首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rigby KE  Chan J  Mackie J  Stillman MJ 《Proteins》2006,62(1):159-172
De novo synthesis of metallothionein (MT) initially forms the metal-free protein, which must, in a posttranslational reaction, coordinate metal ions via the cysteine sulfur ligands to form the fully folded protein structure. In this article, we use molecular dynamics (MD) and molecular mechanics (MM) to investigate the metal-dependent folding steps of the individual domains of recombinant human metallothionein (MT). The divalent metals were removed sequentially from the metal-sulfur M4(Scys)11 and M3(Scys)9 clusters within the alpha- and beta- domains of MT, respectively, after protonation of the previously coordinating sulfurs. With each of the four (alpha) or three (beta) sites defined, an order of metal release could be determined on the basis of a comparison of the strain energies for each combination by selecting the lowest energy demetallated conformations. The effect of an additional noninteracting, 34-residue peptide sequence on the demetallation order was assessed when bound to either the N- or C-termini of the individual domain fragments to identify the differences in cluster stability between one- and two-domain proteins. The N-terminal-bound peptide had no effect on the order of metal removal; however, addition to the C-terminus significantly altered the sequence. The number of hydrogen bonds was calculated for each energy-minimized demetallated structure and was increased on metal removal, indicating a possible stabilization mechanism for the protein structure via a hydrogen-bonding network. On complete demetallation, the cysteinyl sulfurs were shown to move to the exterior surface of the peptide chain.  相似文献   

2.
Uniquely among class A beta-lactamases, the RTEM-1 and RTEM-2 enzymes contain a single disulfide bond between Cys 77 and Cys 123. To study the possible role of this naturally occurring disulfide in stabilizing RTEM-1 beta-lactamase and its mutants at residue 71, this bond was removed by introducing a Cys 77----Ser mutation. Both the wild-type enzyme and the single mutant Cys 77----Ser confer the same high levels of resistance to ampicillin in vivo to Escherichia coli; at 30 degrees C the specific activity of purified Cys 77----Ser mutant is also the same as that of the wild-type enzyme. Also, neither wild-type enzyme nor the Cys 77----Ser mutant is inactivated by brief exposure to p-hydroxymercuribenzoate. However, above 40 degrees C the mutant enzyme is less stable than wild-type enzyme. After introduction of the Cys 77----Ser mutation, none of the double mutants (containing the second mutations at residue 71) confer resistance to ampicillin in vivo at 37 degrees C; proteins with Ala, Val, Leu, Ile, Met, Pro, His, Cys, and Ser at residue 71 confer low levels of resistance to ampicillin in vivo at 30 degrees C. The use of electrophoretic blots stained with antibodies against beta-lactamase to analyze the relative quantities of mutant proteins in whole-cell extracts of E. coli suggests that all 19 of the doubly mutant enzymes are proteolyzed much more readily than their singly mutant analogues (at Thr 71) that contain a disulfide bond.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The family of conserved colicin DNases E2, E7, E8, and E9 are microbial toxins that kill bacteria through random degradation of the chromosomal DNA. In the present work, we compare side by side the conformational stabilities of these four highly homologous colicin DNases. Our results indicate that the apo-forms of these colicins are at room temperature and neutral pH in a dynamic conformational equilibrium between at least two quite distinct conformers. We show that the thermal stabilities of the apo-proteins differ by up to 20 degrees C. The observed differences correlate with the observed conformational behavior, that is, the tendency of the protein to form either an open, less stable or closed, more stable conformation in solution, as deduced by both tryptophan accessibility studies and electrospray ionization mass spectrometry. Given these surprising structural differences, we next probed the catalytic activity of the four DNases and also observed a significant variation in relative activities. However, no unequivocal link between the activity of the protein and its thermal and structural stability could easily be made. The observed differences in conformational and functional properties of the four colicin DNases are surprising given that they are a closely related (> or =65% identity) family of enzymes containing a highly conserved (betabetaalpha-Me) active site motif. The different behavior of the apo-enzymes must therefore most likely depend on more subtle changes in amino acid sequences, most likely in the exosite region (residues 72-98) that is required for specific high-affinity binding of the cognate immunity protein.  相似文献   

4.
Lemak AS  Lepock JR  Chen JZ 《Proteins》2003,51(2):224-235
We present a molecular dynamics study of the conformational deformation of a minimalist beta-barrel protein model in two different types of hydrodynamic flows: uniform and elongational. We investigate the characteristics of protein stretching, paying special attention to the unfolding intermediate states and their relationship to the protein folding/unfolding problem. In the uniform flow simulations, one end of the modeled protein was tethered to a fixed point in space and the forced unfolding process was observed. The unfolding takes place via a few stages involving one or two intermediate states, depending on which end is tethered. The calculated force-extension curves show plateau regimes and hysteresis as the protein is stretched and refolded, in qualitative agreement with the experimental measurements. The physical behavior observed in our numerical simulations of the forced unfolding in an elongational flow is very different from that in uniform flow. The protein unfolds abruptly from the globular state to a fully stretched state without going through any observable intermediate states. From these observation, we stress that protein unfolding pathways under the influence of an external force are highly dependent on the mechanism of the exerted force.  相似文献   

5.
Torshin IY  Harrison RW 《Proteins》2001,43(4):353-364
Electrostatic interactions are important for protein folding. At low resolution, the electrostatic field of the whole molecule can be described in terms of charge center(s). To study electrostatic effects, the centers of positive and negative charge were calculated for 20 small proteins of known structure, for which hydrogen exchange cores had been determined experimentally. Two observations seem to be important. First, in all 20 proteins studied 30-100% of the residues forming hydrogen exchange core(s) were clustered around the charge centers. Moreover, in each protein more than half of the core sequences are located near the centers of charge. Second, the general architecture of all-alpha proteins from the set seems to be stabilized by interactions of residues surrounding the charge centers. In most of the alpha-beta proteins, either or both of the centers are located near a pair of consecutive strands, and this is even more characteristic for alpha/Beta and all-beta structures. Consecutive strands are very probable sites of early folding events. These two points lead to the conclusion that charge centers, defined solely from the structure of the folded protein may indicate the location of a protein's hydrogen exchange/folding core. In addition, almost all the proteins contain well-conserved continuous hydrophobic sequences of three or more residues located in the vicinity of the charge centers. These hydrophobic sequences may be primary nucleation sites for protein folding. The results suggest the following scheme for the order of events in folding: local hydrophobic nucleation, electrostatic collapse of the core, global hydrophobic collapse, and slow annealing to the native state. This analysis emphasizes the importance of treating electrostatics during protein-folding simulations.  相似文献   

6.
褚鑫  王丽  何永志  董志扬 《微生物学报》2008,48(10):1324-1329
[目的]研究重组表达的硫矿硫化叶菌P2分子伴侣β亚基体外同源聚合体的结构和生化功能.[方法]利用PCR技术从硫矿硫化叶菌P2的基因组DNA中克隆得到分子伴侣β亚基的基因,将该基因克隆到表达载体pET-21a( )上并在大肠杆菌BL21(DE3)中实现了表达.对纯化后的β亚基单体进行体外聚合,利用透射电镜观察β分子伴侣的结构,并对其促蛋白折叠性质进行了研究.[结果]硫矿硫化叶菌P2分子伴侣β亚基基因在大肠杆菌BL21中实现了高效表达,纯化后的分子伴侣β亚基单体在ATP和Mg2 存在的条件下可自组装形成分子伴侣聚合体.透射电镜观察表明:该β分子伴侣具有Ⅱ型分子伴侣典型的双层面包圈结构,每个环由8个亚基构成.该β分子伴侣具有ATPase活性,最适反应温度为80℃;它不仅能够促进变性的绿色荧光蛋白(GFP)重新折叠,而且还能有效的提高木聚糖酶的热稳定性.[结论]本文根据P2基因组序列分析预测的分子伴侣基因设计引物,克隆表达了硫矿硫化叶菌P2分子伴侣的β亚基,纯化后对其进行体外聚合,透射电镜观察表明该聚合体具有Ⅱ型分子伴侣的经典结构,功能分析表明该β分子伴侣能够在体外促进异源蛋白质的折叠、提高其它酶分子的热稳定性.这为进一步深入研究嗜热古菌耐热抗逆的分子机制,奠定了良好的基础.  相似文献   

7.
High-sensitivity differential scanning calorimetry and CD spectroscopy have been used to probe the structural stability and measure the folding/unfolding thermodynamics of a Pro117-->Gly variant of staphylococcal nuclease. It is shown that at neutral pH the thermal denaturation of this protein is well accounted for by a 2-state mechanism and that the thermally denatured state is a fully hydrated unfolded polypeptide. At pH 3.5, thermal denaturation results in a compact denatured state in which most, if not all, of the helical structure is missing and the beta subdomain apparently remains largely intact. At pH 3.0, no thermal transition is observed and the molecule exists in the compact denatured state within the 0-100 degrees C temperature interval. At high salt concentration and pH 3.5, the thermal unfolding transition exhibits 2 cooperative peaks in the heat capacity function, the first one corresponding to the transition from the native to the intermediate state and the second one to the transition from the intermediate to the unfolded state. As is the case with other proteins, the enthalpy of the intermediate is higher than that of the unfolded state at low temperatures, indicating that, under those conditions, its stabilization must be of an entropic origin. The folding intermediate has been modeled by structural thermodynamic calculations. Structure-based thermodynamic calculations also predict that the most probable intermediate is one in which the beta subdomain is essentially intact and the rest of the molecule unfolded, in agreement with the experimental data. The structural features of the equilibrium intermediate are similar to those of a kinetic intermediate previously characterized by hydrogen exchange and NMR spectroscopy.  相似文献   

8.
The intriguing process of protein folding comprises discrete steps that stabilize the protein molecules in different conformations. The metastable state of protein is represented by specific conformational characteristics, which place the protein in a local free energy minimum state of the energy landscape. The native‐to‐metastable structural transitions are governed by transient or long‐lived thermodynamic and kinetic fluctuations of the intrinsic interactions of the protein molecules. Depiction of the structural and functional properties of metastable proteins is not only required to understand the complexity of folding patterns but also to comprehend the mechanisms of anomalous aggregation of different proteins. In this article, we review the properties of metastable proteins in context of their stability and capability of undergoing atypical aggregation in physiological conditions.  相似文献   

9.
旨在获得具有氯化功能的过水解酶,拓展过水解酶资源,为其工业应用奠定基础。以唐河某造纸厂污泥为材料构建宏基因组文库,通过活性筛选获得一个细菌过水解酶Per822。使用大肠杆菌异源表达Per822,研究纯化后的重组蛋白酶学性质并检测了生成过乙酸的能力。测序结果显示per822编码一个含273个氨基酸的蛋白。Per822是典型的多功能酶代表,分别具有过氧化物酶、卤代酶和酯酶的活性。Per822过水解氯化单氯二甲酮的最适反应pH为4.5,在pH3.5–8.0范围内酶活性稳定。最适反应温度是55℃,在70℃以下酶活性稳定且氯化活性能够被Fe2+激活。以乙酸乙酯为共底物Per822显示出较强的产过乙酸能力。重组Per822的高可溶性表达、催化多功能性、较强的产过乙酸能力使得Per822在有机合成、废水处理、杀菌、生物质预处理等方面有着潜在的应用价值。  相似文献   

10.
The partly folded states of alpha-lactalbumin (alpha-LA) exposed to acid solution at pH 2.0 (A-state) or at neutral pH upon EDTA-mediated removal of the single protein-bound calcium ion (apo form) have been probed by limited proteolysis experiments. These states are nowadays commonly considered to be molten globules and thus protein-folding intermediates. Pepsin was used for proteolysis at acid pH, while proteinase K and chymotrypsin at neutral pH. The expectations were that these proteolytic probes would detect sites and/or chain regions in the partly folded states of alpha-LA sufficiently dynamic, or even unfolded, capable of binding and adaptation to the specific stereochemistry of the protease's active site. A time-course analysis of the proteolytic events revealed that the fast, initial proteolytic cuts of the 123-residue chain of alpha-LA in its A-state or apo form by the three proteases occur at the same chain region 39-54, the actual site(s) of cleavage depending upon the protease employed. This region in native alpha-LA encompasses the beta-sheets of the protein. Subsequent cleavages occur mostly at chain regions 31-35 and 95-105. Four fragment species of alpha-LA have been isolated by reverse-phase high-performance liquid chromatography, and their conformational properties examined by circular dichroism and fluorescence emission spectroscopy. The single chain fragment 53-103, containing all the binding sites for calcium in native alpha-LA and cross-linked by two disulfide bridges, maintains in aqueous buffer and in the presence of calcium ions a folded structure characterized by the same content of alpha-helix of the corresponding chain segment in native alpha-LA. Evidence for some structure was also obtained for the two-chain species 1-40 and 104-123, as well as 1-31 and 105-123, both systems being covalently linked by two disulfide bonds. In contrast, the protein species given by fragment 1-34 connected to fragment 54-123 or 57-123 via four disulfide bridges adopts in solution a folded structure with the helical content expected for a native-like conformation. Of interest, the proteolytic fragment species herewith isolated correspond to the structural domains and subdomains of alpha-LA that can be identified by computational analysis of the three-dimensional structure of native alpha-LA (Siddiqui AS, Barton GI, 1995, Protein Sci 4:872-884). The fast, initial cleavages at the level of the beta-sheet region of native alpha-LA indicate that this region is highly mobile or even unfolded in the alpha-LA molten globule(s), while the rest of the protein chain maintains sufficient structure and rigidity to prevent extensive proteolysis. The subsequent cleavages at chain segment 95-105 indicate that also this region is somewhat mobile in the A-state or apo form of the protein. It is concluded that the overall domain topology of native alpha-LA is maintained in acid or at neutral pH upon calcium depletion. Moreover, the molecular properties of the partly folded states of alpha-LA deduced here from proteolysis experiments do correlate with those derived from previous NMR and other physicochemical measurements.  相似文献   

11.
Although the denaturant-induced unfolding transition of cytochrome c was initially thought to be a cooperative process, recent spectroscopic studies have shown deviations from two-state behavior consistent with accumulation of an equilibrium intermediate. However, little is known about the structural and thermodynamic properties of this state, and whether it is stabilized by the presence of non-native heme ligands. We monitored the reversible denaturant-induced unfolding equilibrium of oxidized horse cytochrome c using various spectroscopic probes, including fluorescence, near and far-UV CD, heme absorbance bands in the Soret, visible and near-IR regions of the spectrum, as well as 2D NMR. Global fitting techniques were used for a quantitative interpretation of the results in terms of a three-state model, which enabled us to determine the intrinsic spectroscopic properties of the intermediate. A well-populated intermediate was observed in equilibrium experiments at pH 5 using either guanidine-HCl or urea as a denaturant, both for wild-type cytochrome c as well as an H33N mutant chosen to prevent formation of non-native His-heme ligation. For a more detailed structural characterization of the intermediate, we used 2D 1H-15N correlation spectroscopy to follow the changes in peak intensity for individual backbone amide groups. The equilibrium state observed in our optical and NMR studies contains many native-like structural features, including a well-structured alpha-helical sub-domain, a short Trp59-heme distance and solvent-shielded heme environment, but lacks the native Met80 sulfur-iron linkage and shows major perturbations in side-chain packing and other tertiary interactions. These structural properties are reminiscent of the A-state of cytochrome c, a compact denatured form found under acidic high-salt conditions, as well as a kinetic intermediate populated at a late stage of folding. The denaturant-induced intermediate also resembles alkaline forms of cytochrome c with altered heme ligation, suggesting that disruption of the native methionine ligand favors accumulation of structurally analogous states both in the presence and absence of non-native ligands.  相似文献   

12.
The stability of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) is strongly dependent upon pH. Below pH 4.2, the folded and unfolded states are both populated significantly. Their interconversion is slow on the NMR chemical shift time-scale and separate, well-resolved resonances from each state are observed. This allows the hydrodynamic properties of both states to be studied under identical conditions by using pulse field gradient NMR experiments. Hydrodynamic radii of the folded, unfolded and urea denatured protein molecules at pD 3.8 have been derived. The acid-denatured protein has a significantly smaller hydrodynamic radius, 28.2A, compared to that of the urea-denatured protein, which is 33.6A at pD 3.8. Far-UV CD spectra show that there is more residual secondary structure retained in the acid-denatured ensemble than in the urea-denatured one. ANS binding experiments and analysis of the CD data show that this acid-denatured species is not a molten globule state. Diffusion measurements of CTL9 were conducted over the pD range from 2.1 to 7.0. The hydrodynamic radii of both the folded and the acid-unfolded protein start to increase below pD 4, with the radius of hydration of the acid-unfolded state increasing from 25.1A at pD 4.2 to 33.5A at pD 2.1. The hydrodynamic radius of the urea-denatured protein is much less sensitive to pH. The unfolded protein at pD 2.1, no urea, has almost the same hydrodynamic radius as the urea-denatured protein at pD 3.8. The CD spectra, however, show significant differences in residual secondary structure, and the acid-denatured state contains more structure.  相似文献   

13.
The 37-residue alpha/beta protein CHABII was previously demonstrated to undergo a gradual pH-induced unfolding. It has been shown that even at pH 4.0 CHABII still retained a highly native-like secondary structure and tertiary topology although its tight side-chain packing was severely disrupted, typical of the molten globule state. Here, we have expressed and refolded the recombinant proteins of CHABII and its mutant [Phe21]-CHABII, and subsequently conducted extensive CD and NMR characterizations. The results indicated: (1) replacement of His21 by Phe in [Phe21]-CHABII eliminated the pH-induced unfolding from pH 6.5 to 4.0, indicating that His21 was responsible for the observed pH-induced unfolding of CHABII. Further examinations revealed that although the pH-induced unfolding of CHABII was also triggered by the protonation of the His residue as previously uncovered for apomyoglobin, their molecular mechanisms are different. (2) Monitoring the pH-induced unfolding by 1H-15N HSQC spectroscopy allowed us to visualize the gradual development of the CHABII molten globule. At pH 4.0, the HSQC spectrum of CHABII was poorly dispersed with dispersions of approximately 1 ppm over proton dimension and 10 ppm over 15N dimension, characteristic of severely or even "completely unfolded" proteins. One the other hand, unambiguous assignments of the NOESY spectra of CHABII led to the identification of the persistent medium and long-range NOEs at pH 4.0, which define a highly native-like secondary structure and tertiary packing. This implies that the degree of the native-like topology might be underestimated in the previous characterization of partially folded and even completely unfolded proteins. (3) Replacement of His21 by Phe with higher side-chain hydrophobicity only caused a minor structural rearrangement but considerably enhanced the packing interaction of the hydrophobic core, as evident from a dramatic increase in NOE contacts in [Phe21]-CHABII. The enhancement led to an increase of the thermal stability of [Phe21]-CHABII by approximately 17 deg. C.  相似文献   

14.
Under native conditions, apocytochrome b(5) exhibits a stable core and a disordered heme-binding region that refolds upon association with the cofactor. The termini of this flexible region are in close proximity, suggesting that loop closure may contribute to the thermodynamic properties of the apocytochrome. A chimeric protein containing 43 residues encompassing the cytochrome loop was constructed using the cyanobacterial photosystem I accessory protein E (PsaE) from Synechococcus sp. PCC 7002 as a structured scaffold. PsaE has the topology of an SH3 domain, and the insertion was engineered to replace its 14-residue CD loop. NMR and optical spectroscopies showed that the hybrid protein (named EbE1) was folded under native conditions and that it retained the characteristics of an SH3 domain. NMR spectroscopy revealed that structural and dynamic differences were confined near the site of loop insertion. Variable-temperature 1D NMR spectra of EbE1 confirmed the presence of a kinetic unfolding barrier. Thermal and chemical denaturations of PsaE and EbE1 demonstrated cooperative, two-state transitions; the stability of the PsaE scaffold was found only moderately compromised by the insertion, with a DeltaT(m) of 8.3 degrees C, a DeltaC(m) of 1.5 M urea, and a DeltaDeltaG degrees of 4.2 kJ/mole. The data implied that the penalty for constraining the ends of the inserted region was lower than the approximately 6.4 kJ/mole calculated for a self-avoiding chain. Extrapolation of these results to cytochrome b(5) suggested that the intrinsic stability of the folded portion of the apoprotein reflected only a small detrimental contribution from the large heme-binding domain.  相似文献   

15.
Kinetics of refolding and unfolding of staphylococcal nuclease and its six mutants, each carrying single or double amino acid substitutions, are studied by stopped-flow circular dichroism measurements. A transient kinetic intermediate formed within 10 ms after refolding starts possesses a substantial part of the N-domain core β-structure, whereas helices are formed at the later stages. The structure of the kinetic intermediate is less organized than the structure that is known to be formed by a nuclease 1-136 fragment. Only the refolding kinetics are affected by the mutations in all the mutants except two in which the mutations have changed the native structure. From this result and also from the locations of the mutation sites, the major N-terminal domain of the nuclease in the transition state of folding has a structure nearly identical to the native one. On the other hand, the minor C-terminal domain has previously been shown to be still disorganized in the transition state. The effects of the amino acid substitutions on the stability of the native and the transition states are in good agreement with the changes in the hydration free energy, expected for the corresponding amino acid replacements in the unfolded polypeptide. Since side chains of all the mutated residues are not accessible to solvent in the native structure, the result suggests that it is the unfolded state that is mainly affected by the mutations. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Complementary DNA clones encoding acidic and basic isoforms of tomato chitinases were isolated fromCladosporium fulvum-infected leaves. The clones were sequenced and found to encode the 30 kDa basic intracellular and the 26 and 27 kDa acidic extracellular tomato chitinases previously purified (M.H.A.J. Joostenet al., in preparation). A fourth truncated cDNA which appears to encode an extracellular chitinase with 82% amino acid similarity to the 30 kDa intracellular chitinase was also isolated. Characterization of the clones revealed that the 30 kDa basic intracellular protein is a class I chitinase and that the 26 and 27 kDa acidic extracellular proteins which have 85% peptide sequence similarity are class II chitinases. The characterized cDNA clones represent four from a family of at least six tomato chitinases. Southern blot analysis indicated that, with the exception of the 30 kDa basic intracellular chitinase, the tomato chitinases are encoded by one or two genes. Northern blot analysis showed that the mRNA encoding the 26 kDa acidic extracellular chitinase is induced more rapidly during an incompatibleC. fulvum-tomato interaction than during a compatible interaction. This difference in timing of mRNA induction was not observed for the 30 kDa basic intracellular chitinase.  相似文献   

17.
Glycosylation is essential to the maintenance of protein quality in the vesicular protein trafficking pathway in eukaryotic cells. Using the yeast multicopper oxidase, Fet3p, the hypothesis is tested that core glycosylation suppresses Fet3p nascent chain aggregation during synthesis into the endoplasmic reticulum (ER). Fet3p has 11 crystallographically mapped N‐linked core glycan units. Assembly of four of these units is specifically required for localization of Fet3p to the plasma membrane (PM). Fet3 protein lacking any one of these glycan units is found in an intracellular high‐molecular mass species resolvable by blue native gel electrophoresis. Individually, the remaining glycan moieties are not required for ER exit; however, serial deletion of these by N → A substitution correlates with these desglycan species failure to exit the ER. Desglycan Fet3 proteins that localize to the PM are wild type in function indicating that the missing carbohydrate is not required for native structure and biologic activity. This native function includes the interaction with the iron permease, Ftr1p, and wild type high‐affinity iron uptake activity. The four essential sequons are found within relatively nonpolar regions located in surface recesses and are strongly conserved among fungal Fet3 proteins. The remaining N‐linked sites are found in more surface exposed, less nonpolar environments, and their conservation is weak or absent. The data indicate that in Fet3p the N‐linked glycan has little effect on the enzyme's molecular activity but is critical to its cellular activity by maximizing the protein's exit from the ER and assembly into a functional iron uptake complex.  相似文献   

18.
pH-Dependent studies of the folding kinetics and stability of a set of His to Gln point mutants were used to characterize the denatured state and transition state ensembles for the C-terminal domain of the ribosomal protein L9 (CTL9). CTL9 contains three histidine residues, two of which, H106 and H134, are buried in the native state, while the third, H144, is more exposed. Comparison of the pH-dependent stability calculated using the Tanford-Wyman linkage relationship to the measured values demonstrates that the apparent pK(a) values of the three histidine residues are not significantly perturbed in the denatured state ensemble. Kinetic measurements show that mutation of H134 has a larger effect on the folding process than does mutation of H106 and H144. The Phi-value for H134 is significantly larger than the Phi-values for the other histidine residues, which are near zero at both pH 5.45 and pH 8.0. The Phi-value for H134 is higher, 0.55, at pH 8.0 than at pH 5.45, 0.39. At pH 5.45, H134 is protonated in the unfolded state but deprotonated in the native state, while at pH 8.0 it is deprotonated in both. There is an excellent linear relationship between stability (logK) and folding rates (logk(f)) over the range of pH 5-9 for all mutants. From these plots, the ratio of DeltaQ( not equal)/DeltaQ can be calculated for each mutant. DeltaQ( not equal) is the difference in the number of protons bound to the transition state and to the unfolded state, while DeltaQ represents the difference between folded and denatured state. The linear plots indicate that the relative position of the transition state ensemble as judged by DeltaQ( not equal)/DeltaQ is independent of pH. The linkage analysis is consistent with the Phi-value analysis, showing that H134 is the most critical contributor to the development of pH-dependent interactions, including desolvation effects in the transition state ensemble.  相似文献   

19.
19F NMR spectroscopy is potentially a powerful tool for probing protein properties in situ. However, results obtained using this technique are relevant only if the 19F probe offers minimal perturbation to the surrounding environment. In this paper, we examine the effect of 5-fluorotryptophan (5fW) incorporation on the three-dimensional structure of cardiac troponin-C (cTnC), with the intention of developing a 19F-labeled TnC for use in in situ 19FNMR. We find that, in general, 5fW does not perturb the structure of the protein significantly. Replacement of residue Phe 153 with 5fW produces no noticeable change in protein conformation. However, replacement of residue Phe 104 with 5fW produces a folding behavior that is dependent on the Escherichia coli strain used to express the mutant. The orientations of the indole rings in these mutants are such that the Trp residue adopts a chi2 of approximately 90 degrees in the F104W mutant and approximately -100 degrees in the F153W mutant. Using results from 19F-1H heteronuclear NOE experiment, we show the replacement of L-Trp with 5fW at these positions does not change the orientation of the indole ring and the spread of the 5fW side-chain dihedral angles increases moderately for the F104(5fW) mutant and not at all for the F153(5fW) mutant. Based on these structures, we conclude that the substitution of Phe by 5fW at these two positions has minimal effects on the structure of cTnC and that the 5fW indole rings in both mutants have well defined orientation, making the two mutants viable candidates for use in in situ 19F NMR spectroscopy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号