首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine responses of a plant species to nutrient availability, we investigated changes in soil nutrient availability, litterfall production and nutrient content in litterfall along a topographic gradient in aPinus thunbergii Parl. plantation. Responses were evaluated in terms of three efficiency indices: (i) nutrient-uptake efficiency (the ratio of nutrient return in litterfall to soil nutrient availability); (ii) nutrient-use efficiency (the ratio of litterfall mass to nutrient return in litterfall); and (iii) nutrient-response efficiency (the ratio of litterfall mass to soil nutrient availability). These indices can distinguish the ability of a species to acquire nutrients and its ability to use them in litterfall production. Nitrogen and phosphorus availabilities in soil were lower in upper slope positions. The three efficiencies were higher in upper slope positions and negatively correlated with soil nutrient availability for both nitrogen and phosphorus. An increase in nutrient-response efficiency was achieved by both increases in nutrient-uptake and nutrient-use efficiencies.  相似文献   

2.
Fertilization experiments in tropical forests have shown that litterfall increases in response to the addition of one or more soil nutrients. However, the relationship between soil nutrient availability and litterfall is poorly defined along natural soil fertility gradients, especially in tropical montane forests. Here, we measured litterfall for two years in five lower montane 1‐ha plots spanning a soil fertility and precipitation gradient in lower montane forest at Fortuna, Panama. Litterfall was also measured in a concurrent nitrogen fertilization experiment at one site. Repeated‐measures ANOVA was used to test for site (or treatment), year, and season effects on vegetative, reproductive and total litterfall. We predicted that total litterfall, and the ratio of reproductive to leaf litterfall, would increase with nutrient availability along the fertility gradient, and in response to nitrogen addition. We found that total annual litterfall varied substantially among 1‐ha plots (4.78 Mg/ha/yr to 7.96 Mg/ha/yr), and all but the most aseasonal plot showed significant seasonality in litterfall. However, litterfall accumulation did not track soil nutrient availability; instead forest growing on relatively infertile soil, but dominated by an ectomycorrhizal tree species, had the highest total litterfall accumulation. In the fertilization plots, significantly more total litter fell in nitrogen addition relative to control plots, but this increase in response to nitrogen (13%) was small compared to variation observed among 1‐ha plots. These results suggest that while litterfall at Fortuna is nutrient‐limited, compositional and functional turnover along the fertility gradient obscure any direct relationship between soil resource availability and canopy productivity.  相似文献   

3.
Predicting future impacts of anthropogenic change on tropical forests requires a clear understanding of nutrient constraints on productivity. We compared experimental fertilization and litter manipulation treatments in an old-growth lowland tropical forest to distinguish between the effects of inorganic nutrient amendments and changes in nutrient cycling via litterfall. We measured the changes in soil and litter nutrient pools, litterfall, and fine root biomass in plots fertilized with nitrogen (N), phosphorus (P), or potassium (K), and in litter addition and litter removal treatments during 7 years. Soil inorganic N and litter N increased in double-litter plots but not in N-fertilized plots. Conversely, litter P and soil pools of P and K increased in fertilized plots but not in the double-litter plots. Soil and litter pools of N and K decreased in the no-litter plots. Changes in litterfall with added nutrients or litter were only marginally significant, but fine root biomass decreased with both the litter and the K addition. Differences between the two experiments are mostly attributable to the coupled cycling of carbon and nutrients in litter. Increased nutrient inputs in litter may improve plant uptake of some nutrients compared to fertilization with similar amounts. The litter layer also appears to play a key role in nutrient retention. We discuss our findings in the context of possible impacts of anthropogenic change on tropical forests.  相似文献   

4.
The extent to which plant communities are determined by resource availability is a central theme in ecosystem science, but patterns of small-scale variation in resource availability are poorly known. Studies of carbon (C) and nutrient cycling provide insights into factors limiting tree growth and forest productivity. To investigate rates of tropical forest litter production and decomposition in relation to nutrient availability and topography in the absence of confounding large-scale variation in climate and altitude we quantified nutrient fluxes via litterfall and leaf litter decomposition within three distinct floristic associations of tropical rain forest growing along a soil fertility gradient at the Sepilok Forest Reserve (SFR), Sabah, Malaysia. The quantity and nutrient content of small litter decreased along a gradient of soil nutrient availability from alluvial forest (most fertile) through sandstone forest to heath forest (least fertile). Temporal variation in litterfall was greatest in the sandstone forest, where the amount of litter was correlated negatively with rainfall in the previous month. Mass loss and N and P release were fastest from alluvial forest litter, and slowest from heath forest litter. All litter types decomposed most rapidly in the alluvial forest. Stand-level N and P use efficiencies (ratios of litter dry mass to nutrient content) were greatest for the heath forest followed by the sandstone ridge, sandstone valley and alluvial forests, respectively. We conclude that nutrient supply limits productivity most in the heath forest and least in the alluvial forest. Nutrient supply limited productivity in sandstone forest, especially on ridge and hill top sites where nutrient limitation may be exacerbated by reduced rates of litter decomposition during dry periods. The fluxes of N and P varied significantly between the different floristic communities at SFR and these differences may contribute to small-scale variation in species composition.  相似文献   

5.
Madeira  M.  Araújo  M. C.  Pereira  J. S. 《Plant and Soil》1995,(1):287-295
A field experiment was initiated in March 1986 in central Portugal to evaluate the influence of water and nutrient supply on the productivity of E. globulus. The treatments applied were, irrigation plus fertiliser, irrigation and the application of fertilisers in rainfed plots. The control received neither fertilisers nor irrigation. The annual pattern litterfall was measured over a period of 5 years and the litter layer was quantified 6 years after planting. The amount of litterfall varied with the treatments. Simultaneous water and nutrient supply increased significantly litterfall, in respect to control. In rainfed conditions the timing of the maximum of litterfall was anticipated relative to the irrigated plots. However, the time of maximum litterfall did not coincide with the dry season but rather with period of maximum growth in each treatment. The N and P concentration was higher in the litterfall of the two fertilised treatments than in the others. The lowest concentrations of N and P in the leaf litter were coincident with the summer period in all treatments. The withdrawal of N and P ranged between 32 and 65% according to treatment and season. The deliverance of nutrients through litterfall was strongly increased by simultaneous water and nutrient supply. The supply of fertilisers in rainfed conditions promoted higher deliverance of nutrients than in the plots irrigated only. The mass of the litter layer was significantly increased by simultaneous water and nutrient supply. Application of fertilisers induced an increase in N and P concentration and a decrease in C/N ratio of the litter layer. Treatments and C/N values did not influence apparently the proportion of carbon, N and P released through mineralization from the litter layer. The non-fertilized treatments showed a more efficient N cycling than the others.  相似文献   

6.
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C‐rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (?22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.  相似文献   

7.

The role of lowland tropical forest tree communities in shaping soil nutrient cycling has been challenging to elucidate in the face of high species diversity. Previously, we showed that differences in tree species composition and canopy foliar nitrogen (N) concentrations correlated with differences in soil N availability in a mature Costa Rican rainforest. Here, we investigate potential mechanisms explaining this correlation. We used imaging spectroscopy to identify study plots containing 10–20 canopy trees with either high or low mean canopy N relative to the landscape mean. Plots were restricted to an uplifted terrace with relatively uniform parent material and climate. In order to assess whether canopy and soil N could be linked by litterfall inputs, we tracked litter production in the plots and measured rates of litter decay and the carbon and N content of leaf litter and leaf litter leachate. We also compared the abundance of putative N fixing trees and rates of free-living N fixation as well as soil pH, texture, cation exchange capacity, and topographic curvature to assess whether biological N fixation and/or soil properties could account for differences in soil N that were, in turn, imprinted on the canopy. We found no evidence of differences in legume communities, free-living N fixation, or abiotic properties. However, soils beneath high canopy N assemblages received ~ 60% more N via leaf litterfall due to variability in litter N content between plot types. The correlation of N in canopy leaves, leaf litter, and soil suggests that, under similar abiotic conditions, litterfall-mediated feedbacks can help maintain soil N differences among tropical tree assemblages in this diverse tropical forest.

  相似文献   

8.
Mayor  X.  Rodá  F. 《Plant Ecology》1992,(1):209-217
Correlations between primary production and patterns of nutrient use and nutrient availability were investigated in 18 plots in closed holm oak (Quercus ilex L.) stands in the Montseny mountains (NE Spain), searching for evidence of nutrient limitation on primary production. The plots spanned a range of altitudes and slope aspects within a catchment. Nutrients considered were nitrogen (N), phosphorus (P), potassium (K) and magnesium (Mg) in plant samples, and the above plus calcium (Ca) and sodium (Na) in the soil. Primary production was found by summing the annual aboveground biomass increment to the annual litterfall. Across plots, primary production was correlated with the annual return of nutrients in litterfall, but this relationship probably arose from the common effects of the amount of litterfall on both primary production and nutrient return, and not from any nutrient limitation. Primary production was not significantly correlated with nutrient concentrations in mature leaves nor leaf litterfall, nor with absolute or relative foliar retranslocation of nutrients before leaf abscission, nor with the concentration and content (kg/ha) of total N, extractable P, and exchangeable K, Mg, Ca and Na in the upper mineral soil. We conclude that there is no correlational evidence that primary production is nutrient limited in this holm oak forest.  相似文献   

9.
We investigated the influence of landscape-level variation in soil fertility and topographic position on leaf litter nutrient dynamics in a tropical rain forest in Costa Rica. We sampled across the three main edaphic conditions (ultisol slope, ultisol plateau, and inceptisol) to determine the effect of soil nutrients on leaf litter nutrient concentrations while controlling for topography, and to examine topographic effects while controlling for soil nutrients. Both leaf litter macronutrient [phosphorus (P), nitrogen (N), sulfur (S), calcium (Ca), potassium (K), magnesium (Mg)] and micronutrient concentrations were quantified throughout a 4-year period. Leaf litter [P], [N] and [K] varied significantly among soil types. The variation in [P], [N], and [K] was explained by soil fertility alone. Leaf litter [S], [Ca], and [Mg] did not vary among the three soil types. Macronutrient (P, K, Mg, S, Ca) concentrations in the leaf litter were much less variable than those of Fe and Al. Lower variability in essential plant nutrients suggests a great deal of plant control over the amount of nutrients resorbed before senescense. Leaf litter macronutrient concentrations varied significantly over the 4-year period, but the temporal variation did not differ among the three edaphic types as anticipated. Hence, although the magnitude of nutrient fluxes may be controlled by local factors such as soil fertility, temporal patterns are likely regulated by a common environmental variable such as precipitation or temperature.  相似文献   

10.
Typhoons are frequent on Okinawa Island, southwestern Japan. The effects of typhoon disturbance on the patterns of fine litterfall and related nutrient inputs in a subtropical evergreen broad-leaved forest were studied over 5 years from May 1996 to April 2001. Annual fine litterfall averaged 7558 kg ha−1 (range from 6188 to 9439 kg ha−1) for six sampling plots over 5 years, which differed significantly among years (p<0.001) but not among plots (p=0.122). A seasonal maximum was most evident for leaf litter component. Woody litter fell more irregularly through the year, and peak fall varied with typhoon and windstorm. The mean ratio of annual litterfall mass of sexual organs to leaves was 0.06, much lower than that in other tropical and subtropical rain forests. Nutrient concentrations varied in litterfall components, but were not significantly different among plots. The lowest concentrations of N and P in leaf litter were observed in March, which is also the month with the greatest leaf fall. However, the highest concentrations were recorded in typhoon season. Nitrogen and P concentrations were 34% and 106% greater in the green leaves that fell during typhoons than in senescent leaves. Mean nutrient inputs by litterfall were: N 83, P 3.2, K 25, Ca 71, Mg 19, Al 12, Na 10, Fe 0.86 and Mn 3.9 kg ha−1 yr−1, and differed significantly among years for all elements (p<0.0005) and among plots only for K (p<0.05) and Mn (p<0.0001). Typhoon disturbance strongly affected annual fine litterfall and related nutrient inputs, which contributed an average of 30% of the annual litterfall mass, and from 30% to 39% (for different nutrient elements) of annual total nutrient inputs. The results from this study suggest that typhoon-driven maintenance of rapid cycling of P and N and their high availability in soil appears to be an important mechanism to maintain productivity in the subtropical forest on Okinawa Island.  相似文献   

11.
不同坡位对琉球松人工林凋落物及其养分归还量的影响   总被引:8,自引:0,他引:8  
对日本冲绳岛北部不同坡位的琉球松人工林凋落物量及其养分归还量进行了为期3年的观测研究,结果表明,琉球松成林年凋落物量为6.54~8.05Mg·hm^-2·年^-1,其凋落高峰出现在6、7月份.台风干扰对年凋落物量及其季节动态影响显著.凋落物不同组分的养分含量差异明显.年均养分归还总量为113.4~154.6kg·hm^-2·年^-1,其中氮素归还量最大,占42.2%;各养分归还量的大小依次为N>Ca>K>Mg>Na>P.两调查林分由于立地条件的显著差异,年均凋落物量及其相应的养分归还量亦存在明显差异.在立地条件较好的下坡,林分P1的年均凋落物量达8.05Mg·hm^-2·年^-1,高于立地条件相对较差的上坡的林分P2的23.1%;其相应的年养分归还量为:N66、04,P1.63,K17.42,Ca48.31,Mg14.65和N。6、57kg·hm^-2·年^-1,分别高于林分P2的39.7%、48.8%、39.4%、32.9%、24.8%和49.3%.两林分凋落物的养分利用效率分别是N为122和138,P为4934和5945,K为462和523,林分P1明显低于林分P2,这与林分P2的立地条件较差相关.可见,所调查的琉球松林是一种高效的养分利用系统。  相似文献   

12.
The aim of this study was to analyse the amount and qualitative characteristics of organic matter (OM) in the litter horizon (considering leaf litter at different decomposition stages) and underlying soil to a 30-cm depth in a beech stand on the Apennines in southern Italy. Distribution of major nutrients as well as fungal and microbial biomass were also evaluated, in addition to beech leaf nutrient content monitor from full expansion to abscission in order to estimate annual nutrient input to soil from litterfall and nutrient retranslocation before abscission. OM was significantly higher in leaf litter. C/N ratio and the Na, Mn, Fe levels also decreased along the decomposition continuum, whereas N and S contents slowly decreased with soil depth. Generally, leaf nutrient content was also significantly lower in dead leaves, indicating efficient retranslocation to persistent organs. Fungal biomass was the highest in leaf layers, with no significant changes between spring and autumn samplings. Enzyme activities did not differ significantly along the decomposition continuum but marked decreases were found in the upper soil layer; these remained relatively constant, with the exception of laccase, at deeper soil depths. No seasonal effect on enzyme activities and OM content was found.  相似文献   

13.
Scant information is available on how soil phosphorus (P) availability responds to atmospheric nitrogen (N) deposition, especially in the tropical zones. This study examined the effect of N addition on soil P availability, and compared this effect between forest sites of contrasting land‐use history. Effects of N addition on soil properties, litterfall production, P release from decomposing litter, and soil P availability were studied in a disturbed (reforested pine forest with previous understory vegetation and litter harvesting) and a rehabilitated (reforested mixed pine/broadleaf forest with no understory vegetation and litter harvesting) tropical forest in southern China. Experimental N‐treatments (above ambient) were the following: Control (no N addition), N50 (50 kg N ha?1 yr?1), and N100 (100 kg N ha?1 yr?1). Results indicated that N addition significantly decreased soil P availability in the disturbed forest. In the rehabilitated forest, however, soil P availability was significantly increased by N addition. Decreases in soil P availability may be correlated with decreases in rates of P release from decomposing litter in the N‐treated plots, whereas the increase in soil P availability was correlated with an increase in litterfall production. Our results suggest that response of soil P availability to N deposition in the reforested tropical forests in southern China may vary greatly with temporal changes in tree species composition and soil nutrient status, caused by different land‐use practices.  相似文献   

14.
Understanding the spatial variability in plant litter processes is essential for accurate comprehension of biogeochemical cycles and ecosystem function. We assessed spatial patterns in litter processes from local to regional scales, at sites throughout the wet tropical rain forests of northern Australia. We aimed to determine the controls (e.g., climate, soil, plant community composition) on annual litter standing crop, annual litterfall rate and in situ leaf litter decomposability. The level of spatial variance in these components, and leaf litter N, P, Ca, lignin, α‐cellulose and total phenolics, was determined from within the scale of subregion, to site (1 km transects) to local/plot (~30 m2). Overall, standing crop was modeled with litterfall and its chemical composition, in situ decomposability, soil Na, and topography (r= 0.69, 36 plots). Litterfall was most closely aligned with plant species richness and stem density (negative correlation); leaf decomposability with leaf‐P and lignin, soil Na, and dry season moisture (r= 0.89, 40 plots). The predominant scale of variability in litterfall rates was local (plot), while litter standing crop and α‐cellulose variability was more evenly distributed across spatial scales. Litter decomposability, N, P and phenolics were more aligned with subregional differences. Leaf litter C, lignin and Ca varied most at the site level, suggesting more local controls. We show that variability in litter quality and decomposability are more easily accounted for spatially than litterfall rates, which vary widely over short distances possibly in response to idiosyncratic patterns of disturbance.  相似文献   

15.
研究黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征影响有助于深入理解黄土丘陵区不同植被带下土壤和土壤微生物相互作用及养分循环规律.选择黄土丘陵区延河流域3个植被区(森林区、森林草原区、草原区)和5种地形部位(阴/阳沟坡、阴/阳梁峁坡、峁顶)的土壤作为研究对象,利用生态化学计量学理论研究植被和地形对土壤和土壤微生物生物量生态化学计量特征的影响.结果表明: 土壤及土壤微生物生物量碳、氮、磷含量在不同地形之间的差别主要表现在沟坡位置和阴坡高于其他坡位和阳坡.植被类型的变化对两个土层(0~10、10~20 cm)土壤和土壤微生物生物量碳、氮、磷的影响均达到显著水平,坡向对表层(0~10 cm)土壤和土壤微生物生物量碳、氮、磷的影响强于坡位,而在10~20 cm土层,坡位对土壤和土壤微生物生物量碳、氮、磷影响更显著.植被类型显著影响土壤C∶N、C∶P、N∶P和土壤微生物生物量C∶N、C∶P,坡向和坡位仅影响土壤C∶P和N∶P,植被类型的变化是影响土壤C∶N的主要因素.同时,植被类型对土壤养分和微生物生物量碳、氮、磷含量及其生态化学计量特征的影响大于地形因子.标准化主轴分析结果表明,黄土丘陵区不同植被带土壤微生物具有内稳性,特别在草原带,土壤微生物生物量生态化学计量学特征具有更加严格的约束比例.在黄土丘陵区,土壤微生物生物量N∶P或许可以作为判断养分限制的另一个有力工具,若将土壤微生物生物量N∶P与植物叶片N∶P配合使用可能有助于我们更加精确地判断黄土丘陵区的土壤养分限制情况.  相似文献   

16.
刘进辉  王雪芹  马洋 《生态学报》2016,36(4):979-990
以塔克拉玛干沙漠南缘策勒沙漠绿洲过渡带为研究区,选取植被盖度依次为30%、15%—20%、10%和5%的4个典型样地,对各样地的柽柳灌丛沙堆-丘间地系统典型部位0—10 cm和10—20 cm土壤进行系统采样,分析土壤枯落物、有机质、全效N、P、K和速效N、P、K含量,从风沙地貌的角度研究过渡带沙漠化进程中土壤养分分布特征。结果表明:(1)随着植被总盖度的降低,灌丛沙堆表层0—10 cm土壤的枯落物、有机质、全N、全K、速效K含量呈降低趋势,平均降幅为69.3%、37.0%、35.3%、8.3%和24.5%。全P含量没有明显的变化,速效N和速效P含量呈先减小后增大的趋势;(2)从灌丛下→沙堆边缘→丘间地→风影区,土壤枯落物、有机质、全N、全P、速效N、速效P、速效K含量表现出先减小后增大的趋势,最大值位于灌丛下部位,最小值位于丘间地,但在植被盖度5%的样地,沙堆-丘间地系统各部位之间养分含量无显著性差异;(3)与0—10 cm土层相比,10—20 cm土层的枯落物、有机质、全N、全P和速效P含量显著降低,平均降幅为40.0%、27.0%、25.0%、4.5%和2.0%,全K、速效N和速效K含量明显增加,平均增幅为4.8%、103.3%和12.1%。随着植被盖度的降低,10—20 cm土层的养分含量具有与0—10 cm土层相对一致的变化趋势;(4)灌丛的生物反馈作用使得灌丛下部位具有明显的养分富集效应,但随着植被总盖度的降低和风沙活动不断加剧,非生物因素逐渐占据主导,灌丛的养分富集效应趋于减弱和消失。  相似文献   

17.
Tree growth (as diameter increment), litterfall production, and litter biomass were studied in two secondary tropical dry forests of the Yucatán Peninsula under four treatments of nutrient addition. The studys objective was to assess how variations in the nutrient supply affect aboveground net primary production and carbon (C) accumulation on the floor of two forests in different stages of regeneration. The study included an area of young forest (10 years old) with phosphorus (P)-poor soils and an area of old forest (around 60 years old) where soil P was comparatively less limiting. Four replicate plots (12 × 12 m) at each forest were either left intact (controls) or fertilized with nitrogen (N), P, or N plus P during 3 consecutive years. After 3 years of fertilization, relaxation of the constraints on nutrient limitation resulted in increased trunk growth rates at both the young and old forests. This effect was more pronounced with the addition of P or N plus P (trunk growth doubled with respect to controls), whereas N addition increased tree growth by 60% in comparison to trees in plots without nutrient supplements. In both forests, there were no significant differences in litterfall production among treatments during the first 2 years after fertilization. In the 3rd year of nutrient addition, litterfall production was significantly higher in plots fertilized with N plus P compared to control plots at both forest sites; however, changes in litterfall were not accompanied by litter accumulation in the floor of the two forests. The results of this study support the hypothesis that there is nutrient limitation during tropical dry forest regeneration. They further show that it may be maintained in the long term during secondary succession.  相似文献   

18.
Our knowledge about soil organic matter (SOM) dynamics is limited although this is an important issue in the study of responses of ecosystems to global climate changes. Twelve sampling plots were set up every 200 m from 1 700 to 3 900 m along the vertical vegetation gradient along the east slope of Gongga Mountain. Samples were taken from all 12 plots for SOM content measurement, although only 5 of the 12 plots were subjected to radiocarbon measurements. A radiocarbon isotope method and a time-dependent model were used to quantify the SOM dynamics and SOM turnover rates along the vertical vegetation gradient. The results showed that the SOM turnover rate decreased and turnover time increased with soil depth for all vegetation types. The litter layer turnover rates presented a clear trend along the gradient. The litter layer turnover rates decreased with an increase in elevation, except that the litter layer turnover rate of mixed forest was higher than that of evergreen forest. Climatic factors, such as temperature and precipitation, were the main factors influencing the surface soil carbon dynamics. The turnover rates of the subsoil (including the A, B, and C horizons in the soil profiles) along the vertical gradient had no clear trends. The SOM of subalpine shrub and meadow turned over more slowly than that of the forest types in almost all soil horizons. The characteristic of short roots distributing in the upper part of the soil profile leads to different SOM dynamics of shrub and meadow compared with the forest types. Coniferous and mixed forests were susceptible to carbon loss from the young carbon pool, but their long and big roots resulted in high △^14C values of the deep soil profiles and increased the input of young carbon to the deep soil. In evergreen forest, the carbon cumulative ability from the B horizon to the C horizon was weak. The different vegetation types, together with their different modes of nutrient and carbon intake, may be the mechanism conditioning the subsoil organic matter dynamics.  相似文献   

19.
Summary Nutrient pools in litter and soil and the major nutrient transfers and additions in rainfall, throughfall and litterfall were measured in eight mature, undisturbed eucalypt forests covering a range of species, climate, productivity and soil type. Litterfall is the major pathway for the return of N, P, Ca and usually Mg, to the soil. The forests covered almost the range of litterfall reported for eucalypt forests and, in conjunction with published data, litterfall was strongly related to climatic variables. Extractable P in the soil and P concentrations in litter and litterfall were significantly higher in two sub-alpine forests (Eucalyptus pauciflora andE. delegatensis) than in all other forests. In general, nutrient turnover, particularly N turnover, was related to the rate of organic matter turnover. Rates of organic matter turnover in these forests and in other studies of eucalypts were correlated with climatic conditions using the simple climatic scalar developed by Vitousek. Nitrogen turnover, especially that proportion cycling via leaf litterfall is primarily a function of organic matter turnover, but litter quality appears also to have an influence.  相似文献   

20.
Our knowledge about soil organic matter (SOM) dynamics is limited although this is an important issue in the study of responses of ecosystems to global climate changes. Twelve sampling plots were set up every 200 m from 1 700 to 3 900 m along the vertical vegetation gradient along the east slope of Gongga Mountain. Samples were taken from all 12 plots for SOM content measurement, although only 5 of the 12plots were subjected to radiocarbon measurements. A radiocarbon isotope method and a time-dependent model were used to quantify the SOM dynamics and SOM turnover rates along the vertical vegetation gradient. The results showed that the SOM turnover rate decreased and turnover time increased with soil depth for all vegetation types. The litter layer turnover rates presented a clear trend along the gradient. The litter layer turnover rates decreased with an increase in elevation, except that the litter layer turnover rate of mixed forest was higher than that of evergreen forest. Climatic factors, such as temperature and precipitation,were the main factors influencing the surface soil carbon dynamics. The turnover rates of the subsoil (including the A, B, and C horizons in the soil profiles) along the vertical gradient had no clear trends. The SOM of subalpine shrub and meadow turned over more slowly than that of the forest types in almost all soil horizons. The characteristic of short roots distributing in the upper part of the soil profile leads to different SOM dynamics of shrub and meadow compared with the forest types. Coniferous and mixed forests were susceptible to carbon loss from the young carbon pool, but their long and big roots resulted in high △14C values of the deep soil profiles and increased the input of young carbon to the deep soil. In evergreen forest,the carbon cumulative ability from the B horizon to the C horizon was weak. The different vegetation types,together with their different modes of nutrient and carbon intake, may be the mechanism conditioning the subsoil organic matter dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号