首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple purification protocol, involving ion exchange chromatography on DEAE-cellulose and CM-cellulose and fast protein liquid chromatography-gel filtration on Superdex 75, was employed to isolate a Kunitz-type trypsin inhibitor with antifungal activity and a novel lectin from Pseudostellaria heterophylla roots. Both the trypsin inhibitor and the lectin were unadsorbed on DEAE-cellulose and adsorbed on CM-cellulose. They could be separated from one another by gel filtration on Superdex 75 in which the 36-kDa lectin appeared as the first peak and the 20.5-kDa trypsin inhibitor as the second peak. P. heterophylla trypsin inhibitor exhibited a trypsin inhibitory potency similar to that of soybean trypsin inhibitor. It also demonstrated antifungal activity toward Fusarium oxysporum like aprotinin and Kunitz-type trypsin inhibitors from soybeans and lima beans. P. heterophylla lectin was devoid of antifungal activity and exhibited low thermostability and also lability in the presence of acid and alkali. The novel aspects of the present report include demonstration of antifungal activity in Kunitz-type trypsin inhibitors and isolation of a novel lectin as well as a trypsin inhibitor from roots.  相似文献   

2.
A R Siddiqi  Z H Zaidi  H J?rnvall 《FEBS letters》1991,294(1-2):141-143
A Kunitz-type trypsin inhibitor was purified from Leaf-nosed viper venom and the primary structure determined by peptide analysis. In relation to other trypsin inhibitors, the protein has an extended C-terminal segment and a distinct pattern of residue alterations at the functionally important contact sites with proteases.  相似文献   

3.
The trypsin inhibitor DE-3 from Erythrina caffra (ETI) belongs to the Kunitz-type soybean trypsin inhibitor (STI) family and consists of 172 amino acid residues with two disulphide bridges. The amino acid sequence of ETI shows high homology to other trypsin inhibitors from the same family but ETI has the unique ability to bind and inhibit tissue plasminogen activator. The crystal structure of ETI has been determined using the method of isomorphous replacement and refined using a combination of simulated annealing and conventional restrained least-squares crystallographic refinement. The refined model includes 60 water molecules and 166 amino acid residues, with a root-mean-square deviation in bond lengths from ideal values of 0.016 A. The crystallographic R-factor is 20.8% for 7770 independent reflections between 10.0 and 2.5 A. The three-dimensional structure of ETI consists of 12 antiparallel beta-strands joined by long loops. Six of the strands form a short antiparallel beta-barrel that is closed at one end by a "lid" consisting of the other six strands coupled in pairs. The molecule shows approximate 3-fold symmetry about the axis of the barrel, with the repeating unit consisting of four sequential beta-strands and the connecting loops. Although there is no sequence homology, this same fold is present in the structure of interleukin-1 alpha and interleukin-1 beta. When the structure of ETI and interleukin-1 beta are superposed, the close agreement between the alpha-carbon positions for the beta-strands is striking. The scissile bond (Arg63-Ser64) is located on an external loop that protrudes from the surface of the molecule and whose architecture is not constrained by secondary structure elements, disulphide bridges or strong electrostatic interactions. The hydrogen bonds made by the side-chain amide group of Asn12 play a key role in maintaining the three-dimensional structure of the loop. This residue is in a position corresponding to that of a conserved asparagine in the Kazal inhibitor family. Although the overall structure of ETI is similar to the partial structure of STI, the scissile bond loop is displaced by about 4 A. This displacement probably arises from the fact that the structure of STI has been determined in a complex with trypsin but could possibly be a consequence of the close molecular contact between Arg63 and an adjacent molecule in the crystal lattice.  相似文献   

4.
不同产区太子参的rDNA ITS区序列的比较   总被引:14,自引:2,他引:14  
使用1对引物18SPl和26SP2对采自14个产区的太子参[Pseudostellaria heterophylla(Miq.)Pax ex Pax et Hoffm.]进行ITS基因的PCR扩增和测序。序列分析结果表明,14个产区太子参的ITSl片段长度为219—222bp,ITS2片段长度为235~236bp,5.8S片段长度为155—157bp.除江苏宜兴,江苏句容马梗,江苏南京老鹰山和江苏溧阳等4个产区的ITS序列碱基完全一致外,其他10个产区的ITS序列则有不同的变异,碱基变异数目(包括5.8S编码区)为1—17个。使用UPGMA法重建系统发生树,从分子生物学角度说明了它们的变异程度,为利用ITS区序列的差异鉴别不同产区的太子参提供了依据。  相似文献   

5.
6.
Zhao R  Dai H  Qiu S  Li T  He Y  Ma Y  Chen Z  Wu Y  Li W  Cao Z 《PloS one》2011,6(11):e27548

Background

Kunitz-type venom peptides have been isolated from a wide variety of venomous animals. They usually have protease inhibitory activity or potassium channel blocking activity, which by virtue of the effects on predator animals are essential for the survival of venomous animals. However, no Kunitz-type peptides from scorpion venom have been functionally characterized.

Principal Findings

A new Kunitz-type venom peptide gene precursor, SdPI, was cloned and characterized from a venom gland cDNA library of the scorpion Lychas mucronatus. It codes for a signal peptide of 21 residues and a mature peptide of 59 residues. The mature SdPI peptide possesses a unique cysteine framework reticulated by three disulfide bridges, different from all reported Kunitz-type proteins. The recombinant SdPI peptide was functionally expressed. It showed trypsin inhibitory activity with high potency (Ki = 1.6×10−7 M) and thermostability.

Conclusions

The results illustrated that SdPI is a potent and stable serine protease inhibitor. Further mutagenesis and molecular dynamics simulation revealed that SdPI possesses a serine protease inhibitory active site similar to other Kunitz-type venom peptides. To our knowledge, SdPI is the first functionally characterized Kunitz-type trypsin inhibitor derived from scorpion venom, and it represents a new class of Kunitz-type venom peptides.  相似文献   

7.
8.
The amino acid sequence of soybean trypsin inhibitor (Kunitz)   总被引:1,自引:0,他引:1  
  相似文献   

9.
Five trypsin and alpha-chymotrypsin inhibitors which have low molecular weights (ranging from 6800 to 8600) and are present in soybean seeds of the Tracy variety have been isolated and purified, and single crystals which give x-ray diffraction data beyond 3-A spacings have been obtained from one of them. The trypsin inhibitor crystallizes in a monoclinic unit cell of symmetry P2(1) and dimensions a = 25.919(7) A, b = 43.23(1) A, c = 19.905(5) A, and beta = 103.63(2) degrees. The assymmetric unit contains 1 molecule of molecular weight 6800. The crystal, which has been found to be unusually stable to x-radiation, has solvent content of approximately 26% by volume.  相似文献   

10.
NMR studies of the complex between trypsin and soybean trypsin inhibitor with 1-13C-arginine and modified inhibitor with 1-13C-lysine show that these complexes involve almost exclusively non-covalent binding of the inhibitor to the enzyme for trypsin/13C-Lys-inhibitor at pH 6.5 and 8.1 and for trypsin/13C-Arg-inhibitor at pH 5.0. At pH 7.1 for trypsin/13C-Arg-inhibitor both non-covalent and acyl enzyme forms are observed. Under no conditions did we observe evidence for a tetrahedral adduct between enzyme and inhibitor.  相似文献   

11.
Soybean inhibitor C-II, which inhibits trypsin, alpha-chymotrypsin, and elastase, was reduced and S-carboxymethylated, and digested with trypsin. The amino acid sequences of the resulting tryptic peptides were determined by conventional methods, establishing the complete 76-amino acid sequence of the inhibitor. Inhibitor C-II was found to be homologous with soybean (Glycine max) Bowman-Birk inhibitor and more closely related to an inhibitor from garden beans (Phaseolus vulgaris). The homology with these inhibitors and the limited proteolysis of C-II indicated the reactive sites of C-II for elastase and trypsin to be alanine-22 and arginine-49, respectively. Arginine-49 was also identified as a reactive site for alpha-chymotrypsin. It was found that only a few replacements of one or two amino acid residues around the reactive sites resulted in considerable alteration of the inhibitory specificity.  相似文献   

12.
13.
The primary sequence of trypsin inhibitor-2 (WBTI-2) fromPsophocarpus tetragonolobus (L.) DC seeds was determined. This inhibitor consists of a single polypeptide chain of 182 amino acids, including four half-cystine residues, and an N-terminal residue of pyroglutamic acid. The sequence of WBTI-2 showed 57% identity to the basic trypsin inhibitor (WBTI-3) and 50% identity to the chymotrypsin inhibitor (WBCI) of winged bean, and 54% identity to the trypsin inhibitor DE-3 fromErythrina latissima seed. The similarity to the soybean Kunitz trypsin inhibitor (40%) and the other Kunitz-type inhibitors fromAdenanthera pavonina (30%) and wheat (26%) was much lower. Sequence comparisons indicate that thePsophocarpus andErythrina inhibitors are more closely related to each other than to other members of the Kunitz inhibitor family.  相似文献   

14.
15.
The effect of pH and temperature on kinetic and thermodynamic parameters (i.e., k(on),k(off),Ka,delta G0, delta H0 and delta S0 values) for the binding of the Kunitz-type trypsin inhibitor DE-3 from Erythrina caffra seeds (ETI) to bovine beta-trypsin, bovine alpha-chymotrypsin, the human tissue plasminogen activator, human alpha-, beta- and gamma-thrombin, as well as the M(r) 33,000 and M(r) 54,000 species of the human urinary plasminogen activator (also named urokinase) has been investigated. At pH 8.0 and 21.0 degrees C: (i) values of the second-order rate constant (K(on)) for the proteinase:ETI complex formation vary between 8.7 x 10(5) and 1.4 x 10(7)/M/s; (ii) values of the dissociation rate constant (k(off)) for the proteinase: ETI complex destabilization range from 3.7 x 10(-5) to 1.4 x 10(-1)/s; and (iii) values of the association equilibrium constant (Ka) for the proteinase:ETI complexation change from < 1.0 x 10(4) to 3.8 x 10(11)/M. Thus, differences in k(off) values account mostly for the large changes in Ka values for ETI binding. The affinity of ETI for the serine proteinases considered can be arranged as follows: bovine beta-trypsin > human tissue plasminogen activator > bovine alpha-chymotrypsin > human alpha-, beta- and gamma-thrombin approximately M(r) 33,000 and M(r) 54,000 species of the human urinary plasminogen activator. Moreover, the serine proteinase:ETI complex formation is an endothermic, entropy-driven, process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Proteinase inhibitors are among the most promising candidates for expression by transgenic plants and consequent protection against insect predation. However, some insects can respond to the threat of the proteinase inhibitor by the production of enzymes insensitive to inhibition. Inhibitors combining more than one favorable activity are therefore strongly favored. Recently, a known small Kunitz trypsin inhibitor from Prosopis juliflora (PTPKI) has been shown to possess unexpected potent cysteine proteinase inhibitory activity. Here we show, by enzyme assay and gel filtration, that, unlike other Kunitz inhibitors with dual activities, this inhibitor is incapable of simultaneous inhibition of trypsin and papain. These data are most readily interpreted by proposing overlapping binding sites for the two enzymes. Molecular modeling and docking experiments favor an interaction mode in which the same inhibitor loop that interacts in a canonical fashion with trypsin can also bind into the papain catalytic site cleft. Unusual residue substitutions at the proposed interface can explain the relative rarity of twin trypsin/papain inhibition. Other changes seem responsible for the relative low affinity of PTPKI for trypsin. The predicted coincidence of trypsin and papain binding sites, once confirmed, would facilitate the search, by phage display for example, for mutants highly active against both proteinases.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号