首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. Total or kinetoplast DNA (kDNA) from 72 isolates and clones of Trypanosoma cruzi as well as from nine related trypanosomatids were analyzed by dot hybridization using nonradioactive kDNA or cloned minicircle fragments as probes. Biotinylated-kDNA probes generated by nick-translation proved reliable for distinguishing Zymodeme 1 and Zymodeme 2bol of T. cruzi parasites. In contrast, digoxigenin-labeled kDNA obtained by random-priming did not distinguish among T. cruzi isolates but did distinguish among New World leishmanias. Cloned minicircle fragments labeled with digoxigenin gave the same results as digoxigenin-labeled kDNA, except for a 10-fold decrease in sensitivity. Digoxigenin-labeled DNA probes proved useful in unambiguously detecting T. cruzi from different geographic regions of America. However, T. rangeli and T. cruzi marinkellei were not distinguished by these probes.  相似文献   

2.
Total or kinetoplast DNA (kDNA) from 72 isolates and clones of Trypanosoma cruzi as well as from nine related trypanosomatids were analyzed by dot hybridization using nonradioactive kDNA or cloned minicircle fragments as probes. Biotinylated-kDNA probes generated by nick-translation proved reliable for distinguishing Zymodeme 1 and Zymodeme 2bol of T. cruzi parasites. In contrast, digoxigenin-labeled kDNA obtained by random-priming did not distinguish among T. cruzi isolates but did distinguish among New World leishmanias. Cloned minicircle fragments labeled with digoxigenin gave the same results as digoxigenin-labeled kDNA, except for a 10-fold decrease in sensitivity. Digoxigenin-labeled DNA probes proved useful in unambiguously detecting T. cruzi from different geographic regions of America. However, T. rangeli and T. cruzi marinkellei were not distinguished by these probes.  相似文献   

3.
The dodecamer universal minicircle sequence is a conserved sequence present in minicircles of trypanosomatid kinetoplast DNA studied so far. This sequence is recognised by a protein named universal minicircle sequence binding protein, described for Crithidia fasciculata, involved in minicircle DNA replication. We have identified a Trypanosoma cruzi gene homologue of the Crithidia fasciculata universal minicircle sequence binding protein. Similar to the Crithidia fasciculata universal minicircle sequence binding protein, the Trypanosoma cruzi protein, named PDZ5, contains five zinc finger motifs. Pulsed field gel electrophoresis indicated that the pdz5 gene is located in the chromosomal band XX of the Trypanosoma cruzi genome. The predicted amino acid sequence of PDZ5 shows a high degree of similarity with several trypanosomatid zinc finger proteins. Specific antibody raised against Crithidia fasciculata universal minicircle sequence binding protein recognises both the recombinant and endogenous PDZ5. The complete pdz5 coding sequence cloned in bacteria expresses a recombinant PDZ5 protein that binds specifically to the universal minicircle sequence dodecamer. These data strongly suggest that PDZ5 represents a Trypanosoma cruzi universal minicircle sequence binding protein.  相似文献   

4.
A 1.3 kb cDNA (cDNA52) was derived from Trypanosoma cruzi trypomastigote mRNA. Using single stranded probes in Northern blots, we identified the putative coding strand of cDNA52. In addition, a minor band was detected in RNA from epimastigotes that was absent in RNA from trypomastigotes. Nucleotide sequence analysis revealed that cDNA52 was highly homologous to T. cruzi kinetoplast DNA minicircle sequences. All four conserved regions of T. cruzi minicircles were identified in cDNA52. Using several criteria, we demonstrated that the hybridization signals were not caused by contaminating minicircle DNA in the RNA preparations. The data provide direct evidence for the unprecedented finding that the entire length of a kDNA minicircle is transcribed in T. cruzi.  相似文献   

5.
Upon centrifugation of gently lysed T. cruzi cells through a sucrose gradient, a free DNA fraction was shown to contain catenated dimers and knotted DNA structures. Southern hybridization and electron microscopic studies indicated that both of these structures derived from minicircle DNA, the major component of T. cruzi kinetoplast DNA. Partial denaturation analysis of a random population of catenated dimers suggests that these structures may have arisen from a late stage in the replication of minicircle DNA. On the other hand, the T. cruzi knotted minicircles we have isolated appear to be very similar to trefoil structures recently reported and implicated as replicative intermediates in two other trypanosoma species.  相似文献   

6.
Populations of Trypanosoma cruzi can be clustered in two main phylogenetic lineages, T. cruzi I and T. cruzi II and a third group denominated Zymodeme III (ZIII) has been described. Using 23 isolates representing the two major T. cruzi groups and the Zymodeme III, the 3' untranslated region (3'UTR) of the calmodulin gene was analyzed. Several mutations located on a 330 bp segment of this 3'UTR were observed, among which three important insertion/deletion events, namely (1) a dinucleotide AG present only in ZIII isolates; (2) a 13 bases purine block missing only in ZIII; and (3) a five base GT block in T. cruzi II. Minimum free energy dot plots show that T. cruzi I and T. cruzi ZIII exhibit similar patterns of optimal and sub-optimal folding of this segment. These mutations in 3'UTR of calmodulin raise the possibility that T. cruzi I and ZIII group are sharing common functional routes.  相似文献   

7.
Chagas disease is emerging in the Brazilian Amazon. We evaluated the position of eight zymodeme 3 isolates from Amazonian sylvatic vectors and one human case in relation to Trypanosoma cruzi I and II major groups and hybrid strains by chromosome size polymorphism. Nineteen isolates were analyzed by mapping nine coding sequences on chromosomal bands (0.6-3.3Mbp). Numerical analysis was based on the absolute chromosomal size difference index (aCSDI). A dendrogram was obtained applying the minimum evolution criterion and considering the aCSDI values to estimate the branch lengths. The isolates were distributed in four groups. Group A clustered hybrid isolates; Groups B and C, T. cruzi II and T. cruzi I isolates, respectively. Seven Z3 stocks were clustered in Group D, which showed low intra-group diversity and was the most divergent. The proportion of two different-sized homologous chromosomes was determined. Wild vectors harboring Z3 stocks constitute a potential reservoir of human infection in the Amazon.  相似文献   

8.
It is important to clarify the distribution of infected triatomine bugs in the endemic area of Chagas' disease for proper control. In the present study, we tried to detect T. cruzi kinetoplast DNA by PCR from dried triatomine feces collected from the house wall of an endemic area to assess the distribution of infected bugs more easily. The primers (P35/P36) were chosen to amplify the conserved region within the minirepeats of T. cruzi kinetoplast minicircle DNA. The kinetoplast DNA of T. cruzi could be actually detected in the dried feces collected from the wall of a brick-built house in Santa Cruz, Bolivia. Next, we examined the stability of T. cruzi kinetoplast DNA in the feces exposed to artificial environments. T. cruzi DNA was also detected by PCR in the feces left for 26 weeks at 25 degrees C and in those left for 4 weeks at 40 degrees C. The present study indicates that examination of dried feces on the wall can be an effective tool for surveillance of the natural infection of triatomine bugs that live in houses.  相似文献   

9.
Trypanosoma rangeli can infect humans as well as the same domestic and wild animals and triatomine vectors infected by Trypanosoma cruzi in Central and South America. This overlapping distribution complicates the epidemiology of American trypanosomiasis due to the cross-reactivity between T. rangeli and T. cruzi antigens and the presence of conserved DNA sequences in these parasites. We have isolated a T. rangeli-specific DNA repetitive element which is represented in approximately 103 copies per parasite genome and is distributed in several chromosomal bands. The 542-bp nucleotide sequence of this element, named P542, was determined and a PCR assay was standardized for its amplification. The sensitivity of the assay is high, allowing the detection of one tenth of the DNA content of a single parasite. The presence of the P542 element was confirmed in 11 T. rangeli isolates from mammalian hosts and insect vectors originating from several countries in Latin America. Negative amplification was observed with different T. cruzi strains and other trypanosomatids. The potential field application of the P542 PCR assay was investigated in simulated samples containing T. rangeli and/or T. cruzi and intestinal tract and feces of Rhodnius prolixus. Epidemiological studies were conducted in DNA preparations obtained from the digestive tracts of 12 Rhodnius colombiensis insects collected in a sylvatic area in Colombia. Positive amplification of the P542 element was obtained in 9/12 insects. We have also compared in the same samples the diagnostic performance of two PCR assays for the amplification of the variable domain of minicircle kinetoplast DNA (kDNA) and of the large subunit (LSU) of the ribosomal RNA gene of T. cruzi and T. rangeli. Data indicate that the kDNA PCR assay does not allow diagnosis of mixed infections in most insects. On the other hand, the PCR assay of the LSU RNA gene showed lower sensitivity in the detection of T. rangeli than the PCR assay of the P542 element. It is predicted that the use of sensitive detection techniques will indicate that the actual distribution of T. rangeli in America is wider than presumed.  相似文献   

10.
In this work, the susceptibility to benznidazole of two parental Trypanosoma cruzi strains, Colombian and Berenice-78, was compared to isolates obtained from dogs infected with these strains for several years. In order to evaluate the susceptibility to benznidazole two groups of mice were infected with one of five distinct populations isolated from dogs as well as the two parental strains of T. cruzi. The first group was treated with benznidazole during the acute phase and the second remained untreated controls. The animals were considered cured when parasitological and serological tests remained persistently negative. Mice infected with the Colombian strain and its isolates Colombian (A and B) did not cure after treatment. On the other hand, all animals infected with Berenice-78 were cured by benznidazole treatment. However, 100%, 50% and 70% of cure rates were observed in animals infected with the isolates Berenice-78 B, C and D, respectively. No significant differences were observed in serological profile of infected control groups, with all animals presenting high antibody levels. However, the ELISA test showed differences in serological patterns between mice inoculated with the different T. cruzi isolates and treated with benznidazole. This variability was dependent on the T. cruzi population used and seemed to be associated with the level of resistance to benznidazole.  相似文献   

11.
The previously observed extensive sequence heterogeneity of the kinetoplast minicircle DNA in Trypanosoma cruzi, both intra- and interstrain, has raised the question as to how the minicircle DNA in this species can have any guide RNA (gRNA)-coding capacity at all, because there do not appear to be any variable-region sequences conserved between different strains. To address this question, we obtained the complete edited sequence of maxicircle unidentified reading frame 4 mRNA and identified 25 cognate gRNAs from gRNA libraries constructed from two clonal strains of T. cruzi--Sylvio X10/CL1 and CAN III/CL1. Libraries of PCR-amplified minicircle-variable regions were also constructed for both strains. A single gene for each gRNA was identified in the same polarity within specific minicircle-variable regions from both strains, 60-100 nt downstream from the conserved 12mer sequence. GTP-capped total gRNA from one strain failed to cross-hybridize with minicircle DNA from the other strain. The explanation for this proved to be the number of polymorphisms, mainly transitions, within the homologous gRNAs in the two strains. In most cases, these transitions did not destroy the edited mRNA/gRNA base pairing, as a result of the allowed G-U wobble base pairing. The sequences of the variable regions containing homologous gRNAs in the two strains probably derived from an ancestral sequence, and each has accumulated sufficient polymorphisms so as not to allow hybridization. Within a strain, multiple redundant gRNAs were identified that encode identical editing information but have different sequences.  相似文献   

12.
13.
The genetic characterization of pathogenic isolates of Leishmania was attempted by analysis of the molecular properties of kinetoplast DNA (kDNA) minicircles. Unit minicircle size is not conserved during speciation of Leishmania since the minicircles of strains and clones of L t major are smaller (700 bp) than those found in certain strains of L mexicana ssp (820 bp), L donovani (850 bp) or L t tropica (900 bp). Schizodeme analysis of minicircles reveals a high degree of sequence divergence in kDNA of Leishmania with the degree of microheterogeneity varying between species. This sequence divergence allows the discrimination of species, strains, and clones of Leishmania into schizodemes. Southern blot hybridization experiments reveal that at high stringency overall minicircle sequence homology is conserved among clones and strains of one species (L t major) but not between different species. This property of minicircle DNA permits the use of kDNA probes as a species-specific diagnostic test for the identification of unknown Leishmania isolates. The properties of kDNA from an L t tropica strain LRC-L32 (a “recidiva” organism) are so diverged from those of L t major strains as to support the classification [22,23] of L t tropica and L t major as separate species of Leishmania rather than subspecies of L tropica.  相似文献   

14.
Our strategy of probes designing for major clones of Trypanosoma cruzi was performed taking into account the: (i) clear identification of the major clones under multilocus study; (ii) hypothesis of a parallel evolution between the extranuclear and nuclear markers; (iii) structure of kDNA which allowed to amplify high variable regions of the minicircle (HVRm) by PCR. The large production of HVRm was very useful to test their ability to be used as probes for detection of DNA from a diversified genetic panel of T. cruzi. Our success in designing such probes has important implications on: the enhancement of 2 evolutive hypothesis about the clonal structure of T. cruzi and the parallel evolution of their extranuclear and nuclear genetics markers; direct diagnosis in patients and vectors. Studies on bio-clinical significance of major clones are discussed. This procedure could be used as a general strategy to generate DNA probes for Kinetoplastida.  相似文献   

15.
Trypanosoma cruzi is classified into two major groups named T. cruzi I and T. cruzi II. In the present work we analyzed 16 stocks isolated from human cases and four isolated from triatomines from diverse geographical origins (Mexico and Guatemala). From human cases four were acute cases, six indeterminates, and six from chronic chagasic cardiophatic patients with diagnosis of dilated cardiomyopathy established based on the left-ventricular end systolic dimension and cardiothoracic ratio on chest X-radiography and impaired contracting ventricle and different degree conduction/rhythm aberrations. DNA samples were analyzed based on mini-exon (ME) polymorphism, using a pool of three oligonucleotide for the amplification of specific intergenic region of T. cruzi ME gene. All the Mexican and Guatemalan isolates regardless their host or vector origin generated a 350 bp amplification product. In conclusion T. cruzi I is dominant in Mexico and Guatemala even in acute and chronic chagasic cardiopathy patients. To our knowledge, this is the first study describing predominance of T. cruzi I in human infection for North and Central America.  相似文献   

16.
Integration of kDNA sequences within the genome of the host cell shown by PCR amplification with primers to the conserved Trypanosoma cruzi kDNA minicircle sequence was confirmed by Southern hybridization with specific probes. The cells containing the integrated kDNA sequences were then perpetuated as transfected macrophage subclonal lines. The kDNA transfected macrophages expressed membrane antigens that were recognized by antibodies in a panel of sera from ten patients with chronic Chagas disease. These antigens barely expressed in the membrane of uninfected, control macrophage clonal lines were recognized neither by factors in the control, non-chagasic subjects nor in the chagasic sera. This finding suggests the presence of an autoimmune antibody in the chagasic sera that recognizes auto-antigens in the membrane of T. cruzi kDNA transfected macrophage subclonal lines.  相似文献   

17.
By gel retardation assay and computational analysis we demonstrated a bent region in Trypanosoma lewisi, localized in two different classes of minicircles. We showed that in each minicircle this bent region is unique, adjacent to one of two highly conserved regions and characterized by adenine stretches. The same properties are conserved in the majority of minicircles from Trypanosomes tested so far. Therefore, we suggest that the genetic information could be located in a definite structure of minicircle DNA molecules rather than in the nucleotide sequence.  相似文献   

18.
We evaluated the presence and distribution of Trypanosoma cruzi DNA in a mummy presenting with megacolon that was dated as approximately 560 +/- 40 years old. The mummy was from the Perua?u Valley in the state of Minas Gerais, Brazil. All samples were positive for T. cruzi minicircle DNA, demonstrating the presence and broad dissemination of the parasite in this body. From one sample, a mini-exon gene fragment was recovered and characterized by sequencing and was found to belong to the T. cruzi I genotype. This finding suggests that T. cruzi I infected humans during the pre-Columbian times and that, in addition to T. cruzi infection, Chagas disease in Brazil most likely preceded European colonization.  相似文献   

19.
Homologies of minicircle kDNA of 27 Mexican stocks were studied by cross-hybridization with four kDNA probes derived from three reference stocks belonging to groups Trypanosoma cruzi I (SO34 cl4 and Silvio) and T. cruzi II (MN) and one Mexican stock. High homologies were only observed with Silvio (six stocks) and Mexican probes (11 stocks). After 30 min exposure (low homology) additional stocks were recognized with SO34 cl4 (three stocks) and Silvio (six stocks) probes; with the Mexican probe only five stocks remained non-reactive. All the stocks were typed by isoenzyme (16 loci) and Mexican stocks belonged to T. cruzi I. Hybridization patterns were not strictly correlated with the observed clustering and cross-hybridization of kDNA minicircles is not available to distinct Mexican stocks.  相似文献   

20.
Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine, diagnostic and genotyping approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号