首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The yeast gene BFR1 was originally isolated from a genetic screen for high-copy suppressors of brefeldin A-induced lethality in Saccharomyces cerevisiae. While this result suggested a possible role for the encoded protein, Bfr1p, in the secretory pathway, subsequent data have not fully supported this conclusion. Alternatively, Bfr1p has also been found by yeast two-hybrid analysis to interact with Bbp1p, a component of the spindle pole body. Finally, we have reported that Bfr1p associates with cytoplasmic mRNP complexes containing Scp160p, raising the possibility that Bfr1p may function in mRNA metabolism. Here, we have explored this possibility further. We report that Bfr1p associates with yeast polyribosomes and mRNP complexes even in the absence of Scp160p, and that its interaction with Scp160p-containing mRNP complexes is RNA-dependent. Furthermore, we have determined by fluorescence microscopy and subcellular fractionation that Bfr1p and Scp160p demonstrate similar cytoplasmic localization with enrichment around the nuclear envelope/endoplasmic reticulum. Finally, we report that loss of Bfr1p disrupts the interaction of Scp160p with polyribosomes, thereby demonstrating that the relationship between these two proteins is functional as well as physical. Considered together, these data raise the intriguing possibility that Bfr1p may provide a link between mRNA metabolism, the chromosomal segregation machinery and perhaps secretion in yeast.  相似文献   

2.
Scp160p associates with specific mRNAs in yeast   总被引:9,自引:5,他引:4       下载免费PDF全文
Scp160p is a multiple KH-domain RNA-binding protein in yeast that has been demonstrated previously to associate with both soluble and membrane-bound polyribosomes as an mRNP component. One key question that has remained unanswered, however, is whether the mRNAs in these mRNP complexes are random or specific. We have addressed this question using microarray analyses of RNAs released from affinity isolated Scp160p-containing complexes, compared with total RNA controls from the same lysates. Our results, confirmed by quantitative RT–PCR analysis, clearly demonstrate that Scp160p associates with specific rather than with random messages, and that among the enriched targets are DHH1, YOR338W, BIK1, YOL155C and NAM8. Furthermore, loss of Scp160p resulted in a significant change in both the abundance and distribution between soluble and membrane-associated fractions for at least one of these messages (YOR338W), and in a subtle yet significant shift from soluble polyribosomes to soluble mRNPs for at least two of these target messages (DHH1 and YOR338W). Together, these data not only identify specific mRNA targets associated with Scp160p in vivo, they demonstrate that the association of Scp160p with these messages is biologically relevant.  相似文献   

3.
Scp160p is a 160 kDa RNA-binding protein in yeast previously demonstrated to associate with specific messages as an mRNP component of both soluble and membrane-bound polyribosomes. Although the vast majority of Scp160p sequence consists of 14 closely spaced KH domains, comparative sequence analyses also demonstrate the presence of a potential nuclear localization sequence located between KH domains 3 and 4, as well as a 110 amino acid non-KH N-terminal region that includes a potential nuclear export sequence (NES). As a step toward investigating the structure/function relationships of Scp160p, we generated two truncated alleles, FLAG.SCP160ΔN1, encoding a protein product that lacks the first 74 amino acids, including the potential NES, and FLAG.SCP160ΔC1, encoding a protein product that lacks the final KH domain (KH14). We report here that the N-truncated protein, expressed as a green fluorescent protein fusion in yeast, remains cytoplasmic, with no apparent nuclear accumulation. Biochemical studies further demonstrate that although the N-truncated protein remains competent to form RNPs, the C-truncated protein does not. Furthermore, polyribosome association is severely compromised for both truncated proteins. Perhaps most important, both truncated alleles appear only marginally functional in vivo, as demonstrated by the inability of each to complement scp160/eap1 synthetic lethality in a tester strain. Together, these data challenge the notion that Scp160p normally shuttles between the nucleus and cytoplasm, and further implicate polyribosome association as an essential component of Scp160p function in vivo. Finally, these data underscore the vital roles of both KH and non-KH domain sequences in Scp160p.  相似文献   

4.
Genetic and biochemical interactions between SCP160 and EAP1 in yeast   总被引:3,自引:3,他引:0  
Scp160p is a multiple KH-domain RNA-binding protein in yeast known to associate with polyribosomes as an mRNP component, although its biological role remains unclear. As a genetic approach to examine Scp160p function, we applied an ethyl methanesulfonate (EMS) screen for loci synthetically lethal with scp160 loss, and identified a single candidate gene, EAP1, whose protein product functions in translation as an eIF4E-binding protein, with additional uncharacterized spindle pole body functions. To reconfirm scp160/eap1 synthetic lethality, we constructed a strain null for both genes, supported by an SCP160 maintenance plasmid. We used this strain to establish a quantitative assay for both Scp160p and Eap1p functions in vivo, and applied this assay to demonstrate that Y109A EAP1, a previously described allele of EAP1 that cannot bind eIF4E, is markedly impaired with regard to its SCP160-related activity. In addition, we explored the possibility of physical interaction between Eap1p and Scp160p, and discovered that Eap1p associates with Scp160p-containing complexes in an RNA-dependent manner. Finally, we probed the impact of EAP1 loss on Scp160p, and vice versa, and found that loss of each gene resulted in a significant change in either the complex associations or subcellular distribution of the other protein. These results clearly support the hypothesis that Scp160p plays a role in translation, demonstrate that the interaction of SCP160 and EAP1 is biologically significant, and provide important tools for future studies of the in vivo functions of both genes.  相似文献   

5.
The budding yeast multi-K homology domain RNA-binding protein Scp160p binds to >1000 messenger RNAs (mRNAs) and polyribosomes, and its mammalian homolog vigilin binds transfer RNAs (tRNAs) and translation elongation factor EF1alpha. Despite its implication in translation, studies on Scp160p''s molecular function are lacking to date. We applied translational profiling approaches and demonstrate that the association of a specific subset of mRNAs with ribosomes or heavy polysomes depends on Scp160p. Interaction of Scp160p with these mRNAs requires the conserved K homology domains 13 and 14. Transfer RNA pairing index analysis of Scp160p target mRNAs indicates a high degree of consecutive use of iso-decoding codons. As shown for one target mRNA encoding the glycoprotein Pry3p, Scp160p depletion results in translational downregulation but increased association with polysomes, suggesting that it is required for efficient translation elongation. Depletion of Scp160p also decreased the relative abundance of ribosome-associated tRNAs whose codons show low potential for autocorrelation on mRNAs. Conversely, tRNAs with highly autocorrelated codons in mRNAs are less impaired. Our data indicate that Scp160p might increase the efficiency of tRNA recharge, or prevent diffusion of discharged tRNAs, both of which were also proposed to be the likely basis for the translational fitness effect of tRNA pairing.  相似文献   

6.
The K homology (KH) domain is a remarkably versatile and highly conserved RNA-binding motif. Classical KH domains include a characteristic pattern of hydrophobic residues, a Gly-X-X-Gly (GXXG) segment, and a variable loop. KH domains typically occur in clusters, with some retaining their GXXG sequence (conserved), while others do not (diverged). As a first step towards addressing whether GXXG is essential for KH-domain function, we explored the roles of conserved and diverged KH domains in Scp160p, a multiple-KH-domain-containing protein in Saccharomyces cerevisiae. We specifically wanted to know (1) whether diverged KH domains were essential for Scp160p function, and (2) whether diverged KH domains could functionally replace conserved KH domains. To address these questions, we deleted and/or interchanged conserved and diverged KH domains of Scp160p and expressed the mutated alleles in yeast. Our results demonstrated that the answer to each question was yes. Both conserved and diverged KH domains are essential for Scp160p function, and diverged KH domains can function in place of conserved KH domains. These findings challenge the prevailing notions about the requisite features of a KH domain and raise the possibility that there may be more functional KH domains in the proteome than previously appreciated.  相似文献   

7.
Scp160p is an RNA-binding protein containing 14 tandemly repeated heterogenous nuclear ribonucleoprotein K-homology domains, which are implicated in RNA binding. Scp160p interacts with free and membrane-bound polysomes that are dependent upon the presence of mRNA. Despite its presence on cytosolic polysomes, Scp160p is predominantly localized to the endoplasmic reticulum (ER). Accumulation of Scp160p-ribosome complexes at the ER requires the function of microtubules but is independent of the actin cytoskeleton. We propose that the multi-K-homology-domain protein Scp160p functions as an RNA binding platform, interacting with polysomes that are transported to the ER.  相似文献   

8.
The decay of eukaryotic mRNA is triggered mainly by deadenylation, which leads to decapping and degradation from the 5′ end of an mRNA. Poly(A)-binding protein has been proposed to inhibit the decapping process and to stabilize mRNA by blocking the recruitment of mRNA to the P-bodies where mRNA degradation takes place after stimulation of translation initiation. In contrast, several lines of evidence show that poly(A)-binding protein (Pab1p) has distinct functions in mRNA decay and translation in yeast. To address the translation-independent function of Pab1p in inhibition of decapping, we examined the contribution of Pab1p to the stability of non-translated mRNAs, an AUG codon-less mRNA or an mRNA containing a stable stem-loop structure at the 5′-UTR. Tethering of Pab1p stabilized non-translated mRNAs, and this stabilization did not require either the eIF4G-interacting domain of Pab1p or the Pab1p-interacting domain of eIF4G. In a ski2Δ mutant in which 3′ to 5′ mRNA degradation activity is defective, stabilization of non-translated mRNAs by the tethering of Pab1p lacking an eIF4G-interacting domain (Pab1–34Cp) requires a cap structure but not a poly(A) tail. In wild type cells, stabilization of non-translated mRNA by tethered Pab1–34Cp results in the accumulation of deadenylated mRNA. These results strongly suggest that tethering of Pab1p may inhibit the decapping reaction after deadenylation, independent of translation. We propose that Pab1p inhibits the decapping reaction in a translation-independent manner in vivo.  相似文献   

9.
PUF proteins regulate translation and mRNA stability throughout eukaryotes. Using a cell-free translation assay, we examined the mechanisms of translational repression of PUF proteins in the budding yeast Saccharomyces cerevisiae. We demonstrate that the poly(A)-binding protein Pab1p is required for PUF-mediated translational repression for two distantly related PUF proteins: S. cerevisiae Puf5p and Caenorhabditis elegans FBF-2. Pab1p interacts with oligo(A) tracts in the HO 3′-UTR, a target of Puf5p, to dramatically enhance the efficiency of Puf5p repression. Both the Pab1p ability to activate translation and interact with eukaryotic initiation factor 4G (eIF4G) were required to observe maximal repression by Puf5p. Repression was also more efficient when Pab1p was bound in close proximity to Puf5p. Puf5p may disrupt translation initiation by interfering with the interaction between Pab1p and eIF4G. Finally, we demonstrate two separable mechanisms of translational repression employed by Puf5p: a Pab1p-dependent mechanism and a Pab1p-independent mechanism.  相似文献   

10.
The sterol regulatory element-binding protein (SREBP) and SREBP cleavage-activating protein (SCAP) are central players in the SREBP pathway, which control the cellular lipid homeostasis. SCAP binds to SREBP through their carboxyl (C) domains and escorts SREBP from the endoplasmic reticulum to the Golgi upon sterol depletion. A conserved pathway, with the homologues of SREBP and SCAP being Sre1 and Scp1, was identified in fission yeast Schizosaccharomyces pombe. Here we report the in vitro reconstitution of the complex between the C domains of Sre1 and Scp1 as well as the crystal structure of the WD40 domain of Scp1 at 2.1 Å resolution. The structure reveals an eight-bladed β-propeller that exhibits several distinctive features from a canonical WD40 repeat domain. Structural and biochemical characterization led to the identification of two Scp1 elements that are involved in Sre1 recognition, an Arg/Lys-enriched surface patch on the top face of the WD40 propeller and a 30-residue C-terminal tail. The structural and biochemical findings were corroborated by in vivo examinations. These studies serve as a framework for the mechanistic understanding and further functional characterization of the SREBP and SCAP proteins in fission yeast and higher organisms.  相似文献   

11.
The eukaryotic mRNA 3′ poly(A) tail and its associated poly(A)-binding protein (Pab1p) are important regulators of gene expression. One role for this complex in the yeast Saccharomyces cerevisiae is in translation initiation through an interaction with a 115-amino-acid region of the translation initiation factor eIF4G. The eIF4G-interacting domain of Pab1p was mapped to its second RNA recognition motif (RRM2) in an in vitro binding assay. Moreover, RRM2 of Pab1p was required for poly(A) tail-dependent translation in yeast extracts. An analysis of a site-directed Pab1p mutation which bound to eIF4G but did not stimulate translation of uncapped, polyadenylated mRNA suggested additional Pab1p-dependent events during translation initiation. These results support the model that the association of RRM2 of yeast Pab1p with eIF4G is a prerequisite for the poly(A) tail to stimulate the translation of mRNA in vitro.  相似文献   

12.
The poly(A) tail of an mRNA is believed to influence the initiation of translation, and the rate at which the poly(A) tail is removed is thought to determine how fast an mRNA is degraded. One key factor associated with this 3′-end structure is the poly(A)-binding protein (Pab1p) encoded by the PAB1 gene in Saccharomyces cerevisiae. In an effort to learn more about the functional role of this protein, we used a two-hybrid screen to determine the factor(s) with which it interacts. We identified five genes encoding factors that specifically interact with the carboxy terminus of Pab1p. Of a total of 44 specific clones identified, PBP1 (for Pab1p-binding protein) was isolated 38 times. Of the putative interacting genes examined, PBP1 promoted the highest level of resistance to 3-aminotriazole (>100 mM) in constructs in which HIS3 was used as a reporter. We determined that a fraction of Pbp1p cosediments with polysomes in sucrose gradients and that its distribution is very similar to that of Pab1p. Disruption of PBP1 showed that it is not essential for viability but can suppress the lethality associated with a PAB1 deletion. The suppression of pab1Δ by pbp1Δ appears to be different from that mediated by other pab1 suppressors, since disruption of PBP1 does not alter translation rates, affect accumulation of ribosomal subunits, change mRNA poly(A) tail lengths, or result in a defect in mRNA decay. Rather, Pbp1p appears to function in the nucleus to promote proper polyadenylation. In the absence of Pbp1p, 3′ termini of pre-mRNAs are properly cleaved but lack full-length poly(A) tails. These effects suggest that Pbp1p may act to repress the ability of Pab1p to negatively regulate polyadenylation.  相似文献   

13.
Multiple KH-domain proteins, collectively known as vigilins, are evolutionarily highly conserved proteins that are present in eukaryotic organisms from yeast to metazoa. Proposed roles for vigilins include chromosome segregation, messenger RNA (mRNA) metabolism, translation and tRNA transport. As a step toward understanding its biological function, we have identified the fission yeast vigilin, designated Vgl1, and have investigated its role in cellular response to environmental stress. Unlike its counterpart in Saccharomyces cerevisiae, we found no indication that Vgl1 is required for the maintenance of cell ploidy in Schizosaccharomyces pombe. Instead, Vgl1 is required for cell survival under thermal stress, and vgl1Δ mutants lose their viability more rapidly than wild-type cells when incubated at high temperature. As for Scp160 in S. cerevisiae, Vgl1 bound polysomes accumulated at endoplasmic reticulum (ER) but in a microtubule-independent manner. Under thermal stress, Vgl1 is rapidly relocalized from the ER to cytoplasmic foci that are distinct from P-bodies but contain stress granule markers such as poly(A)-binding protein and components of the translation initiation factor eIF3. Together, these observations demonstrated in S. pombe the presence of RNA granules with similar composition as mammalian stress granules and identified Vgl1 as a novel component that required for cell survival under thermal stress.  相似文献   

14.
Kervestin S  Li C  Buckingham R  Jacobson A 《Biochimie》2012,94(7):1560-1571
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that accelerates the degradation of mRNAs containing premature translation termination codons. This quality control pathway depends on the NMD-specific factors, Upf1p, Upf2p/Nmd2p, and Upf3p, as well as the two release factors, eRF1 and eRF3 (respectively designated Sup45p and Sup35p in yeast). NMD activation is also enabled by the absence of the poly(A)-binding protein, Pab1p, downstream of a termination event. Since Sup35p interacts with both Upf1p and Pab1p we considered the possibility that differential binding of the latter factors to Sup35p may be a critical determinant of NMD sensitivity for an mRNA. Here we describe three approaches to assess this hypothesis. First, we tethered fragments or mutant forms of Sup35p downstream of a premature termination codon in a mini-pgk1 nonsense-containing mRNA and showed that the inhibition of NMD by tethered Sup35p does not depend on the domain necessary for the recruitment of Pab1p. Second, we examined the Sup35p interaction properties of Upf1p and Pab1p in vitro and showed that these two proteins bind differentially to Sup35p. Finally, we examined competitive binding between the three proteins and observed that Upf1p inhibits Pab1p binding to Sup35p whereas the interaction between Upf1p and Sup35p is relatively unaffected by Pab1p. These data indicate that the binding of Upf1p and Pab1p to Sup35p may be more complex than anticipated and that NMD activation could involve more than just simple competition between these factors. We conclude that activation of NMD at a premature termination codon is not solely based on the absence of Pab1p and suggest that a specific recruitment step must commit Upf1p to the process and Upf1p-associated mRNAs to NMD.  相似文献   

15.
Multi-KH domain proteins are highly evolutionarily conserved proteins that associate to polyribosomes and participate in RNA metabolism. Recent evidence indicates that multi-KH domain proteins also contribute to the structural organization of heterochromatin both in mammals and Drosophila. Here, we show that the multi-KH domain protein of Saccharomyces cerevisiae, Scp160p, contributes to silencing at telomeres and at the mating-type locus, but not to ribosomal silencing. The contribution of Scp160p to silencing is independent of its binding to the ribosome as deletion of the last two KH domains, which mediate ribosomal binding, has no effect on silencing. Disruption of SCP160 increases cell ploidy but this effect is also independent of the contribution of Scp160p to telomeric silencing as strong relief of silencing is observed in Deltascp160 cells with normal ploidy and, vice versa, Deltascp160 cells with highly increased ploidy show no significant silencing defects. The TPE phenotype of Deltascp160 cells associates to a decreased Sir3p deposition at telomeres and, in good agreement, silencing is rescued by SIR3 overexpression and in a Deltarif1Deltarif2 mutant. Scp160p shows a distinct perinuclear localization that is independent of its ability to bind ribosomes. Moreover, telomere clustering at the nuclear envelope is perturbed in Deltascp160 cells and disruption of the histone deacetylase RPD3, which is known to improve telomere clustering, rescues telomeric silencing in Deltascp160 cells. These results are discussed in the context of a model in which Scp160p contributes to silencing by helping telomere clustering.  相似文献   

16.
Many protein interactions are conserved among organisms despite changes in the amino acid sequences that comprise their contact sites, a property that has been used to infer the location of these sites from protein homology. In an inter-species complementation experiment, a sequence present in a homologue is substituted into a protein and tested for its ability to support function. Therefore, substitutions that inhibit function can identify interaction sites that changed over evolution. However, most of the sequence differences within a protein family remain unexplored because of the small-scale nature of these complementation approaches. Here we use existing high throughput mutational data on the in vivo function of the RRM2 domain of the Saccharomyces cerevisiae poly(A)-binding protein, Pab1, to analyze its sites of interaction. Of 197 single amino acid differences in 52 Pab1 homologues, 17 reduce the function of Pab1 when substituted into the yeast protein. The majority of these deleterious mutations interfere with the binding of the RRM2 domain to eIF4G1 and eIF4G2, isoforms of a translation initiation factor. A large-scale mutational analysis of the RRM2 domain in a two-hybrid assay for eIF4G1 binding supports these findings and identifies peripheral residues that make a smaller contribution to eIF4G1 binding. Three single amino acid substitutions in yeast Pab1 corresponding to residues from the human orthologue are deleterious and eliminate binding to the yeast eIF4G isoforms. We create a triple mutant that carries these substitutions and other humanizing substitutions that collectively support a switch in binding specificity of RRM2 from the yeast eIF4G1 to its human orthologue. Finally, we map other deleterious substitutions in Pab1 to inter-domain (RRM2–RRM1) or protein-RNA (RRM2–poly(A)) interaction sites. Thus, the combined approach of large-scale mutational data and evolutionary conservation can be used to characterize interaction sites at single amino acid resolution.  相似文献   

17.
Heterogeneous nuclear ribonucleoproteins are multifunctional proteins that bind to newly synthesized mRNAs in the nucleus and participate in many subsequent steps of gene expression. A well-studied Saccharomyces cerevisiae heterogeneous nuclear ribonucleoprotein that has several nuclear functions is Npl3p. Here, we provide evidence that Npl3p also has a cytoplasmic role: it functions in translation termination fidelity. Yeast harboring the npl3-95 mutant allele have an impaired ability to translate lacZ, enhanced sensitivity to cycloheximide and paromomycin, and increased ability to read through translation termination codons. Most of these defects are enhanced in yeast that also lack Upf1p, an RNA surveillance factor crucial for translation termination. We show that the npl3-95 mutant allele encodes a form of Npl3p that is part of high molecular-weight complexes that cofractionate with the poly(A)-binding protein Pab1p. Together, these results lead us to propose a model in which Npl3p engenders translational fidelity by promoting the remodeling of mRNPs during translation termination.  相似文献   

18.
We have expressed the gene (PAB1) encoding the yeast polyadenylate-binding protein (Pab1p) in tobacco. Plants that accumulate the Pab1p display a range of abnormalities, ranging from a characteristic chlorosis in leaves to a necrosis and large inhibition of growth. The severity of these abnormalities reflects the levels of yeast Pab1p expression in the transgenic plants. In contrast, no obvious differences could be seen in callus cultures between the transgene and vector control. Plants that display PAB-associated abnormalities were resistant to a range of plant pathogens, and had elevated levels of expression of a pathogenesis-related gene. These two properties – impairment of growth and induction of defense responses – indicate that the yeast PAB1 gene can act as a disease lesion mimic gene in plants.  相似文献   

19.
Consistent with the previous work by Pestka (Antimicrob. Agents Chemother.5, 255, 1974) on the binding of erythromycin to polyribosomes, we found that erythromycin does not inhibit protein synthesis catalyzed by polyribosomes. This is due to the presence of nascent peptidyl tRNA on the naturally occurring polyribosomes. In a soluble extract from E. coli pretreated to remove the ribosome releasing factor, polyribosomes without nascent polypeptides remain intact and can catalyze protein synthesis in the absence of initiation. In this system erythromycin effectively inhibited protein synthesis. The inhibition by erythromycin was caused by premature release of oligopeptidyl tRNA from polyribosomes.  相似文献   

20.
Yeast and vertebrate nuclear pores display significant morphological similarity by electron microscopy, but sequence similarity between the respective proteins has been more difficult to observe. Herein we have identified a vertebrate nucleoporin, Nup93, in both human and Xenopus that has proved to be an evolutionarily related homologue of the yeast nucleoporin Nic96p. Polyclonal antiserum to human Nup93 detects corresponding proteins in human, rat, and Xenopus cells. Immunofluorescence and immunoelectron microscopy localize vertebrate Nup93 at the nuclear basket and at or near the nuclear entry to the gated channel of the pore. Immunoprecipitation from both mammalian and Xenopus cell extracts indicates that a small fraction of Nup93 physically interacts with the nucleoporin p62, just as yeast Nic96p interacts with the yeast p62 homologue. However, a large fraction of vertebrate Nup93 is extracted from pores and is also present in Xenopus egg extracts in complex with a newly discovered 205-kDa protein. Mass spectrometric sequencing of the human 205-kDa protein reveals that this protein is encoded by an open reading frame, KIAAO225, present in the human database. The putative human nucleoporin of 205 kDa has related sequence homologues in Caenorhabditis elegans and Saccharomyces cerevisiae. To analyze the role of the Nup93 complex in the pore, nuclei were assembled that lack the Nup93 complex after immunodepletion of a Xenopus nuclear reconstitution extract. The Nup93-complex–depleted nuclei are clearly defective for correct nuclear pore assembly. From these experiments, we conclude that the vertebrate and yeast pore have significant homology in their functionally important cores and that, with the identification of Nup93 and the 205-kDa protein, we have extended the knowledge of the nearest-neighbor interactions of this core in both yeast and vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号