The observed intensity pattern and the computer simulation of such spectra positively confirm the structure of Cu(II) ion coordinated to four in-plane nitrogen atoms in frozen aqueous solutions of Cu(II)-BSA complexes at physiological pH. This is the first time that this binding site has been confirmed on the protein instead of a protein fragment or model compound. This work is another example of the usefulness of the S-band ESR technique for characterizing the metal-protein interactions when random variation in g factors cause line broadening in conventional X-band ESR spectra.  相似文献   

5.
The kinetics of inhibition of dopamine (3,4-dihydroxyphenethylamine) beta-mono-oxygenase by cyanide (CN-) and azide (N3-) ions have been investigated by using steady-state methods. Both anions show complex non-competitive-inhibition patterns with respect to ascorbate, suggestive of anion binding at two different sites on the oxidized enzyme. To further investigate this finding, e.p.r. titrations of CN- and N3- binding to the 63Cu-reconstituted enzyme were carried out. Addition of approx. 2 equiv. of CN- to copper elicits a new signal with g = 2.217, g = 2.025, A = 17.0 mT characteristic of a copper (II)-cyano complex. Simulations show that this signal accounts for half the copper (II) in the enzyme. The remainder of the enzyme-bound copper is expressed by a signal close to, but not identical with, that of native enzyme. Further addition of CN- induces a simultaneous decrease in intensity of both of these signals so that their 1:1 ratio is maintained. Binding of N3-, on the other hand, changes the e.p.r. spectrum to a form different from either that of the native or CN- -treated enzyme, and integrates to 100% of the copper in the enzyme (g = 2.252, g = 2.050, A = 16.5 mT). Resolved superhyperfine structure is apparent in the g region. N3- binding is also accompanied by the appearance of a broad charge-transfer band centred at 387 nm. Neither 9 nor 35 GHz e.p.r. spectra show evidence for more than one (non-interacting) species of Cu(II) in native enzyme and N3- derivatives. The binding and reactivity of CN-, on the other hand, argues against independent copper sites in the enzyme.  相似文献   

6.
We have measured the 14N superhyperfine frequencies for weakly coupled nitrogen in stellacyanin and in a model compound Cu(II)-diethylenetriamine-imidazole using a 3-pulse spin echo technique. By making computer simulations of the superhyperfine spectrum, we have been able to show that these frequencies result from the interaction of the remote protonated nitrogen of metal-bound imidazole with Cu(II).  相似文献   

7.
EPR data are used to describe the conformation and identity of the atoms coordinated to Cu(II) in Cu(II)-bleomycin bound to oriented DNA fibers. The fibers were slowly drawn from viscous solutions of Cu(II)-bleomycin-DNA containing one Cu(II)-bleomycin to 200 basepairs. EPR measurements were made at room temperature and 90 K for different orientations of the external magnetic field with respect to the helical axes of the fibers. The g-values (g parallel = 2.21, g perpendicular = 2.04) and the hyperfine constant (A parallel = 175 G) are consistent with values expected for Cu(II) chelated to a square planar array of ligands. In the oriented fibers, the square planar arrays do not all have the same orientations with respect to the fiber axes. At room temperature the chelated ions have rotational freedom in which the normal to the planar array has almost complete freedom of rotation about axes perpendicular to the DNA fiber axes. The normal maintains an angle of 75 degrees with respect to the axis, in the plane of the basepair, about which it rotates. Nine superhyperfine peaks on the high field side of the EPR spectrum were partially resolved. The number and splitting (12 G) of these superhyperfine peaks indicate that four nitrogen atoms are chelated to Cu(II) in a square planar array. These data on Cu(II)-bleomycin bound to DNA give information on the orientation of the metal-containing portion of bleomycin which lies outside to double helix.  相似文献   

8.
The interaction of Cu(II) with the protamine scylliorhinine Z3 was studied by means of CD measurements. At a 1:1 molar ratio, three complexes are formed. (1) In the pH range 5–6.5, the results suggest the formation of a five-membered chelate ring through the coordination of two nitrogen atoms, the N-terminal and the contiguous peptide nitrogen. (2) At pH ≥ 6.4, there is involvement of the lateral NH2 group of Arg; at pH 6.5–8, the formation of a 3N cupric complex is strongly suggested. (3) At pH ≥ 8, results indicate the formation of a 4N complex as a major species in Cu(II)-Z3 solution. The transformation from a 2N to a 3N complex, and from a 3N to a 4N complex was followed with the help of the σ(αNH2) → Cu(II) charge-transfer dichroic band transitions. At Cu(II):Z3 molar ratios ≥ 2 and at pH > 8, a new dichroic band appears, indicating the involvement of the tyrosine residue side chain in metal-ion complexation.  相似文献   

9.
A cold-water-soluble wheat-endosperm arabinoxylan consisting of a backbone of (1----4)-linked beta-D-xylopyranosyl residues that are variously unsubstituted, and 3- or 2,3-substituted with single alpha-L-arabinofuranosyl groups, was subjected to 1H-n.m.r. spectroscopy. The results of 2D homonuclear Hartmann-Hahn and 1D 1H-n.m.r. spectroscopy allowed the identification of 3- and 2,3-substituted xylose residues, each with adjacent unsubstituted xylose residues, and also substituted xylose residues with a substituted xylose residue as a neighbour. The 1H-n.m.r. data were correlated with 13C-n.m.r. data by means of a 13C-1H 2D proton-detected heteronuclear multiple-quantum correlation experiment, which showed that only different types of branching (i.e., 3- and 2,3-) can be identified by the 13C-n.m.r. data.  相似文献   

10.
Results are reported of a pH-metric and spectroscopic (CD and ESR) study of the complexes formed between the pseudo-peptide 1-hydroxy-4-(Gly-His-Lys)-anthraquinone (Q-GHK) since, when complexed to copper ions, Q-GHK has been shown to be very effective in promoting the formation of free radicals and inducing DNA cleavage. Q-GHK forms very stable complexes with copper, the major species being bonded to three nitrogen donors in the coordination plane: an imidazole-N of the His residue and the peptide nitrogens of the Gly and His residues. This species is probably stabilized through bonding of the fourth planar coordination site of Cu(II) to the 9-anthraquinone oxygen. At high Q-GHK:copper ratios a second Q-GHK molecule is coordinated through its imidazole-N donor.  相似文献   

11.
1H- and 2H-n.m.r. studies of gamma-irradiation-induced variations in the dynamic structure and proportional amounts of free, trapped and bound water species in multilamellar liposomes are reported and discussed. Bound water is shown to increase with dose and to be present in two different structural states. A dose-dependent decrease in the 1H-n.m.r. relaxation times of bound water following gamma-irradiation is reported. Variations are suggested as being due to large scale changes at the bilayer surface.  相似文献   

12.
NN-Diethyldithiocarbamate (DDC) was able to bind, at 1.0 mM concentration, only about 50% the Cu(II) ions of bovine plasma amine oxidase. Under reducing conditions, this Cu(II) was removed with inactivation of the enzyme. Up to 90% activity could be recovered by treatment with excess Cu(II). The organic cofactor, sensitive to carbonyl reagents, was reduced in the half-Cu-depleted protein and no longer bound phenylhydrazine. The fully reacted protein, in the presence of 10 mM-DDC, lost 50% Cu(II) upon storage at -20 degrees C, but in this case the residual Cu(II) was in the DDC-bound form and the cofactor was in the oxidized state, as it could still bind phenylhydrazine. In the presence of DDC, the rate of reaction with phenylhydrazine was always low, even at 50% DDC saturation, and all derivatives showed identical modifications of the optical and e.p.r. spectra with respect to the phenylhydrazone of the native protein. It is concluded that the two Cu(II) ions are not equivalent, that removal of a single Cu(II) is sufficient to inhibit the re-oxidation of the organic cofactor, and that both Cu(II) ions are in some way involved in the reaction with phenylhydrazine. After reaction with DDC, the optical and e.p.r. spectra of 63Cu(II)-amine oxidase and of 63Cu(II)-carbonic anhydrase [Morpurgo, Desideri, Rigo, Viglino & Rotilio (1983) Biochim. Biophys. Acta 746, 168-175] are very similar and show distorted equatorial co-ordination to Cu(II) of two sulphur atoms and two magnetically equivalent nitrogen atoms.  相似文献   

13.
Oxygen treatment of horse liver alcohol dehydrogenase EE isozyme substituted with Cu(II) at the catalytic site leads to bleaching with concomitant reduction to Cu(I) of approximately 90% of total Cu(II). The Cu(II) of the remaining 'minor species' cannot be reduced nor does it interact with exogenous ligands, e.g. 2-mercaptoethanol, imidazole, pyrazole, or azide ions. The EPR spectrum is axial with a super-hyperfine splitting of 15.6 G indicating binding of one nitrogen atom to Cu(II). These data as well as the energies and intensities of the absorption and CD spectra suggest the Cu(II) ion of the minor species to be located in the catalytic site of HLADH in a position and geometry different from that of the major species.  相似文献   

14.
Chicken breast muscle has three Ca2+-dependent proteinases, two requiring millimolar Ca2+ (m-calpain and high m-calpain) and one requiring micromolar Ca2+ (mu-calpain). High m-calpain co-purifies with mu-calpain through successive DEAE-cellulose (steep gradient), phenyl-Sepharose, octylamine agarose, and Sephacryl S-300 columns, but elutes after mu-calpain when using a shallow KCl gradient to elute a DEAE-cellulose column. The mu- and m-calpains have 80 and 28 kDa polypeptides and are analogous to the mu- and m-calpains that have been purified from bovine, porcine and rabbit skeletal muscle. High m-calpain, which seems to be a new Ca2+-dependent proteinase, is still heterogeneous after the DEAE-cellulose column eluted with a shallow KCl gradient. Additional purification through two successive HPLC-DEAE columns and one HPLC-SW-4000 gel permeation column produces a fraction having six major polypeptides and 6-8 minor polypeptides on SDS-PAGE. A 74-76 kDa polypeptide in this fraction reacts in Western blots with monospecific, polyclonal anti-calpain antibodies that react with both the 80 kDa and the 28 kDa polypeptides of mu- or m-calpain. High m-calpain also is related to mu- and m-calpain in that it causes the same limited digestion of skeletal muscle myofibrils, has a similar pH optimum near pH 7.9-8.4, requires Ca2+ for activity, and reacts with the calpain inhibitor, calpastatin, and a variety of serine and cysteine proteinase inhibitors in a manner identical to mu- and m-calpain. High m-calpain differs from mu- and m-calpain in its elution off DEAE-cellulose columns and its requirement of 3800 microM Ca2+ for one-half maximal activity compared with 5.35 microM Ca2+ for mu-calpain and 420 microM Ca2+ for m-calpain. The physiological significance of high m-calpain in unclear. The presence of mu-calpain in chicken breast muscle suggests that all skeletal muscles contain both mu- and m-calpain, although the relative proportions of these two proteinases may vary in different species.  相似文献   

15.
In vitro interactions among phytic acid (PA), Cu(II) ions, and Ca(II) ions were examined as functions of PA:Cu(II):Ca(II) molar ratios and pH. Ca(II) ions competed with Cu(II) ions for binding by the soluble phytate species for PA:Cu(II) molar ratios ranging from 10:1 to 1:6 and pH values in the 2.4-5.9 range. At pH values where precipitation occurred, Ca(II) ions potentiated Cu(II) ion binding by the precipitated phytate species for PA:Cu(II) molar ratios of 10:1 to 1:3. At lower PA:Cu(II) molar ratios, Ca(II) ions competed with Cu(II) ions for binding by the precipitated phytate species. Compositions of the precipitated copper-calcium phytates are reported.  相似文献   

16.
The interactions of Cu(II) ions with adenosine-5'-monophosphate (AMP), cytidine-5'-monophosphate (CMP) and 1,12-diamino-4,9-dioxadodecane (OSpm) were studied. A potentiometric method was applied to determine the composition and stability constants of complexes formed, while the mode of interactions was analysed by spectral methods (ultraviolet and visible spectroscopy (UV-Vis), electron paramagnetic resonance (EPR), (13)C NMR, (31)P NMR). In metal-free systems, molecular complexes nucleotide-polyamine (NMP)H(x)(OSpm) were formed. The endocyclic nitrogen atoms of the purine ring N(1), N(7), the nitrogen atom of the pyrimidine ring N(3), the oxygen atoms of the phosphate group of the nucleotide and the protonated nitrogen atoms of the polyamine were the reaction centres. The mode of interaction of the metal ion with OSpm and the nucleotides (AMP or CMP) in the coordination compounds was established. In the system Cu(II)/OSpm the dinuclear complex Cu(2)(OSpm) forms, while in the ternary systems Cu(II)/nucleotide/OSpm the species type MH(x)LL' and MLL' appear. In the MH(x)LL' type species, the main centres of copper (II) ion binding in the nucleotide are the phosphate groups. The protonated amino groups of OSpm are involved in non-covalent interaction with the nitrogen atoms N(1), N(7) or N(3) of the purine or pyrimidine ring, whereas at higher pH, deprotonated nitrogen atoms of polyamine are engaged in metallation in MLL' species.  相似文献   

17.
The 1H-n.m.r. spectra of human somatotropin (growth hormone) show perturbed peaks from individual aromatic and aliphatic apolar residues, characteristic of a specifically folded globular structure. The imidazole C-2-H resonances of the histidine residues (at positions 18, 21 and 151 in the somatotropin sequence) were individually resolved, and their titration behaviour in the pH range 1.2-11.5 was investigated. The imidazole C-2-H resonance of histidine-151 is assigned, by comparison of its titration behaviour in human somatotropin and desamido-somatotropin (Asn-152 leads to Asp-152). The C-2-H resonances of all three histidine residues are assigned, by comparison of their relative deuterium-exchange rates (determined by n.m.r.) and the relative tritium-exchange rates of the histidine residues (determined by tryptic digestion of tritiated human somatotropin and reversed-phase high-pressure liquid-chromatographic separation of the histidine-containing tryptic peptides). There is evidence that histidine-18 forms an ion-pair bond with a glutamic acid or aspartic acid residue. The globular structure does not appear to change from pH3 to 11.5, though there is evidence for an unfolding of a region of the structure (involving histidine-21 and a tyrosine residue) below pH3.  相似文献   

18.
The peptides Asp-Ala-His-Lys (DAHK) and Gly-His-Lys (GHK) are naturally occurring Cu(II)-chelating motifs in human serum and cerebrospinal fluid. Here, the sensitive thermodynamic technique isothermal titration calorimetry was used to study the energetics of Cu(II) binding to DAHK and GHK peptides in the presence of the weaker ligand glycine as a competitor. DAHK and GHK bind Cu(II) predominantly in a 1:1 stoichiometry with conditional dissociation constants [i.e., at pH 7.4, in the absence of the competing chelators glycine and 2-(4-(2-hydroxyethyl)-1-piperazinyl)ethanesulfonic acid buffer] of 2.6 ± 0.4 × 10−14 M and 7.0 ± 1.0 × 10−14 M, respectively. Furthermore, the apparent ΔH values were measured and the number of protons released upon Cu(II) binding was determined by performing experiments in different buffers. This allowed us to determine the conditional ΔG, ΔH, and ΔS, i.e., corrected for the contributions of the weaker ligand glycine and the buffer at pH 7.4. We found that the entropic and enthalpic contributions to the Cu(II) binding to GHK and DAHK are distinct, with a enthalpic contribution for GHK. The thermodynamic parameters obtained correspond well to those in the literature obtained by other techniques, suggesting that the use of the weaker ligand glycine as a competitor in isothermal titration calorimetry provides accurate data for Cu(II) binding to high-affinity peptides, which cannot be accurately determined without the use of a competitor ligand.  相似文献   

19.
The 170MHZ 1 H n.m.r. spectra of the Cu(II)/Zn(II), Cu(I)/Zn(II) and apo- forms of human erythrocyte superoxide dismutase (EC 1.15.1.1) are reported. Resonances are assigned to the C-2 and C-4 protons of histidine residues in the active site, and it is suggested that five or six histidine residues serve as ligands to the metal ions in each subunit of the enzyme. The remaining assigned resonances are associated with histidine-41, N-terminal N-acetyl group, histidine- 108 and cysteine- 109. A comparison of the n.m.r. spectra of human and bovine superoxide dismutases suggests significant structural homology.  相似文献   

20.
We previously reported (J. Biol. Chem. (1986) 261, 6352-6465) that the photoaffinity ligand for the Ah receptor, [125I]-2-azido-3-iodo-7,8-dibromodibenzo-p-dioxin, upon incubation with the liver cytosol fraction from C57BL/6 mice, labeled in a 1:1 ratio two peptides that had apparent molecular masses of 95 and 70 kDa and similar proteolytic fragmentation patterns. In the cytosolic fraction of Hepa 1 cells, a cloned murine hepatoma cell line, the product of photoaffinity labeling is almost exclusively a 95-kDa peptide which is rapidly hydrolyzed by a Ca2+-dependent proteinase to a 70-kDa peptide as well as other fragments. Thus, the ligand binding unit of the Ah receptor in C57BL/6 mouse liver and Hepa 1 cell is a 95-kDa peptide, and the 70-kDa fragment is a proteolytic artifact. The Ca2+-dependent proteinase which hydrolyzes the 95-kDa peptide has the properties of calpain II: (i) an absolute requirement for Ca2+, with maximal activity at 0.5 to 1.0 mM Ca2+; (ii) a pH optimum of 7.5 to 8.0; (iii) inhibition by EDTA, iodoacetamide, leupeptin and L-trans-epoxysuccinylleucylamido(4-guanidino)butane, but not by soybean trypsin inhibitor, aprotinin, or phenylmethanesufonyl fluoride. Upon chromatographic separation of the liver cytosol of C57BL/6 mice on DEAE-Sephacel, Ca2+-dependent proteinase activity (using casein or the labeled 95-kDa peptide as substrates) elutes with 0.25 M NaCl, and a specific proteinase inhibitor elutes with 0.15 M NaCl. Ca2+-dependent proteinase activity that hydrolyzes the 95-kDa peptide is found in the liver cytosols of several mammalian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号