首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When healthy volunteers were given a daily dose of 3 x 10(8) life-dehydrated Saccharomyces cerevisiae cells for 5 days, the volunteers excreted 10(5) living yeast cells per g of feces at first, but the yeast cells disappeared within 5 days of the end of treatment. In gnotobiotic mice, S. cerevisiae administered alone colonized the intestinal tract but did not interfere with previous or subsequent colonization by a variety of potentially enteropathogenic microorganisms. When these microorganisms were present, the intestinal counts of S. cerevisiae were greatly reduced.  相似文献   

2.
Saccharomyces cerevisiae NRRL Y-2034, S, uvarum NRRL Y-1347, and Zymomonas mobilis NRRL B-806 each were separately immobilized in a Ca-alginate matrix and incubated in the presence of a free-flowing and continuous 1, 3, 5, 10, or 20% (w/w) glucose solution. In general, the yeast cells, converted 100percnt; of the 1, 3, and 5% glucose to alcohol within 48 h and maintained such a conversion rate for at least two weeks. The bacterium converted ca. 90% (w/w) of the 1, 3, and 5% glucose to alcohol continuously for one week. However, both the yeast and bacterium were inhibited in the highest glucose (20% w/w) solution. All of the immobilized cultures produced some alcohol for at least 14 days. Immobilized S. cerevisiae was the best alcohol producer of all of the glucose concentrations; the yeast yielded 4.7 g ethanol/100 g solution within 72 h in the 10% glucose solution. After 7-8 days in the 10% solution, S. cerevisiae produced ethanol at 100% of theoretical yield (5.0 g ethanol/100 g solution), with a gradual decrease in alcohol production by 14 days. Immobillized S. uvarum produced a maximum of 4.0 g ethanol/100 g solution within 2 days and then declined to ca. 1.0 g ethanol/100 g solution after 7 days continuous fermentation in the 10% glucose solution. Zymomonas mobilis reached its maximum ethanol production at 4 days (4.7 g/100 g solution), and then diminished similarly to S. uvarum. The development of a multiple disk shaft eliminated the problem both of uneven distribution of alginate-encapsulated cells and of glucose channeling within the continuous-flow fermentor column. This invention improved alcohol production about threefold for the yeast cells.  相似文献   

3.
1. Total ATPase levels were determined in homogenate fractions of baker's yeast, Saccharomyces cerevisiae K and Rhodotorula glutinis. The maximum ATPase activities in 8000 X g supernatant of the three yeast strains were 6.0, 1.9, and 2.2 mmol Pih-1 (gDS)-1, respectively; the activities in the sediment were somewhat higher. Exponential cells of S. cerevisiae K and R. glutinis exhibited higher ATPase levels than did the stationary cells. 2. The total ATPase activity in both yeast species showed a maximum at ph 6.8 a minimum at pH 7.2, and another broader masimum around pH 8.0. 3. No significant NaK-ATPase activity was detected in baker's yeast, in either the exponential or the stationary cells of R. glutinis, and in exponential S. cerevisiae K cells in the pH range of 6.0-9.3. 4. Stationary cells of S. cerevisiae K exhibited, at pH 7.0-8.5, A Na,K-ATPase activity attaining 9% of total ATPase level. 5.3 X 10(-3) M phenylmethyl sulphonyl fluoride had no effect on the total ATPase level in S. cerevisiae and inhibited the activity in R. glutinis by 25%; it did not bring forth any Na,K-ATPase activity apart from that found in its absence. 6. 1.5 M urea lowered the ATPase activity in R. glutinis by 68% but had no effect on S. cerevisiae cells. 10(-5) M dicyclohexylcarbodiimide suppressed the ATPase activity in S. cerevisiae and R. glutinis by 74 and 79%, respectively. Neither agent revealed and additional Na,K-ATPase activity. 7. The comparison of Na,K-ATPase activities with data on K+ fluxes across the yeast plasma membrane suggested that even with the lower flux values the Na,K-ATPase, even if present, would account for a mere 40% of transported ions. The results imply that the active ion transport in yeasts is energized by mechanisms other than the Na,K-ATPase.  相似文献   

4.
The gene responsible for the malolactic fermentation of wine was cloned from the bacterium Lactobacillus delbrueckii into Escherichia coli and the yeast Saccharomyces cerevisiae. This gene codes for the malolactic enzyme which catalyzes the conversion of l-malate to l-lactate. A genetically engineered yeast strain with this enzymatic capability would be of considerable value to winemakers. L. delbrueckii DNA was cloned in E. coli on the plasmid pBR322, and two E. coll clones able to convert l-malate to l-lactate were selected. Both clones contained the same 5-kilobase segment of L. delbrueckii DNA. The DNA segment was transferred to E. coli-yeast shuttle vectors, and gene expression was analyzed in both hosts by using enzymatic assays for l-lactate and l-malate. When grown nonaerobically for 5 days, E. coli cells harboring the malolactic gene converted about 10% of the l-malate in the medium to l-lactate. The best expression in S. cerevisiae was attained by transfer of the gene to a shuttle vector containing both a yeast 2-mum plasmid and yeast chromosomal origin of DNA replication. When yeast cells harboring this plasmid were grown nonaerobically for 5 days, ca. 1.0% of the l-malate present in the medium was converted to l-lactate. The L. delbrueckii controls grown under these same conditions converted about 25%. A laboratory yeast strain containing the cloned malolactic gene was used to make wine in a trial fermentation, and about 1.5% of the l-malate in the grape must was converted to l-lactate. Increased expression of the malolactic gene in wine yeast will be required for its use in winemaking. This will require an increased understanding of the factors governing the expression of this gene in yeasts.  相似文献   

5.
Intestinal epithelial cells (IEC) are important in initiation and regulation of immune responses against numerous foreign substances including food, microorganisms and their metabolites in the intestine. Since the responses of IEC against yeasts have not yet been well understood, we investigated the effects of Candida albicans, Saccharomyces cerevisiae, and their cell wall components on interleukin-8 (IL-8) secretion by the IEC-like Caco-2 cells. Live cells of both yeast species stimulated Caco-2 cells to produce IL-8 only in the presence of butyric acid, which is a metabolite produced by intestinal bacteria. S. cerevisiae zymosan and glucan also enhanced IL-8 secretion. Treatment of Caco-2 cells with butyric acid increased the expression of mRNAs coding for Toll-like receptor 1 (TLR1), TLR6 and dectin-1, which recognize zymosan. C. albicans induced more IL-8 secretion and also decreased transepithelial electrical resistance more rapidly than S. cerevisiae. These results suggest that both yeasts in the intestine stimulate the host's mucosal immune systems by interacting with IEC.  相似文献   

6.
The development of a coimmobilized mixed culture sys tem of aerobic and facultative anaerobic microorganisms in Ca-alginate gel beads and the production of useful metabolites by the system were investigated. A coimmobilized mixed culture system of Aspergillus awamori (obligate aerobe) and Saccharomyces cerevisiae (facultative anaerobe) in Ca-alginate gel beads was used as a model system, and ethanol production from starch by the system was used as a model production. Mold Asp. awamori is an amylolytic microorganism while yeast S. cerevisiae is an ethanol producer. The two microorganisms grew competitively in the oxygen-rich surface area of the gel beads because they had similar oxygen demands in aerobic culture conditions. Neither microorganism exhibited "habitat segregation" in the gel beads and leaked yeast cells grew aerobically without ethanol production in the broth. Ethanol productivity was low under these conditions.A more desirable coimmobilized mixed culture system of Asp. awamori and S. cerevisiae was established by adding Vantocil IB (a biocidal compound) to the production medium. The antimicrobial activity of Vantocil IB was more effective with S. cerevisiae than with Asp. awamori, so that a dense mycelial layer of Asp. awamori formed in the surface of the gel beads While S. cerevisiae grew densely in the more inner areas of the gel beads. Also, yeast cell leakace was repressed and ethanol productivity was improved. The system with Vantocil IB produced ethanol of 4.5 and 12.3 g/L from 16 and 40 g/L starch, respectively. A continuous culture using this system with Vantocil IB was also carried out, and a stable steady state could be maintained for six days without leakage of yeast cells and contamination. The selection of a factor suitable for producing "habitat segregation" enabled the development of a coimmobilized mixed culture system of an aerobe and a facultative anaerobe. In this study, total habitat segregation was used to denote a tendency to exhibit denser growth in different parts of one gel bead.  相似文献   

7.
目的:研究以活酵母为输送载体的狂犬病疫苗对小鼠的免疫保护能力和免疫疗程。方法:小鼠首先灌食高浓度空白活酵母INVSI,并于灌胃后8h和12h分别采集小鼠空肠和回肠组织并提取小肠浸出液培养,计算活酵母经肠胃环境后的存活率;分别取狂犬病糖蛋白(glycoprotein,G)分泌型表达菌株pYes-InG和胞内表达型菌株pYes-G灌胃小鼠,灌胃结束后12h采集小鼠血清和小肠组织,采用免疫组织化学方法检测抗原物质G在小肠上皮细胞的分布,采用ELISA检测小鼠血清中和性抗体的滴度。结果:活酵母经灌食消化8h后在小肠中的存活率最高达36.11%,12h后降至0.59%;口服分泌型pYes-InG重组酵母的小鼠小肠组织和血清中能检测到抗原物质G和低量的中和性抗体,ELISA分析显示,小鼠经过3~4次免疫接种,免疫效果基本恒定,而口服胞内表达型pYes-G重组酵母的小鼠小肠组织和血清中均未检测到目标物。结论:分泌型重组酵母pYes-InG经多次口服可对狂犬病起到一定的预防作用,但它诱导产生的中和性抗体浓度低,免疫应答慢,虽不适合用于控制突发性狂犬病的传染以及治疗狂犬病患者,但从免疫机制、免疫方式、安全性以及生产成本等因素考虑,仍具有良好的研究价值。  相似文献   

8.
When cultivated aerobically, Aspergillus niger hyphae produced extracellular glucoamylase, which catalyzes the saccharification of unliquified potato starch into glucose, but not when grown under anaerobic conditions. The Km and Vmax of the extracellular glucoamylase were 652.3 mg starch l-1 and 253.3 mg glucose l-1 min-1, respectively. In mixed culture of A. niger and Saccharomyces cerevisiae, oxygen had a negative influence on the alcohol fermentation of yeast, but activated fungal growth. Therefore, oxygen is a critical factor for ethanol production in the mixed culture, and its generation through electrolysis of water in an electrochemical bioreactor needs to be optimized for ethanol production from starch by coculture of fungal hyphae and yeast cells. By applying pulsed electric fields (PEF) into the electrochemical bioreactor, ethanol production from starch improved significantly: Ethanol produced from 50 g potato starch l-1 by a mixed culture of A. niger and S. cerevisiae was about 5 g l-1 in a conventional bioreactor, but was 9 g l-1 in 5 volts of PEF and about 19 g l-1 in 4 volts of PEF for 5 days.  相似文献   

9.
The cell growth-modulating activity of an endocrine disruptor, p-nonylphenol (NP), was estimated using the yeast Saccharomyces cerevisiae as a simple model of eukaryotic cells. NP caused a dose-dependent suppressive effect on cell growth of S. cerevisiae at 10, 25 and 50 microM. The NP-induced cell growth inhibition was restored when concomitantly lipophilic antioxidants such as alpha-tocopherol and beta-carotene were supplied, but not the hydrophilic antioxidants ascorbic acid or (-)epigallocatechin gallate (EGCG). The cellular oxygen consumption of S. cerevisiae was also inhibited in a dose-dependent fashion by the extracellular addition of NP, and pretreatment with alpha-tocopherol and beta-carotene suppressed NP-induced inhibition of cellular oxygen consumption, but ascorbic acid and EGCG were not effective. Furthermore, NP caused a marked generation of radical oxygen species (ROS) in S. cerevisiae, which was suppressed by treatment with alpha-tocopherol and beta-carotene, but not with ascorbic acid and EGCG. However, NP did not show a significant inhibitory effect on cell growth and survival of mitochondria-deficient petite mutant cells and they showed a relatively weak ROS-generating activity compared with parent yeast cells. These results suggest that NP-induced inhibition of cell growth and oxygen consumption in S. cerevisiae might be possibly associated with ROS generation in yeast mitochondria. The significance of this finding is discussed from the viewpoint of NP-induced oxidative stress against eukaryotic cells.  相似文献   

10.
In this study, the antimicrobial effects of monophosphazenes such as SM, BOMPHOS, and PHOMPHOS were examined on bacterial and yeast strains. In addition, the biological effects of these compounds were tested on the Saccharomyces cerevisiae and Candida albicans cells. The SM has an antimicrobial effect on the bacterial and yeast strains within the range of 100 and 1500 μg. When the concentration was increased, the inhibition zone expanded on the growth media (P < 0.01; P < 0.001). Like SM, BOMPHOS molecule has antimicrobial activity on the bacterial and yeast cells. The most effective concentrations of BOMPHOS on the microorganisms were observed by 1500 μg (P < 0.001). The PHOMPHOS did not effect on the bacterial and yeast cells between 100 and 1000 range, but it has an antimicrobial effect in 1500 μg. In vitro media, the biological effects of these molecules were compared with vitamin E, melatonin, and fish oil on the yeast cells. In S. cerevisiae growth media, the cell densities were increased SM, BOMPHOS, and PHOMPHOS after 20, 30, and 45 h. The highest increase in the cell density were observed in media of BOMPHOS. In C. albicans growth media, the cell density was increased by melatonin after 20, 30, and 45 h, but were decreased by other supplemental groups. Lipid level of S. cerevisiae was reduced by administered 300 and 1000 μg vitamin E and fish oil (P < 0.01). In addition, the lipid level of the same yeast cell were diminished by the 1000 μg melatonin and 300 μg PHOMPHOS (P < 0.05, P < 0.01). The lipid level of C. albicans were increased by vitamin E and BOMPHOS and fish oil, but was decreased with PHOMPHOS (P < 0.01). In conclusion, while high concentration of PHOMPHOS has antimicrobial effects on the bacterial and yeast cells, the SM and BOMPHOS have antimicrobial effects in all the concentrations. PHOMPHOS decreased the lipid level of C. albicans, but BOMPHOS increased in the the same yeast cell. In addition, the antioxidants such as vitamin E, melatonin, and fish oils have affected on the lipid synthesis of yeast cells. Copyright 2000 Academic Press.  相似文献   

11.
12.
絮凝特性对自絮凝颗粒酵母耐酒精能力的影响及作用机制   总被引:7,自引:2,他引:5  
首次报道絮凝特性提高酵母菌耐酒精能力的现象及其机制。融合株SPSC与其两亲本粟酒裂殖酵母变异株和酿酒酵母变异株于 30℃经 18% (V/V)酒精冲击 7h的存活率分别为 52%、37%和 9%。细胞膜磷脂脂肪酸组成分析表明 ,两絮凝酵母 (融合株SPSC和粟酒裂殖酵母变异株 )的棕榈酸含量均约为非絮凝酵母 (酿酒酵母变异株 )的两倍 ,而棕榈油酸和油酸的含量明显低于后者。研究表明 ,当两絮凝酵母在培养中由于柠檬酸钠的作用 (抑制絮凝体的形成 )而以游离细胞生长存在时 ,其细胞膜磷脂棕榈酸含量显著下降 ,而棕榈油酸和油酸的含量明显增加 ,结果细胞膜磷脂脂肪酸组成特点与酿酒酵母变异株相似 ;而且实验表明 ,絮凝特性的消失伴随菌体耐酒精能力的急剧下降 ,变得与酿酒酵母变异株的水平相当。这些结果提示两絮凝酵母具有较强的耐酒精能力与其细胞膜磷脂脂肪酸组成中含有更高比例的棕榈酸有关。  相似文献   

13.
Pichia anomala inhibits the growth of Penicillium roqueforti and Aspergillus candidus on agar. In this investigation, antagonistic activity on agar against 17 mold species was determined. The abilities of Pichia anomala, Pichia guilliermondii, and Saccharomyces cerevisiae to inhibit the growth of the mold Penicillium roqueforti in nonsterile high-moisture wheat were compared by adding 10(3) Penicillium roqueforti spores and different amounts of yeast cells per gram of wheat. Inoculated grain was packed in glass tubes, incubated at 25 degrees C with a restricted air supply, and the numbers of yeast and mold CFU were determined on selective media after 7 and 14 days. Pichia anomala reduced growth on agar plates for all of the mold species tested in a dose-dependent manner. Aspergillus fumigatus and Eurotium amstelodami were the most sensitive, while Penicillium italicum and Penicillium digitatum were the most resistant. Pichia anomala had the strongest antagonistic activity in wheat, with 10(5) and 10(6) CFU/g completely inhibiting the growth of Penicillium roqueforti. Inhibition was least pronounced at the optimum temperature (21 degrees C) and water activity (0.95) for the growth of Penicillium roqueforti. Pichia guilliermondii slightly reduced the growth of Penicillium roqueforti in wheat inoculated with 10(5) and 10(6) yeast CFU/g. S. cerevisiae inhibited mold growth only weakly at the highest inoculum level. Pichia anomala grew from 10(3) to 10(7) CFU/g of wheat in 1 week. To reach the same level, Pichia guilliermondii had to be inoculated at 10(4) CFU while S. cerevisiae required an inoculum of 10(5) CFU to reach 10(7) CFU/g of wheat.  相似文献   

14.
The search for new phosphate-accumulating microorganisms is of interest in connection with the problem of excess phosphate in environment. The ability of some yeast species belonging to ascomycetes and basidiomycetes for phosphate (P (i) ) accumulation in nitrogen-deficient medium was studied. The ascomycetous Saccharomyces cerevisiae and Kuraishia capsulata and basidiomycetous Cryptococcus humicola, Cryptococcus curvatus, and Pseudozyma fusiformata were the best in P (i) removal. The cells of Cryptococcus humicola and S.?cerevisiae took up 40% P (i) from the media containing P (i) and glucose (5 and 30?mM, respectively), and up to 80% upon addition of 5?mM MgSO(4) (.) The cells accumulated P (i) mostly in the form of polyphosphate (PolyP). In the presence of Mg(2+) , the content of PolyP with longer average chain length increased in both yeasts; they both had numerous inclusions fluorescing in the yellow region of the spectrum, typical of DAPI-PolyP complexes. Among the yeast species tested, Cryptococcus humicola is a new promising model organisms to study phosphorus removal from the media and biomineralization in microbial cells.  相似文献   

15.
(i) Saccharomyces cerevisiae grown in the presence of 1.0 mM l-tryptophan slowly excreted fluorescent material that was chromatographically identifiable as 3-hydroxyanthranilate but did not excrete detectable amounts of anthranilate nor rapidly deplete the medium of l-tryptophan. Under similar growth conditions, Neurospora crassa rapidly excretes anthranilate and rapidly depletes the medium of l-tryptophan. (ii) Chromatographic analysis of crude extracts from yeast revealed a single kynureninase-type enzyme whose synthesis was not measurably affected by the presence of tryptophan in the medium. Previous studies have provided evidence for two kynureninase-type enzymes in N. crassa, an inducible kynureninase and a constitutive hydroxykynureninase. (iii) Kinetic analysis of the partially purified yeast enzyme provided Michaelis constants for l-3-hydroxykynurenine and l-kynurenine of 6.7 x 10(-6) and 5.4 x 10(-4) M, respectively. This and other kinetic properties of the yeast enzyme are comparable to those reported for the constitutive enzyme from N. crassa. (iv) These findings suggest that S. cerevisiae has in common with N. crassa the biosynthetic enzyme hydroxykynureninase but lacks the catabolic enzyme kynureninase. Therefore, it can be predicted that, unlike N. crassa, S. cerevisiae does not carry out the tryptophan-anthranilate cycle. Distinct kynureninase-type enzymes may exist in other microorganisms and in mammals.  相似文献   

16.
The effect of low concentrations of a specifically designed sterol-24-transmethylase inhibitor, 25-aza-24, 25-dihydrozymosterol (10) on sterol production in Saccharomyces cerevisiae was examined. The synthesis of cholesta-5,7,22,24-tetraen-3beta-ol (4), its 7,22,24 analog (15) and the 7,24 analog (5) coupled with the availability of zymosterol (6) and cholesta-5,7,24-3beta-ol (3) derivatives facilitated a search for these sterols in cultures treated with this inhibitor. When S. cerevisiae was grown in the presence of 1.3 and 5 muM 10, it produced no ergosterol but accumulated zymosterol (6), cholesta-5,7,22,24-tetraen-3beta-ol (4) and related C27 sterols (3 and 5). These results indicate blockage of the side chain methylation that normally occurs during the biosynthesis of ergosterol in yeast by compound 10 is efficient. The cholesta-5,7,22,24-tetraen-3beta-ol is a close structural analog of provitamin D3 (7-dehydrocholesterol). The inhibited yeast thus provides a source of a potentially new provitamin D3 substitute.  相似文献   

17.
The growth pattern of Saccharomyces cerevisiae and Propionibacterium freudenreichii ssp. shermanii (P. shermanii; propionic acid bacteria, PABs) during cocultivation in liquid media depended on the ratio of the cells in the inoculum. An increase in the growth rate of S. cerevisiae was observed at a PAB to yeast ratio of approximately 3 : 1; higher ratios exerted adverse effects on yeast growth. The culture liquid of 18- to 24-h (young) cultures of PABs stimulated yeast growth. Although yeast growth-stimulating exometabolites of PABs were not high-molecular-weight compounds, they were thermolabile. When present in the medium at concentrations of up to 1.5%, the antimicrobial agent sodium propionate did not interfere with S. cerevisiae growth; however, it completely inhibited the growth of B. subtilis at a concentration of 0.2%.  相似文献   

18.
To optimize the recovery of mRNAs extracted from yeast, different methods for sampling the yeast cells have been compared. For Saccharomyces cerevisiae strains growing on gluconeogenic carbon sources (derepressed cells) rapid filtration allowed much higher yields (3-10 fold) than centrifugation at room temperature or at 4 degrees C. Recovery of total RNA was similar with the different procedures. For S. cerevisiae growing on glucose, filtration caused a 2-4 fold improvement on the mRNA yields obtained from cells sampled by centrifugation. It was also observed that, when derepressed cells of S. cerevisiae W303-1A were collected by filtration and flash-frozen, part of the 25S and 18S rRNAs (up to 50%) was recovered in an unprocessed 32S or 33S form.  相似文献   

19.
Cells of S. cerevisiae strain "14-12" of different ages were immobilized in sodium alginate and used for conversion of glucose to ethanol. Immobilized cells of 48 hr old were the most potential. Employment of high counts of alginate-entrapped cells shortened the period required for production of the maximal alcohol yield. However, the percentage surviving cells decreased with increasing initial cell counts. Maximal accumulation of ethanol (4.18 g/100 ml) was obtained after 4 days of static fermentation with 1.8 X 10(8) immobilized yeast cells. The residual viable cell count was found to represent 3-fold the surviving percentage in a control experiment using an inoculum of the free yeast cells. Immobilized yeast cells could convert about 85% of the available sugars to ethanol over 28 days of the repeated-batch fermentation. The immobilized cells retained 50% of their viability for 16 days. After 48 days of repeated fermentation only 6% of the yeast cells were viable, and on the 52nd day no viable cells could be detected.  相似文献   

20.
Twenty yeast strains have recently been isolated in pure cultures from natural and industrial sources and identified based mainly on physiological properties. The majority of the strains (15) are alcohologenic belonging to the genus Saccharomyces and comprise two brewer's (beer) yeast strains (S. carlsbergensis= S. uvarum A and B), two baker's yeast strains (S. cerevisiae CA and CP), one spirit yeast strain (S. cerevisiae CF) and ten wine yeast strains (S. cerevisiae var. ellipsoideus = S. ellipsoideus 1, 3, 4, 6, 8 and 9; S. oviformis 2, 5 and 7; and S. uvarum 10). The other 5 yeast strains belong to different species: Kloeckera apiculate, Candida mycoderma (Mycoderma vini), Pichia membranaefaciens, Rhodotorula glutinis and Torulopsis holmii, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号