首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND AIMS: The expression of osteopontin (OPN), a protein postulated to play a role in tumorigenesis, is induced by the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) in vivo and in the in vitro initiation-promotion skin carcinogenesis model (JB6 cells). Although TPA-induced OPN expression in JB6 cells has been suggested to involve protein kinase C (PKC), the PKC isoforms and the downstream pathway mediating OPN expression have not been extensively studied. METHODS: Using the JB6 cell model, we determined the involvement of PKC isoforms, mitogen-activated protein kinase kinase (MAPK kinase/MEK) and MAPK in TPA-induced OPN expression using inhibitors specific to PKC isoforms and MEK and performing Northern blot analyses. Western blot analyses of cells treated with specific inhibitors were also performed to determine whether PKC isoforms or MEK were involved in activation of MAPK. KEY RESULTS: TPA increased the steady-state level of OPN mRNA as early as 2-4h and this expression persisted for at least 4 days. TPA induction of OPN expression in JB6 cells is mediated through PKC epsilon and PKC delta, which also mediated the phosphorylation of MAPK. Additionally, inhibition of MEK activity, which activates MAPK, attenuated TPA-induced OPN expression. These findings suggest that activation of MAPK is important in mediating OPN expression. CONCLUSION: TPA-induced steady-state OPN mRNA expression in mouse JB6 cells involves the activation of MAPK mediated through PKC epsilon and/or PKC delta.  相似文献   

2.
Daidzein and genistein are isoflavones found in soybean. Genistein is known to exhibit anticarcinogenic activities and inhibit tyrosine kinase activity. However, the underlying molecular mechanisms of the chemopreventive activities of daidzein and its metabolite, equol, are not understood. Here we report that equol inhibits 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal cells by targeting the MEK/ERK/p90RSK/activator protein-1 signaling pathway. TPA-induced neoplastic cell transformation was inhibited by equol, but not daidzein, at noncytotoxic concentrations in a dose-dependent manner. Equol dose-dependently attenuated TPA-induced activation of activator protein-1 and c-fos, whereas daidzein did not exert any effect when tested at the same concentrations. The TPA-induced phosphorylation of ERK1/2, p90RSK, and Elk, but not MEK or c-Jun N-terminal kinase, was inhibited by equol but not by daidzein. In vitro kinase assays revealed that equol greatly inhibited MEK1, but not Raf1, kinase activity, and an ex vivo kinase assay also demonstrated that equol suppressed TPA-induced MEK1 kinase activity in JB6 P+ cell lysates. Equol dose-dependently inhibited neoplastic transformation of JB6 P+ cells induced by epidermal growth factor or H-Ras. Both in vitro and ex vivo pull-down assays revealed that equol directly bound with glutathione S-transferase-MEK1 to inhibit MEK1 activity without competing with ATP. These results suggested that the antitumor-promoting effect of equol is due to the inhibition of cell transformation mainly by targeting a MEK signaling pathway. These findings are the first to reveal a molecular basis for the anticancer action of equol and may partially account for the reported chemopreventive effects of soybean.  相似文献   

3.
4.
The molecular basis of tumour promotion is still largely unknown. In in vitro model of tumour promotion, the promotion-sensitive cells are induced to grow under anchorage-independent conditions in the presence of promoting agent. The customary way of providing such conditions is to immobilize these cells in soft agar, but such cells cannot be readily recovered to study the induced biochemical and molecular events. In the present report, we analysed these events using JB6 mouse epidermal cells maintained in suspension in liquid medium over agarose. 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced anchorage-independent synthesis of DNA in promotion-sensitive P+ (but not in promotion-resistant P?) JB6 cells and this TPA-induced synthesis of DNA positively correlated with TPA-induced formation of colonies in soft agar. The TPA-induced synthesis of DNA began on or shortly before 24 h after the introduction of TPA, peaked at about 48 h and then declined to the control levels over the next several days. All trans-retinoic acid and dexamethasone inhibited and calcitriol (1α,25-dihydroxyvitamin D3) synergistically stimulated this TPA-induced DNA synthesis. Western immunoblot analysis of cyclins (A, B1, D1 and E) and p27Kip1, a cyclin-dependent kinase inhibitor, indicated that TPA induced cyclin A and cyclin B1 expression in P+ (but not in P?) JB6 cells and this induction coincided in time with TPA-induced synthesis of DNA. TPA also strongly induced cyclin D1 expression in P+ (but not in P?) JB6 cells, but this induction started prior to the expression of cyclin A and cyclin B1. TPA did not affect the expression of either cyclin E or p27Kip1 to any significant extent. We also found that NMU38 rat mammary epithelial cells were operationally equivalent to the promotion-sensitive P+ JB6 cells, but in these cells 17β-oestradiol exerted a strong synergistic effect on TPA-induced synthesis of DNA. Based on these observations, we tentatively propose a sequence of molecular events which possibly lead to the anchorage-independent synthesis of DNA in these cells.  相似文献   

5.
The molecular changes associated with early skin carcinogenesis are largely unknown. We have previously identified 11 genes whose expression was up- or down-regulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) in mouse skin keratinocyte progenitor cells (Wei, S.-J., Trempus, C. S., Cannon, R. E., Bortner, C. D., and Tennant, R. W. (2003) J. Biol. Chem. 278, 1758-1768). Here, we show an induction of a nucleoside diphosphate protein kinase B (NDPK-B) gene in response to TPA or UV radiation (UVR). TPA or UVR significantly induced the expression of NDPK-B both in vivo hyperplastic mouse skin and in vitro mouse JB6 Cl 41-5a epidermal cells. Indeed, this gene was also up-regulated in TPA or UVR-mediated skin tumors including papillomas, spindle cell tumors, and squamous cell carcinomas, relative to adjacent normal skins. Functional studies by constitutive expression of nm23-M2/NDPK-B in TPA susceptible JB6 Cl 41-5a and TPA-resistant JB6 Cl 30-7b preneoplastic epidermal cell lines showed a remarkable gene dosage-dependent increase in foci-forming activity, as well as an enhancement in the efficiency of neoplastic transformation of these cells in soft agar but no effect on proliferation in monolayer cultures. Interestingly, stable transfection of the nm23-M2/NDPK-B del-RGD or G106A mutant gene in JB6 Cl 41-5a cells selectively abrogated NDPK-B-induced cellular transformation, implicating a possible Arg105-Gly106-Asp107 regulatory role in early skin carcinogenesis.  相似文献   

6.
Cocoa was shown to inhibit chemically induced carcinogenesis in animals and exert antioxidant activity in humans. However, the molecular mechanisms of the chemopreventive potential of cocoa and its active ingredient(s) remain unknown. Here we report that cocoa procyanidins inhibit neoplastic cell transformation by suppressing the kinase activity of mitogen-activated protein kinase kinase (MEK). A cocoa procyanidin fraction (CPF) and procyanidin B2 at 5 mug/ml and 40 mum, respectively, inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal (JB6 P+) cells by 47 and 93%, respectively. The TPA-induced promoter activity and expression of cyclooxygenase-2, which is involved in tumor promotion and inflammation, were dose-dependently inhibited by CPF or procyanidin B2. The activation of activator protein-1 and nuclear factor-kappaB induced by TPA was also attenuated by CPF or procyanidin B2. The TPA-induced phosphorylation of MEK, extracellular signal-regulated kinase, and p90 ribosomal s6 kinase was suppressed by CPF or procyanidin B2. In vitro and ex vivo kinase assay data demonstrated that CPF or procyanidin B2 inhibited the kinase activity of MEK1 and directly bound with MEK1. CPF or procyanidin B2 suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are known to be involved in MEK/ERK signal activation. In contrast, theobromine (up to 80 mum) had no effect on TPA-induced transformation, cyclooxygenase-2 expression, the transactivation of activator protein-1 or nuclear factor-kappaB, or MEK. Notably, procyanidin B2 exerted stronger inhibitory effects compared with PD098059 (a well known pharmacological inhibitor of MEK) on MEK1 activity and neoplastic cell transformation.  相似文献   

7.
Chlorogenic acid, the ester of caffeic acid with quinic acid, is one of the most abundant polyphenols in the human diet. The antioxidant and anticarcinogenic properties of chlorogenic acid have been established in animal studies. However, little is known about the molecular mechanisms through which chlorogenic acid inhibits carcinogenesis. In this study, we found that chlorogenic acid inhibited the proliferation of A549 human cancer cells in vitro. The results of the soft agar assay indicated that chlorogenic acid suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ cells in a dose-dependent manner. Pretreatment of JB6 cells with chlorogenic acid blocked UVB- or TPA-induced transactivation of AP-1 and NF-kappaB over the same dose range. At low concentrations, chlorogenic acid decreased the phosphorylation of c-Jun NH2-terminal kinases, p38 kinase, and MAPK kinase 4 induced by UVB/12-O-tetradecanoylphorbol-13-acetate, yet higher doses were required to inhibit extracellular signal-regulated kinases. Chlorogenic acid also increased the enzymatic activities of glutathione S-transferases (GST) and NAD(P)H: quinone oxidoreductase. Further studies indicated that chlorogenic acid could stimulate the nuclear translocation of Nrf2 (NF-E2-related factor) as well as subsequent induction of GSTA1 antioxidant response element (ARE)-mediated GST activity. The phosphatidylinositol 3-kinase pathway might be involved in the activation of Nrf2 translocation. These results provide the first evidence that chlorogenic acid could protect against environmental carcinogen-induced carcinogenesis and suggest that the chemopreventive effects of chlorogenic acid may be through its up-regulation of cellular antioxidant enzymes and suppression of ROS-mediated NF-kappaB, AP-1, and MAPK activation.  相似文献   

8.
Ebselen, a seleno-organic compound showing glutathione peroxidase-like activity, is one of the promising synthetic antioxidants. In the present study, we investigated the antioxidant activities of ebselen using a 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated mouse skin model. Double pretreatments of mouse skin with ebselen significantly inhibited TPA-induced formation of thiobarbituric acid-reacting substance, known as an overall oxidative damage biomarker, in mouse epidermis, suggesting that ebselen indeed acts as an antioxidant in mouse skin. The antioxidative effect of ebselen is attributed to its selective blockade of leukocyte infiltration and activation leading to attenuation of the H(2)O(2) level. In in vitro studies, ebselen inhibited TPA-induced superoxide generation in differentiated HL-60 cells and lipopolysaccharide-induced cyclooxygenase-2 protein expression in RAW 264.7 cells. In addition, we demonstrated for the first time that ebselen potentiated phase II enzyme activities, including NAD(P)H:(quinone-acceptor) oxidoreductase1 and glutathione S-transferase in cultured hepatocytes and in mouse skin. These results strongly suggest that ebselen, a multifunctional antioxidant, is a potential chemopreventive agent in inflammation-associated carcinogenesis.  相似文献   

9.
Tumor angiogenesis is closely associated with the metastasis and progression of non–small cell lung cancer (NSCLC), a highly vascularized solid tumor. However, novel therapeutics are lacking for the treatment of this cancer. Here, we developed a series of 2-aryl-4-(3,4,5-trimethoxy-benzoyl)-5-substituted-1,2,3-triazol analogs (6a–6x) as tubulin colchicine-binding site inhibitors, aiming to find a novel promising drug candidate for NSCLC treatment. We first identified 2-(2-fluorophenyl)-3-(3,4,5-trimethoxybenzoyl)-5-(3-hydroxyazetidin-1-yl)-2H-1,2,3-triazole (6h) as a hit compound, which inhibited angiogenesis induced by NSCLC cells both in vivo and in vitro. In addition, our data showed that 6h could tightly bind to the colchicine-binding site of tubulin and inhibit tubulin polymerization. We also found that 6h could effectively induce G2/M cell cycle arrest of A549 and H460 cells, inhibit cell proliferation, and induce apoptosis. Furthermore, we showed 6h had the potential to inhibit the migration and invasion of NSCLC cells, two basic characteristics of tumor metastasis. Finally, we found 6h could effectively inhibit tumor progression in A549 xenograft mouse models with minimal toxicity. Taken together, these findings provide strong evidence for the development of 6h as a promising microtubule colchicine-binding site inhibitor for NSCLC treatment.  相似文献   

10.
The our previous study synthesized the chrysin-chromene-spirooxindole hybrids 3, and further found compound 3e had good antitumor activity against A549 cells in vitro through multi-target co-regulation of the p53 signalling pathway to inhibit the proliferation of A549 cells. This study was designed to evaluate the antitumor effects of compound 3e on Lewis lung carcinoma of C57BL/6 mice in vivo. Compound 3e significantly inhibited the growth of transplanted tumors in C57BL/6 mice and induced the apoptosis of tumor cells. Further studies showed that compound 3e activates and expands the anti-cancer activity of p53 by inhibiting the expression of MDM2, Akt and 5-Lox proteins, accordingly promotes the expressions Bax and inhibit the Bcl-2 protein, the release of Cyt c as well, which resulted in the activation of apoptotic pathway in tumor cells eventually. Moreover, Compound 3e inhibited tumor metastasis by down-regulating VEGF, ICAM-1 and MMP-2 protein expression and angiogenesis. These results suggested that compound 3e exerts an effective antitumor activity in vivo through activating the p53 signaling pathway, which could be exploited as a promising candidate for the development of new anti-tumour drugs.  相似文献   

11.
Haishengsu (HSS) is a seashell protein extracted from Tegillarca L. granosa, a type of Malaysian shellfish. Previous in vitro studies showed that HSS might possess biological anticancer activity. In this combined in vitro and in vivo study, we investigated the inhibitory effects of HSS on tumor growth, invasion, and metastasis using human lung carcinoma cell lines A549 and NCI-H292, both intensely positive for matrix metalloproteinases-2 (MMP-2) and MMP-9. HSS significantly inhibited the proliferation of A549 and NCI-H292 as estimated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The transwell chamber assay showed that HSS effectively blocked the invasion and migration of the carcinoma cells through the reconstituted extracellular matrix (Matrigel). Gelatin zymography analysis revealed that the secretion and activity of MMP-2 and MMP-9 in the supernatants of the cultured cells A549 and NCI-H292 were decreased after treatment with HSS. The levels of MMP-2 and MMP-9 in these cancer cells were further examined by Western blot assay in which a significant decrease of MMP-2 and MMP-9 was observed in A549 and NCI-H292 cells after 24 h of exposure to HSS. The anticancer activity of HSS was verified in a mouse model in which HSS delayed the growth of A549 xenografts after 3 weeks of oral administration. Inhibition of MMP-2 and MMP-9 expression was also demonstrated in the A549 xenografts as determined by Western blot analysis. These results suggest that HSS is a novel seashell protein that cannot only inhibit tumor growth but also prevent tumor invasion and metastasis through suppressing the activity of MMP-2 and MMP-9.  相似文献   

12.
BackgroundCellular metabolism, particularly glycolysis, is altered during the metastatic process and is highly associated with tumor progression and apoptosis resistance. Oroxylin A, a natural plant flavonoid, exhibits chemopreventive and therapeutic anti-inflammatory and anticancer potential. However, the anticancer effects of oroxylin A on non-small cell lung carcinoma (NSCLC) remain poorly understood.MethodsIn vitro studies were performed using 2D and 3D conditions. The effects on anoikis-sensitization and glycolysis-inhibition of oroxylin A in human non-small cell lung cancer A549 cells were examined. In vivo murine lung metastasis experiments were utilized to assess the anti-metastatic capacity of oroxylin A.ResultsROS-mediated activation of c-Src following detachment caused anoikis resistance in A549 cells. Oroxylin A sensitized A549 cells to anoikis by inactivating the c-Src/AKT/HK II pathway in addition to inducing the dissociation of HK II from mitochondria. Prior to sensitizing A549 cells to anoikis, oroxylin A decreased the ATP level and inhibited glycolysis. Furthermore, oroxylin A inhibited lung metastasis of A549 cells in vivo in nude mice.ConclusionsOroxylin A sensitized anoikis, which underlies distinct glucose-deprivation-like mechanisms that involved c-Src and HK II.General significanceThe findings in this study indicated that oroxylin A could potentially be utilized in the development of improved metastatic cancer treatments.  相似文献   

13.
Chrysin (5,7-dihydroxyflavone), a natural flavonoid widely distributed in plants, reportedly has chemopreventive properties against various cancers. However, the anticancer activity of chrysin observed in in vivo studies has been disappointing. Here, we report that a chrysin derivative, referred to as compound 69407, more strongly inhibited EGF-induced neoplastic transformation of JB6 P+ cells compared with chrysin. It attenuated cell cycle progression of EGF-stimulated cells at the G1 phase and inhibited the G1/S transition. It caused loss of retinoblastoma phosphorylation at both Ser-795 and Ser-807/811, the preferred sites phosphorylated by Cdk4/6 and Cdk2, respectively. It also suppressed anchorage-dependent and -independent growth of A431 human epidermoid carcinoma cells. Compound 69407 reduced tumor growth in the A431 mouse xenograft model and retinoblastoma phosphorylation at Ser-795 and Ser-807/811. Immunoprecipitation kinase assay results showed that compound 69407 attenuated endogenous Cdk4 and Cdk2 kinase activities in EGF-stimulated JB6 P+ cells. Pulldown and in vitro kinase assay results indicated that compound 69407 directly binds with Cdk2 and Cdk4 in an ATP-independent manner and inhibited their kinase activities. A binding model between compound 69407 and a crystal structure of Cdk2 predicted that compound 69407 was located inside the Cdk2 allosteric binding site. The binding was further verified by a point mutation binding assay. Overall results indicated that compound 69407 is an ATP-noncompetitive cyclin-dependent kinase inhibitor with anti-tumor effects, which acts by binding inside the Cdk2 allosteric pocket. This study provides new insights for creating a general pharmacophore model to design and develop novel ATP-noncompetitive agents with chemopreventive or chemotherapeutic potency.  相似文献   

14.
15.
A combination of 8-methoxypsoralen (8-MOP) and ultraviolet-A (UVA) radiation (320-400 nm) (PUVA) is widely used in the treatment of psoriasis and other skin diseases. PUVA is highly effective in eliminating hyperproliferative cells in the epidermis, but its mechanism of action has not been fully elucidated. In this study, we used immortalized JB6 mouse epidermal cells, p53(-/-), and Fas ligand deficient (gld) mice to investigate the molecular mechanism by which PUVA induces cell death. The results indicate that PUVA treatment induces apoptosis in JB6 cells. In addition, PUVA treatment of JB6 cells results in p53 stabilization, phosphorylation, and nuclear localization as well as induction of p21(Waf/Cip1) and caspase-3 activity. In vivo studies reveal that PUVA treatment induces significantly less apoptosis in the epidermis of p53(-/-) mice compared to p53(+/+) mice. Furthermore, FasL-deficient (gld) mice are completely resistant to PUVA-induced apoptosis compared to wild-type mice. These results indicate that PUVA treatment induces apoptosis in mouse epidermal cells in vitro and in vivo and that p53 and Fas/Fas ligand interactions are required for this process, at least in vivo. This implies that similar mechanisms may be involved in the elimination of psoriatic keratinocytes from human skin following PUVA therapy.  相似文献   

16.
Eto I 《Cell proliferation》2000,33(3):167-187
Cyclin D1 is a cell cycle regulatory protein, which acts as a growth factor sensor to integrate extracellular signals with the cell cycle machinery, particularly during G1 phase of the cell cycle. Previous study using promotion-sensitive JB6 mouse epidermal cells, an in vitro model of the promotion stage of multistage carcinogenesis, showed that the expression of cyclin D1 is stimulated in the presence (but not in the absence) of 12-O-tetradecanoylphorbol-13-acetate (TPA) in these cells maintained under anchorage-independent culture conditions. In the present study, to explore the molecular basis of this observation, the promoter region of mouse cyclin D1 gene was cloned and sequenced (GenBank accession number AF212040). Dot matrix comparison of mouse, human and rat promoter sequences indicated that the mouse promoter is homologous to the human and more so to the rat promoters. The mouse promoter, like human and rat promoters, lacks canonical TATA-box or TATA-like sequence, but it has one or possibly two initiator (Inr) or Inr-like sequences. Energy dot plot analysis predicted that the mouse promoter consists of three domains: (1) the 3' domain contains NF-kappaB response element, cAMP-response element (CRE), Inr or Inr-like elements, Sp1 binding site and Oct 1 (2) the middle domain contains another Sp1 binding site, E-box and E2F binding site and (3) the 5' domain contains TPA-response element (TRE) and a tandem silencer element. The cyclin D1 promoter sequence of either promotion-sensitive or resistant JB6 mouse epidermal cells was, except for a few minor differences, essentially identical to the sequence determined for a mouse genomic clone. Since TPA is capable of stimulating the expression of cyclin D1 not only through TRE but also through CRE and NF-kappaB response element in the promoter, we tentatively propose a sequence of events that possibly leads to TPA-induced, anchorage-independent synthesis of cyclins D1 and A in the promotion-sensitive JB6 mouse epidermal cells.  相似文献   

17.
Consumption of fruits and vegetables has been associated with a low incidence of cancers and other chronic diseases. Previous studies suggested that fresh apples inhibit tumor cell proliferation. Here we report that oral administration of apple peel extracts decreased the number of nonmalignant and malignant skin tumors per mouse induced by 12-O-tetradecanolyphorbol-13-acetate (TPA) in 7,12-dimethylbenz(a)anthracene-initiated mouse skin. ESR analysis indicated that apple extract strongly scavenged hydroxyl (OH) and superoxide (O(2)(-)) radicals. Mechanistic studies showed that pretreatment with apple peel extract inhibited AP-1 transactivation induced by ultraviolet B irradiation or TPA in JB6 cells and AP-1-luciferase reporter transgenic mice. This inhibitory effect appears to be mediated by the inhibition of ERKs and JNK activity. The results provide the first evidence that an extract from fresh apple peel extract may inhibit tumor promoter-induced carcinogenesis and associated cell signaling, and suggest that the chemopreventive effects of fresh apple may be through its antioxidant properties by blocking reactive oxygen species-mediated AP-1-MAPK activation.  相似文献   

18.
Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H(2)O(2) formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-kappaB) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-kappaB activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-kappaB signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent.  相似文献   

19.
Transforming growth factor β1 (TGF-β1), a multifunctional cytokine, is known to promote tumor invasion and metastasis and induce epithelial-mesenchymal transition (EMT) in various cancer cells. Inhibition of TGF-β1 signaling is a new strategy for cancer therapy. Most cancer cells display altered or nonfunctional TGF-β1 signaling; hence, TGF-β1 inhibitors exert limited effects on these cells. Recent studies have suggested that developing a TGF-β1 inhibitor from natural compounds is a key step to create novel therapeutic agents. This study aimed to develop a new anti-TGF-β1 therapy for cancer. We found an improved analog of chalcones, compound 67, and investigated its effects in vitro. We demonstrated the inhibitory role of compound 67 through migration and invasion assays on TGF-β1-induced EMT of human A549 lung cancer cells. Compound 67 inhibited TGF-β1-induced smad2 phosphorylation, suppressed TGF-β1-induced EMT markers, matrix metalloproteinase-2 (MMP-2) and MMP-9, and inhibited migration and invasion of A549 cells. The study results showed that compound 67 is useful to prevent tumor growth and metastasis.  相似文献   

20.
Anti-inflammatory compounds from the bitter mushroom, Sarcodon scabrosus   总被引:2,自引:0,他引:2  
A bioassay-guided purification procedure from the methanol extract of Sarcodon scabrosus led to the isolation of several anti-inflammatory compounds: sarcodonin A (1) and G (2), and related compounds (3, 4 and 5). We named these related compounds neosarcodonin A (3), B (4) and C (5) and elucidated their structures on the basis of spectral data. Topical application of each of these compounds to mouse ears suppressed TPA-induced inflammation. Neosarcodonin C (5) exhibited the highest activity and inhibited the TPA-induced edema on mouse ears by up to 87% with a 200-microg application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号