首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
Bioaerosol concentrations inside one naturally ventilated and one mechanically ventilated swine finishing barn were assessed by sampling air using membrane filtration and impaction (six-stage Andersen sampler), and assayed by culture method. The barns, located on the same commercial farm in northeast Kansas, did not show any significant difference (p > 0.05) in concentrations of total and respirable airborne microorganisms. The overall mean total concentrations inside the two barns were 6.6 × 104 colony forming units (CFU)/m3 (SD = 3.8 × 104 CFU/m3) as measured by filtration and 8.6 × 104 CFU/m3 (SD = 5.1 × 104 CFU/m3) by impaction. The overall mean respirable concentrations were 9.0 × 103 CFU/m3 (SD = 4.1 × 103 CFU/m3) measured by filtration and 2.8 × 104 CFU/m3 (SD = 2.2 × 104 CFU/m3) by impaction. Total and respirable CFU concentrations measured by impaction were significantly (p < 0.05) higher than that by filtration. The persistent strains of microorganisms were various species of the following genera: Staphylococcus, Pseudomonas, Bacillus, Listeria, Enterococcus, Nocardia, Lactobacillus, and Penicillium. It appears that filtration sampling can be used for a qualitative survey of bioaerosols in swine barns while the Andersen sampler is suitable for both quantitative and qualitative assessments. Received: 2 April 2001 / Accepted: 13 June 2001  相似文献   

2.
To accurately quantify airborne Aspergillus fumigatus (A. fumigatus) spores in rabbit houses, the real-time polymerase chain reaction (real-time PCR) and culture-based counting method (CCM) were employed to determine the airborne A. fumigatus spore concentrations. The results showed that, of the three rabbit houses (A, B, and C), the average concentrations of airborne A. fumigatus spores determined by real-time PCR were 3.0 × 103, 3.3 × 103, and 1.5 × 103 spores/m3 air, respectively, while those determined by CCM were 2.5 × 102, 2.8 × 102, and 1.1 × 102 colony-forming unit/m3 air (CFU/m3 air), respectively, i.e., the former concentration was 12–14 times higher than the latter one. Therefore, the conventional CCM underestimated the concentrations of airborne fungal spores, and it is insufficient to determine the microbial aerosol concentration and evaluate the health risk only using CCM.  相似文献   

3.
According to Council Directive 90/679/EEC on the protection of workers from risks related to exposure to biological agents at work, nature, degree and duration of workers’ exposure to microorganisms must be determined. This directive has already been implemented in waste and wastewater management. The present case study investigates concentration and composition of microorganisms in a poultry slaughterhouse in the State of Styria, Austria. From June to November 2002, measurements were conducted at the sampling sites ‘moving rail’ and ‘gall bladder separation’ using the Andersen six stage viable cascade impactor and the SKC BioSampler. The results of this study were compared with other previous studies which were carried out using the same device (ACFM) and the same measurement methods. At the processing area of the ‘moving rail’, the median concentration of airborne mesophilic bacteria was 1.7×106 CFU/m3 which is 8000 times higher than the background concentration of residential areas (approx. 210 CFU/m3). The airborne microorganisms concentration was 1.7×104 CFU/m3 at composting plants which is 100 times lower than at a workplace of a poultry slaughterhouse. The study shows that poultry slaughterhouse employees are exposed to high concentrations of airborne microorganisms throughout the entire work time without using a respiratory protective device. For the protection of employees against airborne biological agents, relevant measures should be introduced to this field of work.  相似文献   

4.
This study investigates the exposure of workers to biological particles in a poultry litter burning plant in operation. The microorganism concentrations were examined at different workplaces during procedures leading to increased emissions. The concentrations of culturable airborne mesophilic, xerophilic and thermophilic microorganisms in the ambient air were tested inside and outside of the burning plant using two different methods of measuring. The focus of this study was on the quantitative evaluation of culturable bacteria as well as the quantitative and qualitative evaluation of gram-negative bacteria, fungi and thermophilic actinomycetes. The maximum airborne concentrations were found in the delivery hall. Mesophilic bacteria concentrations reached up to 1.7 × 106 CFU/m3; gram-negative bacteria up to 9.1 × 102 CFU/m3. Fungal propagule concentrations for xerophilic fungi were between 1.2 × 103 and 2.9 × 104 CFU/m3 and for mesophilic fungi between 4.4 × 102 and 2.9 × 104 CFU/m3. Among fungi, Aspergillus niger, Eurotium herbariorum and Scopulariopsis brevicaulis species were dominant. Thermophilic actinomycetes reached airborne concentrations of 8.7 × 104 CFU/m3, with increased concentrations of the pathogens causing extrinsic allergic alveolitis. The high concentrations of airborne microorganisms in poultry litter burning plants and the potential hazard of the intake of microorganisms including potential pathogens require the introduction of consistent measures in both technical areas and personnel management.  相似文献   

5.
Inhalation of airborne microorganisms and organic dust is an occupational concern among workers in agricultural industries. Airborne microorganisms and particulate matter samples were collected from poultry house, flourmill, textile, and food industry sites by use of liquid impinger and gravimetric samplers. Particulate matter concentrations were recorded at median concentrations of 1.56, 1.92, 4.39, and 0.7 mg/m3 in the occupied poultry house, textile, flourmill, and food indoor working environments, respectively. The highest median particulate matter concentration (27.9 mg/m3) was detected at the flourmill’s stack site. The highest median indoor concentration of culturable airborne bacteria (6.23 × 105 CFU/m3) was found at the occupied poultry-house site and the lowest concentration (4.6 × 103 CFU/m3) was found at the food industry site. The highest median indoor concentration of culturable airborne fungi (3.15 × 104 CFU/m3) was found at the flourmill site whereas the lowest (1.24 × 103 CFU/m3) was found at the textile industry site. Bacillus and Staphylococcus were the predominant Gram-positive bacteria whereas Acinetobacter and Klebsiella were the predominant Gram-negative bacteria. Escherichia coli and Salmonella were only detected in the indoor air at the poultry house site. Aspergillus flavus, Aspergillus niger, Penicillium, and yeast were the predominant fungal types at flourmill, textile, food industry, and poultry house, respectively. Workers were continuously exposed to airborne microorganisms at a median value of 104 CFU/m3 in all the industries studied.  相似文献   

6.
Thailand border market is where the local Thais, Cambodians, Laotians, and Burmeses exchange their goods and culture at the border checkpoints. It is considered to be the source of aerial disease transmission especially for foreigners because it is always very crowded with people from all walks of life. Unhealthy air quality makes this area high risk of spread of airborne diseases. This study assessed airborne concentrations of bacteria and fungi in a border market to improve exposure estimates and develop efficient control strategies to reduce health risk. The density and distribution of airborne bacteria and fungi were investigated in the Chong Chom border market in Surin Province, Thailand. Eighteen air sampling sites were taken from outdoors and various work environments including indoor footpaths, wooden handicraft shops, electronic shops, the secondhand clothing shops, and fruit market areas. Exposed Petri plate method and liquid impinger sampler were used for sampling at the breathing zone, 1.5 m above the floor level, during weekend and holiday. Meteorological factors such as relative humidity, temperature, and light intensity were collected by portable data logger. The relative humidity was 67–73%, and temperature 29–33°C, and light varied between 18 and 270 Lux m−2. Gram-positive and Gram-negative bacteria were found at a mean value of 104 CFU m−3, and airborne fungi of 103 CFU m−3 were recorded. The highest concentration of culturable airborne microorganisms was found along the indoor footpath (9.62 × 104 CFU m−3 and 750.00 CFU/plate/h for impingement and sedimentation methods, respectively), the fruit market area (7.86 × 104 CFU m−3 and 592.42 CFU/plate/h for impingement and sedimentation methods, respectively), and the secondhand clothing shop (4.59 × 103 CFU m−3 and 335.42 CFU/plate/h for impingement and sedimentation methods, respectively) for Gram-positive bacteria, Gram-negative bacteria, and fungi, respectively. The lowest concentration of Gram-positive bacteria, Gram-negative bacteria, and fungi was found only at the outdoor area at 1.53 × 104 CFU m−3, 0.93 × 104 CFU m−3 and 0.80 × 103 CFU m−3 by means of impingement method and 136.67 CFU/plate/h, 69.25 CFU/plate/h, and 62.00 CFU/plate/h by means of sedimentation methods for Gram-positive bacteria, Gram-negative bacteria, and fungi, respectively. The most frequently present airborne bacteria were identified as Bacillus, Corynebacteria, Diplococcus, Micrococcus, Acinetobacter, Alcaligenes, Enterobacter, and spore former rods. Acremonium, Aspergillus, Cladosporium, Penicillium, and Sporotrichum were the most frequently found aerosol fungi genera. The distribution of airborne microorganisms correlated with relative humidity and light factors based on principal component analysis. In conclusion, the border market is a potential source of aerial disease transmission and a various hazards of bioaerosols for workers, consumers, sellers, and tourists. The bioaerosol concentration exceeded the standard of occupational exposure limit. Many major indicators of allergenic and toxigenic airborne bacteria and fungi, Acinetobacter, Enterobacter, Pseudomonas, Cladosporium, Alternaria, Aspergillus, and Penicillium, were found in the various market environments.  相似文献   

7.
Many working environments are predisposed for larger than average amounts of fungi and other microorganisms often due to organic material being handled. From 2003 to 2007, the area used for strawberry production in Denmark increased by 62%. The purpose of this study was to determine the levels of exposure to microorganisms, endotoxin, (1→3)-β-d-glucan (β-glucan), and pollen in a field of strawberries. The study was carried out in eastern Denmark from the middle of June to the beginning of August 2008. The strawberries were grown organically, and microbiological pest control agents (MPCAs) were applied during this and former growth seasons. In order to measure exposure to inhalable bioaerosol components, we used stationary filter samplers. Bioaerosol sampling was performed during 4 working days, and a total of 57 samplings were performed. The filters were analysed for contents of fungi, MPCAs, endotoxin, β-glucan, and pollen. The mean exposure was 6,154 CFU Cladosporium sp. m−3, 1.0 × 105 fungal spores m−3, 4.1 × 104 hyphal fragments m−3, 5.8 × 103 pollen m−3, 57.3 ng β-glucan m−3, and 8.9 endotoxin units (EU) m−3. A significant and positive correlation was found between β-glucan and fungal spores and between CFU of Cladosporium sp. and CFU of fungi. We selected specifically for Metarhizium anisopliae, Beauveria bassiana, and the applied MPCAs Trichoderma harzianum, T. polysporum, and Bacillus thuringiensis but found none of these species. In conclusion, our study shows that berry pickers in this organic strawberry field were potentially subjected to higher levels of fungal spores, Cladosporium sp., hyphal fragments, pollen, and thus also β-glucan than is usually seen in outdoor air. Exposure to MPCAs was not seen. The exposure to endotoxin was only slightly higher than e.g. in a town.  相似文献   

8.
Numbers of airborne microorganisms, fungi, Gram-negative bacteria, thermophilic microorganisms, endotoxins and dust have been monitored in resource recovery plants and composting plants. The work is still in progress, so this paper decribes only preliminary results. Only low levels (< 15 ng m?3) of endotoxins were found at all locations. Levels of microorganisms, fungi, Gram-negative bacteria and dust changed with quality of waste, activity in the plant etc. Levels of airborne microorganisms, endotoxins and dust could be considerably decreased in resource recovery plants if only waste of good quality, e.g. presorted materials, is handled. For composting plants the highest levels of airborne microorganisms were found during aeration, especially by indoor composting where levels of 8.3 × 105 CFU of mesophilic microorganisms were found.  相似文献   

9.
The aim of this preliminary study was to assess exposure to β(1 → 3)-glucan as well as inhalable dust and viable fungi in different occupational environments. The study was conducted in three different industrial plants: metal plant where metalworking fluids were applied, wastewater treatment plant, and waste composting plant. In selected points simultaneously the stationary air sampling was performed to evaluate the levels of inhalable dust, β(1 → 3)-glucan, and to make a quantitative analysis of airborne fungi. All variables describing the exposure were characterized by a wide range of concentrations. The results were as follows: β(1 → 3)-glucan (1.38–65.1 ng/m3), inhalable dust (0.03–2.93 mg/m3), and fungi (0.16–285 × 102 CFU/m3). The highest concentrations for all parameters were found in the composting plant. In the composting plant, a statistically significant correlation was found between β(1 → 3)-glucan and fungal levels (r = 0.89; p < 0.05). In the metal industry and composting plant, the participation of alkali-soluble fraction was stable, exceeding 90% of all β(1 → 3)-glucan. However, in the wastewater treatment plant, its average amount was much lower—73.6%. The study showed that β(1 → 3)-glucan was present in different occupational environments and it should be taken into consideration as an important part of bioaerosols. However, more studies are required to assess the concentration levels as well as all determinants of exposure.  相似文献   

10.
The ability of conidia of the human pathogenic fungus Aspergillus fumigatus to kill larvae of the insect Galleria mellonella was investigated. Conidia at different stages of the germination process displayed variations in their virulence as measured using the Galleria infection model. Non-germinating (‘resting’) conidia were avirulent except when an inoculation density of 1 × 107 conidia per insect was used. Conidia that had been induced to commence the germination process by pre-culturing in growth medium for 3 h were capable of killing larvae at densities of 1 × 106 and 1 × 107 per insect. An inoculation density of 1 × 105 conidia per insect remained avirulent. Conidia in the outgrowth phase of germination (characterised as the formation of a germ tube) were the most virulent and were capable of killing 100% of larvae after 5 or 24 h when 1 × 107 or 1 × 106 conidia, that had been allowed to germinate for 24 h, were used. Examination of the response of insect haemocytes to conidia at different stages of the germination process established that haemocytes could engulf non-germinating conidia and those in the early stages of the germination process but that conidia, which had reached the outgrowth stages of germination were not phagocytosed. The results presented here indicate that haemocytes of G. mellonella are capable of phagocytosing A. fumigatus conidia less than 3.0 μm in diameter but that conidia greater than this are too large to be engulfed. The virulence of A. fumigatus in G. mellonella larvae can be ascertained within 60–90 h if infection densities of 1 × 106 or 1 × 107 activated conidia (pre-incubated for 2–3 h) per insect are employed.  相似文献   

11.
Avian aspergillosis is reported in several avian species, with Aspergillus fumigatus as the main aetiological agent. Predisposing factors such as starvation, thermal stress, migratory stress, primary infectious disease or toxicosis may play a role. Eight cases of disseminated aspergillosis in free ranging seagulls sheltered at C.R.U.M.A. (Centro Recupero Uccelli Marini e Acquatici, Livorno, Italy) with different clinical histories are presented. The infection was demonstrated by cultural and histological methods from lesions of all birds, and the presence of airborne A. fumigatus viable elements ranging from 450 to 525 CFU/m3 inside and outside the shelter by means of a surface air sampler (SAS) Super-90 was also assessed. The role of this fungal species as an opportunistic factor in the captivity of seagulls is considered and some control measures, such as a clean and stress free environment and the use of antifungal drugs are suggested.  相似文献   

12.
Analysis of the structural properties of pCC3, a cryptic plasmid from Leuconostoc citreum C4 isolated from kimchi, determined its length as 3,338 bp and revealed three open reading frames (ORFs): ORF1–ORF3. ORF3 showed high homology with a replication initiation protein of the theta-type plasmid pTXL1. The fragment encompassing ORF3 and its upstream sequences (nt 1,299–1,634) was found to contain a functional plasmid replicon. A new shuttle vector, pUCC3E1, was constructed based on pCC3. Using Southern hybridization analysis, no single-stranded DNA intermediate was detected from Leu. citreum harboring pUCC3E1, which indicates that pCC3 replicated via the theta mechanism. The pUCC3E1 could be replicated in E. coli TG1 (5.8 × 104 CFU/μg DNA) and the developed cloning hosts, Leu. citreum C16 (2.1 × 102 CFU/μg DNA) and Leu. citreum GJ7 (8.0 × 101 CFU/μg DNA). pUCC3E1 was stably maintained in Leu. citreum C16 (for 100 generations, ca. 94.2%) in the absence of erythromycin (5 μg/ml).  相似文献   

13.
A study was carried out on suspended dust, bacterial and fungal aerosols in a four-storey flourmill building located in Giza, Egypt. Airborne microorganisms were quantitatively isolated using liquid impinger and gravimetric samplers during the period from March 2004 to February 2005. Suspended dust varied from 1.96 to 16.3 mg m−3 and 0.69 to 1.8 mg m−3 in the indoor and outdoor environments, respectively. Suspended dust was significantly greater (P < 0.05) at bran package, double roller, purifiers and flour storage units in comparison to the outdoor reference site. The dust levels exceed the occupational exposure limit (OEL) of 0.5 mg m−3 for flour dust. Airborne microbial counts were found at median values, between sampling locations, ranged from 0 to >104 CFU m−3. Gram-negative bacteria were found in small numbers (0–102 CFU m−3). The highest concentration of actinomycetes (>103 CFU m−3) was detected in the storage unit. Airborne fungal counts were found at the median values, between sampling locations, varied from 103 to 104 CFU m−3. The counts of airborne bacteria and fungi were significantly greater (P < 0.05) at the purifiers and double roller mill units in comparison to the outdoor reference site using the liquid impinger sampler. Microbial levels associated with bulk deposited dust averaged between 105 and 106 CFU g−1. Alcaligenes (5.4%) Pseudomonas (3.87%) and Enterobacter (3.1%) were the predominant Gram-negative species while Bacillus (29.4%) and Micrococci (13.9%) were the major components of Gram-positive bacteria. Aspergillus and Penicillium were the predominant fungal types indoor whereas Cladosporium (35.2%) and Aspergillus species (22.2%) were the predominant fungal types outdoor. A number of allergenic and toxigenic bioaerosols were found in the flourmill workplace.  相似文献   

14.
We assessed the seasonal abundance and distribution of Vibrio species as well as some selected environmental parameters in the treated effluents of two wastewater treatment plants (WWTP), one each located in a suburban and urban community of Eastern Cape Province, South Africa. Vibrio population density ranged from 2.1×105 to 4.36×104 CFU/ml in the suburban community and from 2.80×105 to 1.80×105 CFU/ml in the urban community. Vibrio species associated with 180 μ, 60 μ, and 20 μ plankton sizes were observed at densities of 0–136×103 CFU/ml, 0–8.40×102 CFU/ml, and 0–6.80×102 CFU/ml, respectively at the suburban community’s WWTP. In the urban community, observed densities of culturable Vibrio were 0–2.80×102 CFU/ml (180 μ), 0–6.60×102 CFU/ml (60 μm), and 0–1.80× 103 CFU/ml (20 μm). The abundance of free-living Vibrio species ranged from 0 to 1.0×102 and 1.0×103 CFU/ml in the suburban and urban communities’ WWTPs, respectively. Molecular confirmation of the presumptive Vibrio isolates revealed the presence of V. fluvialis (41.38%), V. vulnificus (34.48%), and V. parahaemolyticus (24.14%) in the suburban community effluents. In the urban community molecular confirmation revealed that the same species were present at slightly different percentages, V. fluvialis (40%), V. vulnificus (36%), and V. parahaemolyticus (24%). There was no significant correlation between Vibrio abundance and season, either as free-living or plankton-associated entities, but Vibrio species abundance was positively correlated with temperature (r=0.565; p<0.01), salinity, and dissolved oxygen (p<0.05). Turbidity and pH showed significant seasonal variation (p<0.05) across the seasons in both locations. This study underscores the potential of WWTPs to be sources of Vibrio pathogens in the watershed of suburban and urban communities in South Africa.  相似文献   

15.
Bacterial vaginosis can be treated by restoring the normal vaginal flora using lactobacilli.Lactobacillus crispatus KLB46 that was isolated from the human vagina has a strong antimicrobial activity and was grown in a batch and in a continuous fermentor. During batch cultivation, the maximum specific growth rate ofL. crispatus KLB 46 was 0.63 h−1 and the highest viable cell count (1.9×109 CFU/mL) was obtained at pH 5.5.L. crispatus KLB 46 did not grow well at either pH 3.5 or 7.5. During continuous cultivation, the highest viable cell count (1.53×109 CFU/mL) was obtained at a dilution rate of 0.32 h−1. However, the maximum productivity of viable cells was obtained at a dilution rate of 0.52 h−1, and was 7.33×1011 CFU L−1 h−1, that is approximately 5 times higher than that obtained from batch culture.  相似文献   

16.
Eleven feed samples associated with six animal (horse and poultry) intoxication outbreaks (1991) in the state of Paraná, Brazil, were evaluated for fungal and fumonisin contamination. In order to estimate the␣trend of livestock intoxication, fumonisin contamination was monitored in corn produced both at the commercial level (1991, 1995 crop), and in an experimental field at a local Agronomy Institute (1997 crop). The total mould count in the feed samples ranged from 2.9 × 103 to 1.9 × 107 CFU/g, with Fusarium verticillioides as the predominant species, at a high count of 2.4 × 104–6.5 × 105 CFU/g. Fumonisins (FB1 + FB2) were detected in all corn-based feed samples at levels ranging from 2.89 to 14.54 μg/g. All 27 Northern corn samples (1991 crop) were contaminated with fumonisins at levels ranging from 2.32 to 16.64 μg/g. Twenty-six (96.3%) out of 27 corn samples from the Central-Southern region (1995 crop) were positive for fumonisins (FB1+FB2), with the range of 0.07–3.66 μg/g, while all 37 Northern samples (1995 crop) were contaminated with fumonisins ranging from 0.57 to 9.97 μg/g. Twenty-one out of 37 corn samples from the Northern region (1997 crop) were positive for fumonisins, but at low level (range of 0.05–2.67 μg/g). The results showed a decreasing trend in fumonisin contamination over the years. Nowadays animal intoxication outbreaks rarely occur in this State, as both animal producers and feed industries have become conscious about monitoring of corn and other raw materials at the quality control level.  相似文献   

17.
Microbial environmental monitoring represents one of the most useful methods to assess potential risks related to the integrity of cultural heritage and people’s health. The monitoring plan described in the present work is based on standardized techniques for measuring microbial air and surface contamination. Air contamination is assessed through both active and passive samplings, measuring the concentration of microbes in air (in colony forming units per cubic metre, CFU/m3) and the rate at which microorganisms settle on surfaces (expressed by the Index of Microbial Air Contamination, IMA, CFU/dm2/h). For surface contamination, two parameters are measured using nitrocellulose membranes: the Microbial Buildup (MB, the total number of microorganisms accumulated on a surface in an unknown period of time prior to the sampling) and the Hourly Microbial Fallout (HMF, the number of microorganisms that settle on a specific surface during 1 h). The monitoring plan was implemented at the Pilotta Palace in Parma, Italy, during the Correggio exhibition in 2009. Samplings were taken before and during opening times. Some microbial contamination was already detected before the arrival of visitors: air contamination mean values of 99.1 CFU/m3 and 5.2 CFU/dm2/h were recorded, while MB and HMF mean values for surfaces were 92 and 7 CFU/dm2, respectively. A significant increase was recorded in air contamination during opening times, with mean values of 323.7 CFU/m3 and 19.4 CFU/dm2/h; surface contamination values increased as well. This monitoring plan represents a contribution towards the definition of a much needed standardized methodology.  相似文献   

18.
AISI-1020 carbon steel coupons were fixed onto a water circulation loop in order to study the effect of varying NaCl concentrations on formation of biofilms by natural populations of microorganisms. Overall, we observed a reduction in the number of bacteria attached to the metal surfaces as NaCl levels increased. At 12.85 and 80 g/l NaCl, the respective bacterial counts were: 1.7×109 CFU/cm2 and 7.5×102 CFU/cm2 for aerobic species; 1.3×104 CFU/cm2 and 2.1×10 CFU/cm2 for anaerobic species; and 1.8×103 CFU/cm2 and 4.6×10 CFU/cm2 for sulfate-reducing species. However, the opposite trend was observed for the numbers of iron-reducing bacteria: 4.1×106 CFU/cm2 at 12.85 g/l NaCl and 7.5 108 CFU/cm2 at 80 g/l NaCl, respectively. Fungal counts remained constant throughout the experimental period. The salt concentration at which the maximum corrosion rate was observed was 35 g/l. In view of the marked loss of metal mass recorded at this salinity, AISI-1020 carbon steel proved to belong to the group of alloys less resistant to corrosion. Journal of Industrial Microbiology & Biotechnology (2000) 25, 45–48. Received 07 December 1999/ Accepted in revised form 25 April 2000  相似文献   

19.
The effect of fungal infection on the reproductive potential of two-spotted spider mite, Tetranychus urticae, was evaluated as part of the full biocontrol potential of three entomopathogenic fungi by modeling of fecundity probability. Female mites (≤2-day-old) on leaves were exposed to the sprays of Beauveria bassiana, Paecilomyces fumosoroseus and Metarhizium anisopliae at the concentrations of 1.13 × 103, 1.55 × 103 and 0.95 × 103 deposited conidia mm−2 and then individually reared at 25°C and 12:12 L:D for oviposition. Mite mortalities 10 days after spraying were 73.1, 75.4 and 67.9% in the fungal treatments versus 15.5% in control. On average, females infected by the three fungal species survived 5.8, 6.2 and 6.3 days, and laid 3.1, 4.0 and 4.0 eggs per capita, respectively. These were 3–4 fold lower than the control fecundity at 12.3. The cumulative probabilities [P(m ≤ N)] for the counts of infected and non-infected (control) females laying m eggs per capita (m ≤ N) during 10 days fit very well the equation P(m ≤ N) = 1/[1 + exp(a + bm)] (r 2 ≥ 0.98), yielding a solution to the probability for the female mites to achieve a specific fecundity {P(m ≤ N)−P[m ≤ (N − 1)]}. Consequently, the infected mites had 71–78% chance to lay ≤5 eggs per capita but only 5–8% to deposit >10 eggs despite some variation among the tested fungi. In contrast, the chances for the non-infected mites to achieve the low and high fecundities were 23 and 55%. The fitted probabilities provide a full coverage of the fecundity potential of infected versus non-infected mites and are more informative than the mean fecundities.  相似文献   

20.
We report the results of an interdisciplinary collaboration formed to assess the sterilizing capabilities of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). This newly-invented source of glow discharge plasma (the fourth state of matter) is capable of operating at atmospheric pressure in air and other gases, and of providing antimicrobial active species to surfaces and workpieces at room temperature as judged by viable plate counts. OAUGDP exposures have reduced log numbers of bacteria, Staphylococcus aureus and Escherichia coli, and endospores from Bacillus stearothermophilus and Bacillus subtilis on seeded solid surfaces, fabrics, filter paper, and powdered culture media at room temperature. Initial experimental data showed a two-log10 CFU reduction of bacteria when 2 × 102 cells were seeded on filter paper. Results showed ≥3 log10 CFU reduction when polypropylene samples seeded with E. coli (5 × 104) were exposed, while a 30 s exposure time was required for similar killing with S. aureus-seeded polypropylene samples. The exposure times required to effect ≥6 log10 CFU reduction of E. coli and S. aureus on polypropylene samples were no longer than 30 s. Experiments with seeded samples in sealed commercial sterilization bags showed little or no differences in exposure times compared to unwrapped samples. Plasma exposure times of less than 5 min generated ≥5 log10 CFU reduction of commercially prepared Bacillus subtilis spores (1 × 106); 7 min OAUGDP exposures were required to generate a ≥3 log10 CFU reduction for Bacillus stearothermophilus spores. For all microorganisms tested, a biphasic curve was generated when the number of survivors vs time was plotted in dose-response cures. Several proposed mechanisms of killing at room temperature by the OAUGDP are discussed. Received 06 June 1997/ Accepted in revised form 01 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号