首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental technique and a simple analysis are presented that can be used to quantitate the affinity of red blood cell membrane for surfaces of small beads or microsomal particles up to 3 micrometers Diam. The technique is demonstrated with an example of dextran-mediated adhesion of small spherical red cell fragments to normal red blood cells. Cells and particles are positioned for contact by manipulation with glass micropipets. The mechanical equilibrium of the adhesive contact is represented by the variational expression that the decrease in interfacial free energy due to a virtual increase in contact area is balanced by the increase in elastic energy of the membrane due to virtual deformation. The surface affinity is the reduction in free energy per unit area of the interface associated with the formation of adhesive contact. From numerical computations of equilibrium configurations, the surface affinity is derived as a function of the fractional extent of particle encapsulation. The range of surface affinities for which the results are applicable is increased over previous techniques to several times the value of the elastic shear modulus. It is shown that bending rigidity of the membrane has little effect on the analytical results for particles 1--3 micrometers Diam and that results are essentially the same for both cup- and disk-shaped red cells. A simple analytical model is shown to give a good approximation for surface affinity (normalized by the elastic shear modulus) as a function of the fractional extent of particle encapsulation. The model predicts that a particle would be almost completely vacuolized for surface affinities greater than or equal to 10 times the elastic shear modulus. Based on an elastic shear modulus of 6.6 x 10(-3) dyn/cm, the range for the red cell-particle surface affinity as measured by this technique is from approximately 7 x 10(-4) to 7 x 10(-2) erg/cm2. Also, an approximate relation is derived for the level of surface affinity necessary to produce particle vacuolization by a phospholipid bilayer surface which possesses bending rigidity and a fixed tension.  相似文献   

2.
Thermoelasticity of red blood cell membrane.   总被引:10,自引:0,他引:10       下载免费PDF全文
The elastic properties of the human red blood cell membrane have been measured as functions of temperature. The area compressibility modulus and the elastic shear modulus, which together characterize the surface elastic behavior of the membrane, have been measured over the temperature range of 2-50 degrees C with micropipette aspiration of flaccid and osmotically swollen red cells. In addition, the fractional increase in membrane surface area from 2-50 degrees C has been measured to give a value for the thermal area expansivity. The value of the elastic shear modulus at 25 degrees C was measured to be 6.6 X 10(-3) dyne/cm. The change in the elastic shear modulus with temperature was -6 X 10(-5) dyne/cm degrees C. Fractional forces were shown to be only on the order of 10-15%. The area compressibility modulus at 25 degrees C was measured to be 450 dyne/cm. The change in the area compressibility modulus with temperature was -6 dyne/cm degrees C. The thermal area expansivity for red cell membrane was measured to be 1.2 X 10(-3)/degrees C. With this data and thermoelastic relations the heat of expansion is determined to be 110-200 ergs/cm2; the heat of extension is 2 X 10(-2) ergs/cm2 for unit extension of the red cell membrane. The heat of expansion is of the order anticipated for a lipid bilayer idealized as twice the behavior of a monolayer at an oil-water interface. The observation that the heat of extension is positive demonstrates that the entropy of the material increases with extension, and that the dominant mechanism of elastic energy storage is energetic. Assuming that the red cell membrane shear rigidity is associated with "spectrin," unit extension of the membrane increases the configurational entropy of spectrin by 500 cal/mol.  相似文献   

3.
Aggregation and disaggregation of red blood cells   总被引:1,自引:0,他引:1  
R Skalak 《Biorheology》1984,21(4):463-476
The aggregation of red blood cells may be analyzed as an interaction of an adhesive surface energy and the elastic stored energy which results from deformation of the cell. The adhesive surface energy is the work required to separate a unit adhered area and is the resultant of adhesive forces due to the bridging molecules that bind the cells together and the electrostatic repulsion due to surface charge. The elastic strain energy in the case of the red blood is associated with the membrane elasticity only since the interior of the cell is liquid. The membrane elasticity is due both to bending stiffness and shear. The area expansion is small and may be neglected. These assumptions allow realistic computation of red cell shapes in rouleaux. The disaggregation of rouleaux requires an external force which must overcome the adhesive energy and also supply additional elastic energy of deformation. Depending on the geometry, the initial effect of elastic energy may tend to aid disaggregation. In a shear flow, the stresses on a suspended rouleau alternately tend to compress and to disaggregate the cells if they are free to rotate. This introduces a time dependence so that viscous effects due to the viscosity of the cell membrane, the cell cytoplasm and the external fluid may play a role in determining whether disaggregation proceeds to completion or not.  相似文献   

4.
An experimental procedure is demonstrated which can be used to determine the interfacial free energy density for red cell membrane adhesion and membrane elastic properties. The experiment involves micropipet aspiration of a flaccid red blood cell and manipulation of the cell proximal to a surface where adhesion occurs. A minimum free energy method is developed to model the equilibrium contour of unsupported membrane regions and to evaluate the partial derivatives of the total free energy, which correspond to the micropipet suction force and the interfacial free energy density of adhesion. It is shown that the bending elasticity of the red cell membrane does not contribute significantly to the pressure required to aspirate a flaccid red cell. Based on experimental evidence, the upper bound for the bending or curvature elastic modulus of the red cell membranes is 10-12 ergs (dyn-cm). Analysis of the adhesion experiment shows that interfacial free energy densities for red cell adhesion can be measured from a lower limit of 10-4 ergs/cm2 to an upper limit established by the membrane tension for lysis of 5-10 ergs/cm2.  相似文献   

5.
Mechanics of Rouleau formation.   总被引:3,自引:2,他引:1       下载免费PDF全文
The formation of rouleau of red blood cells is considered from the standpoint of adhesion theory. With the use of the elastic properties of the red blood cell membrane obtained from previous work, the strain energy of the red blood cell in rouleau formation has been computed. The surface energy of adhesion for the bonding of two red blood cells is then computed from the variation of this strain energy. Computed cell shapes agree well with experiments.  相似文献   

6.
A simple micropipet technique was used to determine the critical electric field strength for membrane breakdown as a function of the applied membrane tension for three different reconstituted membranes: stearoyloleoylphosphatidylcholine (SOPC), red blood cell (RBC) lipid extract, and SOPC cholesterol (CHOL), 1:1. For these membranes the elastic area expansivity modulus increases from approximately 200 to 600 dyn/cm, and the tension at lysis increases from 5.7 to 13.2 dyn/cm, i.e., the membranes become more cohesive with increasing cholesterol content. The critical membrane voltage, Vc, required for breakdown was also found to increase with increasing cholesterol from 1.1 to 1.8 V at zero membrane tension. We have modeled the behavior in terms of the bilayer expansivity. Membrane area can be increased by either tensile or electrocompressive stresses. Both can store elastic energy in the membrane and eventually cause breakdown at a critical area dilation or critical energy. The model predicts a relation between tension and voltage at breakdown and this relation is verified experimentally for the three reconstituted membrane systems studied here.  相似文献   

7.
Giant bilayer vesicles were reconstituted from several lipids and lipid/cholesterol (CHOL) mixtures: stearolyloleoylphosphatidylcholine (SOPC), bovine sphingomyelin (BSM), diarachidonylphosphatidylcholine (DAPC), SOPC/CHOL, BSM/CHOL, DAPC/CHOL, and extracted red blood cell (RBC) lipids with native cholesterol. Single-walled vesicles were manipulated by micropipette suction and several membrane material properties were determined. The properties measured were the elastic area compressibility modulus K, the critical areal strain alpha c, and the tensile strength tau lys, from which the failure energy or membrane toughness Tf was calculated. The elastic area expansion moduli for these lipid and lipid/cholesterol bilayers ranged from 57 dyn/cm for DAPC to 1,734 dyn/cm for BSM/CHOL. The SOPC/CHOL series and RBC lipids had intermediate values. The results indicated that the presence of cholesterol is the single most influential factor in increasing bilayer cohesion, but only for lipids where both chains are saturated, or mono- or diunsaturated. Multiple unsaturation in both lipid chains inhibits the condensing effect of cholesterol in bilayers. The SOPC/CHOL system was studied in more detail. The area expansion modulus showed a nonlinear increase with increasing cholesterol concentration up to a constant plateau, indicating a saturation limit for cholesterol in the bilayer phase of approximately 55 mol% CHOL. The membrane compressibility was modeled by a property-averaging composite theory involving two bilayer components, namely, uncomplexed lipid and a lipid/cholesterol complex of stoichiometry 1/1.22. The area expansion modulus of this molecular composite membrane was evaluated by a combination of the expansion moduli of each component scaled by their area fractions in the bilayer. Bilayer toughness, which is the energy stored in the bilayer at failure, showed a maximum value at approximately 40 mol% CHOL. This breakdown energy was found to be only a fraction of the available thermal energy, implying that many molecules (approximately 50-100) may be involved in forming the defect structure that leads to failure. The area expansion modulus of extracted RBC lipids with native cholesterol was compared with recent measurements of intact RBC membrane compressibility. The natural membrane was also modeled as a simple composite made up to a compressible lipid/cholesterol matrix containing relatively incompressible transmembrane proteins. It appears that the interaction of incompressible proteins with surrounding lipid confers enhanced compressibility on the composite structure.  相似文献   

8.
Computer simulation of a model network for the erythrocyte cytoskeleton.   总被引:2,自引:2,他引:0  
The geometry and mechanical properties of the human erythrocyte membrane cytoskeleton are investigated by a computer simulation in which the cytoskeleton is represented by a network of polymer chains. Four elastic moduli as well as the area and thickness are predicted for the chain network as a function of temperature and the number of segments in each chain. Comparisons are made with mean field arguments to examine the importance of steric interactions in determining network properties. Applied to the red blood cell, the simulation predicts that in the bilayer plane the membrane cytoskeleton has a shear modulus of 10 +/- 2 x 10(-6) J/m2 and an areal compression modulus of 17 +/- 2 x 10(-6) J/m2. The volume compression modulus and the transverse Young's modulus of the cytoskeleton are predicted to be 1.2 +/- 0.1 x 10(3) J/m3 and 2.0 +/- 0.1 x 10(3) J/m3, respectively. Elements of the cytoskeleton are predicted to have a mean displacement from the bilayer plane of 15 nm. The simulation agrees with some, but not all, of the shear modulus measurements. The other predicted moduli have not been measured.  相似文献   

9.
10.
A finite element network model has been developed to predict the macroscopic elastic shear modulus and the area expansion modulus of the red blood cell (RBC) membrane skeleton on the basis of its microstructure. The topological organization of connections between spectrin molecules is represented by the edges of a random Delaunay triangulation, and the elasticity of an individual spectrin molecule is represented by the spring constant, K, for a linear spring element. The model network is subjected to deformations by prescribing nodal displacements on the boundary. The positions of internal nodes are computed by the finite element program. The average response of the network is used to compute the shear modulus (mu) and area expansion modulus (kappa) for the corresponding effective continuum. For networks with a moderate degree of randomness, this model predicts mu/K = 0.45 and kappa/K = 0.90 in small deformations. These results are consistent with previous computational models and experimental estimates of the ratio mu/kappa. This model also predicts that the elastic moduli vary by 20% or more in networks with varying degrees of randomness. In large deformations, mu increases as a cubic function of the extension ratio lambda 1, with mu/K = 0.62 when lambda 1 = 1.5.  相似文献   

11.
Physical studies of human erythrocyte spectrin indicate that isolated spectrin dimers and tetramers in solution are worm-like coils with a persistence length of approximately 20 nm. This finding, the known polyelectrolytic nature of spectrin, and other structural information about spectrin and the membrane skeleton molecular organization have lead us to the hypothesis that the human erythrocyte membrane skeleton constitutes a two-dimensional ionic gel (swollen ionic elastomer). This concept is incorporated in what we refer to as the protein gel-lipid bilayer membrane model. The model accounts quantitatively for red elastic shear modulus and the maximum elastic extension ratio reported for the human erythrocytes membrane. Gel theory further predicts that depending on the environmental conditions, the membrane skeleton modulus of area compression may be small or large relative to the membrane elastic shear modulus. Our analyses show that the ratio between these two parameters affects both the geometry and the stability of the favored cell shapes and that the higher the membrane skeleton compressibility the smaller the values of the gel tension needed to induce cell shape transformations. The main virtue of the protein gel-lipid bilayer membrane model is that it offers a novel theoretical and molecular basis for the various mechanical properties of the membrane skeleton such as the membrane skeleton modulus of area compression and osmotic tension, and the effects of these properties on local membrane skeleton density, cell shape, and shape transformations.  相似文献   

12.
We investigate the effect of oxidative stress on red blood cell membrane mechanical properties in vitro using detailed analysis of the membrane thermal fluctuation spectrum. Two different oxidants, the cytosol-soluble hydrogen peroxide and the membrane-soluble cumene hydroperoxide, are used, and their effects on the membrane bending elastic modulus, surface tension, strength of confinement due to the membrane skeleton, and 2D shear elastic modulus are measured. We find that both oxidants alter significantly the membrane elastic properties, but their effects differ qualitatively and quantitatively. While hydrogen peroxide mainly affects the elasticity of the membrane protein skeleton (increasing the membrane shear modulus), cumene hydroperoxide has an impact on both membrane skeleton and lipid bilayer mechanical properties, as can be seen from the increased values of the shear and bending elastic moduli. The biologically important implication of these results is that the effects of oxidative stress on the biophysical properties, and hence the physiological functions, of the cell membrane depend on the nature of the oxidative agent. Thermal fluctuation spectroscopy provides a means of characterizing these different effects, potentially in a clinical milieu.  相似文献   

13.
The mechanical characteristics of the cuticular membrane (CM), a complex composite biopolymer basically composed of a cutin matrix, waxes, and hydrolysable polysaccharides, have been described previously. The biomechanical behaviour and quantitative contribution of cutin and polysaccharides have been investigated here using as experimental material mature green and red ripe tomato fruits. Treatment of isolated CM with anhydrous hydrogen fluoride in pyridine allowed the selective elimination of polysaccharides attached to or incrusted into the cutin matrix. Cutin samples showed a drastic decrease in elastic modulus and stiffness (up to 92%) compared with CM, which clearly indicates that polysaccharides incorporated into the cutin matrix are responsible for the elastic modulus, stiffness, and the linear elastic behaviour of the whole cuticle. Reciprocally, the viscoelastic behaviour of CM (low elastic modulus and high strain values) can be assigned to the cutin. These results applied both to mature green and red ripe CM. Cutin elastic modulus, independently of the degree of temperature and hydration, was always significantly higher for the ripe than for the green samples while strain was lower; the amount of phenolics in the cutin network are the main candidates to explain the increased rigidity from mature green to red ripe cutin. The polysaccharide families isolated from CM were pectin, hemicellulose, and cellulose, the main polymers associated with the plant cell wall. The three types of polysaccharides were present in similar amounts in CM from mature green and red ripe tomatoes. Physical techniques such as X-ray diffraction and Raman spectroscopy indicated that the polysaccharide fibres were mainly randomly oriented. A tomato fruit CM scenario at the supramolecular level that could explain the observed CM biomechanical properties is presented and discussed.  相似文献   

14.
Red cell membrane elasticity as determined by flow channel technique.   总被引:11,自引:0,他引:11  
S Chien  L A Sung  M M Lee  R Skalak 《Biorheology》1992,29(5-6):467-478
The elasticity of red cell membrane was determined in a rectangular flow channel under controlled shear flow. The relation between shear stress and cell extension ratio (lambda) has been analyzed with the use of Evans' two-dimensional model. The deformed cell shapes observed experimentally agreed well with the model with lambda up to 1.4. The best correlation was found at lambda = 1.2. The analysis suggests a nonlinear extensional membrane modulus in the low stress range encountered in the flow channel. In terms of an appropriate strain parameter, the elastic modulus is shown to rise toward the level encountered in micropipette aspiration experiments. The implications of the present findings in modeling of cell mechanics and in cell hemolysis are discussed.  相似文献   

15.
The effects of several agents, sugars, isotonic KCl, and a variety of drugs, on the structure of the axonal membranes of unmyelinated pike olfactory nerve have been studied by synchrotron radiation X-ray scattering experiments. The main effects of the sugars are: (i) to increase the electron density of the extra-axonal space and thereby yield the absolute scale of the electron density profile; (ii) to osmotically stress the membrane and thus yield its elastic modulus of area compressibility, since the related strain, thickness dilation, is directly determined by the X-ray scattering experiments. Exposure to isotonic KCl, a depolarizing agent, induces membrane thickness to increase. The energy liberated in this process is a function of the amplitude of the dilation and of the elastic modulus of the membrane. This energy turns out to be close to the thermal energy liberated by the pike olfactory nerve during the initial phase of action potential that has previously been measured by others. Electrical depolarization thus seems to be accompanied by a thickness dilation of the axonal membrane. Another effect of isotonic KCl is to induce a large fraction of the membranes to pair by tight apposition of their extra-axonal faces. Local anaesthetics and some drugs have the effect of altering membrane thickness. All these observations are interpreted in terms of a modulation of the conformational disorder of the hydrocarbon chains of the lipid molecules.  相似文献   

16.
Theory of the Sphering of Red Blood Cells   总被引:3,自引:3,他引:0       下载免费PDF全文
A rigorous mathematical solution of the sphering of a red blood cell is obtained under the assumptions that the red cells is a fluid-filled shell and that it can swell into a perfect sphere in an appropriate hypotonic medium. The solution is valid for finite strain of the cell membrane provided that the membrane is isotropic, elastic and incompressible. The most general nonlinear elastic stress-strain law for the membrane in a state of generalized plane stress is used. A necessary condition for a red cell to be able to sphere is that its extensional stiffness follow a specific distribution over the membrane. This distribution is strongly influenced by the surface tension in the cell membrane. A unique relation exists between the extensional stiffness, pressure differential, surface tension, and the ratio of the radius of the sphere to that of the undeformed red cell. The functional dependence of this stiffness distribution on various physical parameters is presented. A critique of some current literature on red cell mechanics is presented.  相似文献   

17.
The time-dependent recovery of an elongated red cell is studied as a function of temperature. Before release, the elongated cell is in static equilibrium where external forces are balanced by surface elastic force resultants. Upon release, the cell recovers its initial shape with a time-dependent exponential behavior characteristic of a viscoelastic solid material undergoing large ("finite") deformation. The recovery process is characterized by a time constant, tc, that decreases from approximately 0.27 s at 6 degrees C to 0.06 s at 37 degrees C. From this measurement of the time constant and an independent measurement of the shear modulus of surface elasticity for red cell membrane, the value for the membrane surface viscosity as a function of temperature can be calculated.  相似文献   

18.
19.
A Iglic  S Svetina    B Zeks 《Biophysical journal》1995,69(1):274-279
A possible physical interpretation of the partial detachment of the membrane skeleton in the budding region of the cell membrane and consequent depletion of the membrane skeleton in red blood cell vesicles is given. The red blood cell membrane is considered to consist of the bilayer part and the membrane skeleton. The skeleton is, under normal conditions, bound to the bilayer over its whole area. It is shown that, when in such conditions it is in the expanded state, some cell shape changes can induce its partial detachment. The partial detachment of the skeleton from the bilayer is energetically favorable if the consequent decrease of the skeleton expansion energy is larger than the corresponding increase of the bilayer-skeleton binding energy. The effect of shape on the skeleton detachment is analyzed theoretically for a series of the pear class shapes, having decreasing neck diameter and ending with a parent-daughter pair of spheres. The partial detachment of the skeleton is promoted by narrowing of the cell neck, by increasing the lateral tension in the skeleton and its area expansivity modulus, and by diminishing the attraction forces between the skeleton and the bilayer. If the radius of the daughter vesicle is sufficiently small relative to the radius of the parent cell, the daughter vesicle can exist either completely underlaid with the skeleton or completely depleted of the skeleton.  相似文献   

20.
Muscle cells are frequently subjected to both mechanical and oxidative stresses in various physiological and pathological situations. To explore the mechanical mechanism of muscle cell damage under loading and oxidative stresses, we experimentally studied the effects of extrinsic hydrogen peroxides on the actin cytoskeletal structure in C2C12 myoblasts and presented a finite element (FE) analysis of how such changes in the actin cytoskeletal structure affected a myoblast’s capability to resist damage under compression. A confocal-based cell-specific FE model was built to parametrically study the effects of stress fiber density, fiber cross-sectional area, fiber tensile prestrain, as well as the elastic moduli of the stress fibers, actin cortex, nucleus and cytoplasm. The results showed that a decrease in the elastic moduli of both the stress fibers and actin cortex could increase the average tensile strain on the actin cortex–membrane structure and reduce the apparent cell elastic modulus. Assuming the cell would die when a certain percentage of membrane elements were strained beyond a threshold, a lower elastic modulus of actin cytoskeleton would compromise the compressive resistance of a myoblast and lead to cell death more readily. This model was used with a Weibull distribution function to successfully describe the extent of myoblasts damaged in a monolayer under compression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号