首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas aeruginosa is an opportunistic gram-negative pathogen equipped with multiple secretion systems. The type II secretion machinery (Xcp secreton) is involved in the release of toxins and enzymes. The Xcp secreton is a multiprotein complex, and most of its components share homology with proteins involved in type IV pili biogenesis. Among them, the XcpT-X pseudopilins possess characteristics of the major constituent of the type IV pili, the pilin PilA. We have shown previously that XcpT can be assembled in a multifibrillar structure that was called the pseudopilus. By using two different microscopic approaches, we show here that the pseudopili are preferentially isolated fibers rather than tight bundles. Moreover, none of the other four pseudopilins are able to form a pseudopilus, suggesting that the assembly of such a structure is a unique property of XcpT. Moreover, we show that 5 of the 12 Xcp proteins are not required for pseudopilus biogenesis, whereas they are for type II secretion. Most interestingly, we showed that one pseudopilin, XcpX, controls the assembly of XcpT into a pseudopilus. Indeed, when the number of XcpX subunits increases, the length of the pseudopilus decreases. Conversely, in the absence of XcpX, the pseudopilus length is abnormally long. Our results indicate that XcpT and XcpX directly interact with each other. Furthermore, this interaction induces a clear destabilization of XcpT. The interaction between XcpT and XcpX could be part of the molecular mechanism underlying the dynamic control of pseudopilus elongation, which could be crucial for type II-dependent protein secretion.  相似文献   

2.
The bacterial type II protein secretion (T2S) and type IV piliation (T4P) systems share several common features. In particular, it is well established that the T2S system requires the function of a pilus-like structure, called pseudopilus, which is built upon assembly of pilin-like subunits, called pseudopilins. Pilins and pseudopilins have a hydrophobic N-terminal region, which precedes an extended hydrophilic C-terminal region. In the case of pilins, it was shown that oligomerisation and formation of helical fibers, takes place through interaction between the hydrophobic domains. XcpT, is the most abundant protein of the Pseudomonas aeruginosa T2S, and was proposed to be the main component in the pseudopilus. In this study we present the high-resolution NMR structure of the hydrophilic domain of XcpT (XcpTp). XcpTp is lacking the C-terminal disulfide bridged “D” domain found in type IV pilins and likely involved in receptor binding. This is in agreement with the idea that the XcpT-containing pseudopilus is required for protein secretion and not for bacterial attachment. Interestingly, by solving the 3D structure of XcpTp we revealed that the previously called αβ-loop pilin region is in fact highly conserved among major type II pseudopilins and constitutes a specific consensus motif for identifying major pseudopilins, which belong to this family.  相似文献   

3.
In gram-negative bacteria, type II secretion systems assemble a piston-like structure, called pseudopilus, which expels exoproteins out of the cell. The pseudopilus is constituted by a major pseudopilin that when overproduced multimerizes into a long cell surface structure named hyper-pseudopilus. Pseudomonas aeruginosa possesses two type II secretion systems, Xcp and Hxc. Although major pseudopilins are exchangeable among type II secretion systems, we show that XcpT and HxcT are not. We demonstrate that HxcT does not form a hyper-pseudopilus and is different in amino acid sequence and multimerization properties. Using structure-based mutagenesis, we observe that five mutations are sufficient to revert HxcT into a functional XcpT-like protein, which also becomes capable of forming a hyper-pseudopilus. Phylogenetic and experimental analysis showed that the whole Hxc system was acquired by P. aeruginosa PAO1 and other Pseudomonas species through horizontal gene transfer. We thus identified a new type II secretion subfamily, of which the P. aeruginosa Hxc system is the archetype. This finding demonstrates how similar bacterial machineries evolve toward distinct mechanisms that may contribute specific functions.  相似文献   

4.
The secreton (type II secretion) and type IV pilus biogenesis branches of the general secretory pathway in Gram-negative bacteria share many features that suggest a common evolutionary origin. Five components of the secreton, the pseudopilins, are similar to subunits of type IV pili. Here, we report that when the 15 genes encoding the pullulanase secreton of Klebsiella oxytoca were expressed on a high copy number plasmid in Escherichia coli, one pseudopilin, PulG, was assembled into pilus-like bundles. Assembly of the 'secreton pilus' required most but not all of the secreton components that are essential for pullulanase secretion, including some with no known homologues in type IV piliation machineries. Two other pseudopilins, pullulanase and two outer membrane-associated secreton components were not associated with pili. Thus, PulG is probably the major component of the pilus. Expression of a type IV pilin gene, the E.coli K-12 gene ppdD, led to secreton-dependent incorporation of PpdD pilin into pili without diminishing pullulanase secretion. This is the first demonstration that pseudopilins can be assembled into pilus-like structures.  相似文献   

5.
The secreton or type II secretion machinery of gram-negative bacteria includes several type IV pilin-like proteins (the pseudopilins) that are absolutely required for secretion. We previously reported the presence of a bundled pilus composed of the pseudopilin PulG on the surface of agar-grown Escherichia coli K-12 cells expressing the Klebsiella oxytoca pullulanase (Pul) secreton genes at high levels (N. Sauvonnet, G. Vignon, A. P. Pugsley, and P. Gounon, EMBO J. 19:2221-2228, 2000). We show here that PulG is the only pseudopilin in purified pili and that the phenomenon is not restricted to the Pul secreton reconstituted in E. coli or to PulG. For example, high-level expression of the endogenous E. coli gsp secreton genes caused production of bundled pili composed of the pseudopilin GspG, and the Pul secreton was able to form pili composed of PulG-like proteins from secreton systems of other bacteria. PulG derivatives in which the C terminus was extended by the addition of eight different peptides were also assembled into pili and functioned in secretion. Three of the C-terminal peptides were shown to be exposed along the entire length of the assembled pili. Hence, the C terminus of PulG may represent a permissive site for the insertion of immunogenic epitopes or other peptide sequences. One of these PulG variants, with a six-histidine tag at its C terminus, formed nonpolar, nonbundled pili, suggesting that bundle formation and polar localization are not correlated with the ability of PulG to function in secretion. We propose that the PulG pilus is an artifactual manifestation of a periplasmic "pseudopilus" and that cycles of pseudopilus extension and retraction within the periplasm propel pullulanase through secretin channels in the outer membrane. Abnormally long pili that extend beyond the outer membrane are produced only when pilus length control and retraction are deregulated by overproduction of the major pseudopilus subunit (PulG).  相似文献   

6.
Type IV pilins and pseudopilins are found in various prokaryotic envelope protein complexes, including type IV pili and type II secretion machineries of gram-negative bacteria, competence systems of gram-positive bacteria, and flagella and sugar-binding structures in members of the archaeal kingdom. The precursors of these proteins have highly conserved N termini, consisting of a short, positively charged leader peptide, which is cleaved off by a dedicated peptidase during maturation, and a hydrophobic stretch of approximately 20 amino acid residues. Which pathway is involved in the inner membrane translocation of these proteins is unknown. We used XcpT, the major pseudopilin from the type II secretion machinery of Pseudomonas aeruginosa, as a model to study this process. Transport of an XcpT-PhoA hybrid was shown to occur in the absence of other Xcp components in P. aeruginosa and in Escherichia coli. Experiments with conditional sec mutants and reporter-protein fusions showed that this transport process involves the cotranslational signal recognition particle targeting route and is dependent on a functional Sec translocon.  相似文献   

7.
The type II secretion system enables gram-negative bacteria to secrete exoproteins into the extracellular milieu. We performed biophysical and biochemical experiments to identify systematic interactions between Pseudomonas aeruginosa Xcp type II secretion system components and their substrates. We observed that three Xcp components, XcpP(C), the secretin XcpQ(D), and the pseudopilus tip, directly and specifically interact with secreted exoproteins. We established that XcpP(C), in addition to its interaction with the substrate, likely shields the entire periplasmic portion of the secreton. It can therefore be considered as the recruiter of the machinery. Moreover, the direct interaction observed between the substrate and the pseudopilus tip validates the piston model hypothesis, in which the pseudopilus pushes the substrate through the secretin pore during the secretion process. All together, our results allowed us to propose a model of the different consecutive steps followed by the substrate during the type II secretion process.  相似文献   

8.
Most of the exoproteins secreted by Pseudomonas aeruginosa are transported via the type II secretion system. This machinery, which is widely conserved in gram-negative bacteria, consists of 12 Xcp proteins organized as a multiprotein complex, also called the secreton. We previously reported that the mutual stabilization of XcpZ and XcpY plays an important role in the assembly of the secreton. In this study, we engineered variant XcpZ proteins by using linker insertion mutagenesis. We identified three distinct regions of XcpZ required for both the stabilization of XcpY and the functionality of the secreton. Interestingly, we also demonstrated that another component of the machinery, XcpP, can modulate the stabilizing activity of XcpZ on XcpY.  相似文献   

9.
In Gram-negative bacteria, type II secretion systems (T2SS) assemble inner membrane proteins of the major pseudopilin PulG (GspG) family into periplasmic filaments, which could drive protein secretion in a piston-like manner. Three minor pseudopilins PulI, PulJ and PulK are essential for protein secretion in the Klebsiella oxytoca T2SS, but their molecular function is unknown. Here, we demonstrate that together these proteins prime pseudopilus assembly, without actively controlling its length or secretin channel opening. Using molecular dynamics, bacterial two-hybrid assays, cysteine crosslinking and functional analysis, we show that PulI and PulJ nucleate filament assembly by forming a staggered complex in the plasma membrane. Binding of PulK to this complex results in its partial extraction from the membrane and in a 1-nm shift between their transmembrane segments, equivalent to the major pseudopilin register in the assembled PulG filament. This promotes fully efficient pseudopilus assembly and protein secretion. Therefore, we propose that PulI, PulJ and PulK self-assembly is thermodynamically coupled to the initiation of pseudopilus assembly, possibly setting the assembly machinery in motion.  相似文献   

10.
The xcp gene products in Pseudomonas aeruginosa are required for the secretion of proteins across the outer membrane. Four of the Xcp proteins, XcpT, U, V and W, present sequence homology to the subunits of type IV pili at their N-termini, and they were therefore designated pseudopilins. In this study, we characterized the xcpX gene product, a bitopic cytoplasmic membrane protein. Remarkably, amino acid sequence comparisons also suggested that the XcpX protein resembles the pilins and pseudopilins at the N-terminus. We show that XcpX could be processed by the prepilin peptidase, PilD/XcpA, and that the highly conserved glycine residue preceding the hydrophobic segment could not be mutated without loss of the XcpX function. We, therefore, classified XcpX (GspK) as the fifth pseudopilin of the system.  相似文献   

11.
The type II secretion system (T2SS) exports folded proteins from the periplasms of Gram‐negative bacteria. The type IV pilus system (T4PS) is a multifunctional machine used for adherence, motility and DNA transfer in bacteria and archaea. Partial sequence identity between the two systems suggests that they are related and might function via a similar mechanism, the dynamic assembly and disassembly of pseudopilus (T2SS) or pilus (T4PS) filaments. The major subunit in each system is thought to form the bulk of the (pseudo)pilus, while minor (low‐abundance) subunits have proposed roles in assembly initiation, antagonism of disassembly, or modulation of (pseudo)pilus functional properties. In this issue, Cisneros et al. ( 2012 ) extend their previous finding that pseudopilus assembly is primed by the minor pseudopilins, showing that the same proteins can initiate assembly of Escherichia coli T4P. Similarly, they show that the E. coli minor pilins prime the polymerization of T2S pseudopili, although unlike genuine pseudopili, the chimeric filaments did not support secretion. This work reinforces the notion of a common assembly mechanism for the T2S and T4P systems.  相似文献   

12.
The general secretion pathway (GSP), found in a wide range of bacteria, is responsible for extracellular targeting of a subset of proteins from the periplasm. In Pseudomonas aeruginosa, the GSP requires the participation of 12 proteins, of which XcpT, XcpU, XcpV, XcpW are homologues of PilA, the major subunit of type IV pili. The interaction between the pilin-like Xcp proteins was investigated using bifunctional cross-linking reagents. Cross-linking analysis of whole cells of wild-type P. aeruginosa, followed by immunoblot analysis, revealed a 34-kDa XcpT-containing complex. This complex was shown to consist of XcpT/PilA heterodimers. The role of PilA in the GSP was examined, using P. aeruginosa mutants in the pilA gene, or in rpoN, a gene regulating pilA expression. Each mutant showed a significant reduction in the efficiency of extracellular protein secretion, and this defect could be restored by expression of the cloned pilA gene in the mutant cells. The formation of the PilA/XcpT complex did not require XcpR or XcpQ, two other components of the secretion machinery, nor did it require the pilus biogenesis factors PilB and PilC. The dimeric XcpT/PilA complex was also formed in a pilD mutant, which lacks the leader peptidase enzyme, demonstrating that the leader peptide at the N-terminus of PilA or XcpT did not have to be removed for the dimerization to occur. XcpW and XcpU can also be cross-linked to form dimeric complexes with PilA. When expression of XcpT is increased, its homodimers, as well as XcpT/XcpW heterodimers, can be detected. Finally, an oligohistidine-tagged XcpT was shown to form stoichiometric complexes with PilA, and with XcpT, U, V and W. These dimers were co-purified by nickel-affinity chromatography. The results of this study suggest that XcpT can form heterodimers with PilA, and Xcp U, V and W, which may be assembly intermediates of the secretion apparatus. Alternatively, these may represent dynamic intermediates that facilitate protein secretion by continuous association and dissociation. The requirement for PilA for efficient protein secretion argues for a critical role played by PilA in two related processes during P. aeruginosa infections: formation of an adhesive pilus organelle and secretion of exoenzymes.  相似文献   

13.
Gram-negative bacteria express a wide variety of organelles on their cell surface. These surface structures may be the end products of secretion systems, such as the hair-like fibers assembled by the chaperone/usher (CU) and type IV pilus pathways, which generally function in adhesion to surfaces and bacterial-bacterial and bacterial-host interactions. Alternatively, the surface organelles may be integral components of the secretion machinery itself, such as the needle complex and pilus extensions formed by the type III and type IV secretion systems, which function in the delivery of bacterial effectors inside host cells. Bacterial surface structures perform functions critical for pathogenesis and have evolved to withstand forces exerted by the external environment and cope with defenses mounted by the host immune system. Given their essential roles in pathogenesis and exposed nature, bacterial surface structures also make attractive targets for therapeutic intervention. This review will describe the structure and function of surface organelles assembled by four different Gram-negative bacterial secretion systems: the CU pathway, the type IV pilus pathway, and the type III and type IV secretion systems.  相似文献   

14.
The pseudopilin PulG is one of several essential components of the type II pullulanase secretion machinery (the Pul secreton) of the Gram-negative bacterium Klebsiella oxytoca. The sequence of the N-terminal 25 amino acids of the PulG precursor is hydrophobic and very similar to the corresponding region of type IV pilins. The structure of a truncated PulG (lacking the homologous region), as determined by X-ray crystallography, was found to include part of the long N-terminal alpha-helix and the four internal anti-parallel beta-strands that characterize type IV pilins, but PulG lacks the highly variable loop region with a disulphide bond that is found in the latter. When overproduced, PulG forms flexible pili whose structural features, as visualized by electron microscopy, are similar to those of bacterial type IV pili. The average helical repeat comprises 17 PulG subunits and four helical turns. Electron microscopy and molecular modelling show that PulG probably assembles into left-handed helical pili with the long N-terminal alpha-helix tightly packed in the centre of the pilus. As in the type IV pilins, the hydrophobic N-terminal part of the PulG alpha-helix is necessary for its assembly. Subtle sequence variations within this highly conserved segment seem to determine whether or not a type IV pilin can be assembled into pili by the Pul secreton.  相似文献   

15.
The type II secretion system is a multi-protein complex that spans the cell envelope of Gram-negative bacteria and promotes the secretion of proteins, including several virulence factors. This system is homologous to the type IV pilus biogenesis machinery and contains five proteins, EpsG-K, termed the pseudopilins that are structurally homologous to the type IV pilins. The major pseudopilin EpsG has been proposed to form a pilus-like structure in an energy-dependent process that requires the ATPase, EpsE. A key remaining question is how the membrane-bound EpsG interacts with the cytoplasmic ATPase, and if this is a direct or indirect interaction. Previous studies have established an interaction between the bitopic inner membrane protein EpsL and EpsE; therefore, in this study we used in vivo cross-linking to test the hypothesis that EpsG interacts with EpsL. Our findings suggest that EpsL may function as a scaffold to link EpsG and EpsE and thereby transduce the energy generated by ATP hydrolysis to support secretion. The recent discovery of structural homology between EpsL and a protein in the type IV pilus system implies that this interaction may be conserved and represent an important functional interaction for both the type II secretion and type IV pilus systems.  相似文献   

16.
The general secretory pathway (GSP) is a two-step process for the secretion of proteins by Gram-negative bacteria. The translocation across the outer membrane is carried out by the type II system, which involves machinery called the secreton. This step is considered to be an extension of the general export pathway, i.e. the export of proteins across the inner membrane by the Sec machinery. Here, we demonstrate that two substrates for the Pseudomonas aeruginosa secreton, both phospholipases, use the twin-arginine translocation (Tat) system, instead of the Sec system, for the first step of translocation across the inner membrane. These results challenge the previous vision of the GSP and suggest for the first time a mosaic model in which both the Sec and the Tat systems feed substrates into the secreton. Moreover, since P.aeruginosa phospholipases are secreted virulence factors, the Tat system appears to be a novel determinant of bacterial virulence.  相似文献   

17.
Type IV pili are long, flexible filaments that extend from the surface of Gram-negative bacteria and are formed by the polymerization of pilin subunits. This review focuses on the structural information available for each pilin subclass, type IVa and type IVb, highlighting the contributions crystal and nuclear magnetic resonance structures have made in understanding pilus function and assembly. In addition, the type II secretion pseudopilus subunit structure and helical assembly is compared to that of the type IV pilus. The pilin subunits adopt an alphabeta-roll fold formed by the hydrophobic packing of the C-terminal half of a long alpha-helix against an antiparallel beta-sheet. The conserved N-terminal half of the same alpha-helix, as well as two sequence- and structurally-variable regions, protrude from this globular head domain. Filament models have a hydrophobic core formed by the signature long alpha-helices, with variable regions at the filament surface.  相似文献   

18.
Gram-negative bacteria use the sophisticated type II secretion system (T2SS) to secrete a large number of exoproteins into the extracellular environment. Five proteins of the T2SS, the pseudopilins GspG-H-I-J-K, are proposed to assemble into a pseudopilus involved in the extrusion of the substrate through the outer membrane channel. Recent structural data have suggested that the three pseudopilins GspI-J-K are organized in a trimeric complex located at the tip of the GspG-containing pseudopilus. In the present work we combined two biochemical techniques to investigate the protein-protein interaction network between the five Pseudomonas aeruginosa Xcp pseudopilins. The soluble domains of XcpT-U-V-W-X (respectively homologous to GspG-H-I-J-K) were purified, and the interactions were tested by surface plasmon resonance and affinity co-purification in all possible combinations. We found an XcpVI-WJ-XK complex, which demonstrates that the crystallized trimeric complex also exists in the P. aeruginosa T2SS. Interestingly, our systematic approach revealed an additional and yet uncharacterized interaction between XcpUH and XcpWJ. This observation suggested the existence of a quaternary, rather than ternary, complex (XcpUH-VI-WJ-XK) at the tip of the pseudopilus. The assembly of this quaternary complex was further demonstrated by co-purification using affinity chromatography. Moreover, by testing various combinations of pseudopilins by surface plasmon resonance and affinity chromatography, we were able to dissect the different possible successive steps occurring during the formation of the quaternary complex. We propose a model in which XcpVI is the nucleator that first binds XcpXK and XcpWJ at different sites. Then the ternary complex recruits XcpUH through a direct interaction with XcpWJ.  相似文献   

19.
Twitching motility is a unique form of bacterial propulsion on solid surfaces associated with cycles of extension, tethering and retraction of type IV pili (T4P). Although investigations over the last two decades in a number of species have identified the majority of the genes involved in this process, we are still learning how these pili are assembled and the mechanics by which bacteria use T4P to drag themselves from one place to another. Among the puzzles that remain to be solved is the mechanism by which hydrolysis of ATP is coupled to pilus assembly and disassembly, and how the cell envelope structure is modified to accommodate the passage of the pilus through the periplasm. Unravelling of these and other enigmas in the T4P system will not only teach us more about these important colonization and virulence factors, but also help us to understand related processes such as type II secretion, which relies on a set of proteins homologous to those in the T4P system, and bacterial conjugation, involving retractable pili belonging to the F-like subgroup of the type IV secretion family. This review focuses on recent discoveries relating to the assembly and function of T4P in generation of twitching motility.  相似文献   

20.
Summary Due to their similarity to type IV pilus (Tfp) subunits, the pseudopilins, XpsG, -H, -I, -J and -K, have been predicted to form a pilus-like structure in the type II secretion (T2S) pathway. While overexpression of GspG can result in the formation of bundle structures, the functions of other pseudopilin are not known yet. In this study, we investigate the mutual interaction among the pseudopilins and characterize the specialized minor pseudopilin, XpsJ. By using gel filtration and Ni-NTA affinity chromatography, a linearly ordered interactive relationship is revealed among the four pseudopilins, XpsG-XpsI-XpsH-XpsJ. Notably, unlike the mutant XpsJ194 staying in the inner membrane, wild type XpsJ stayed in the outer membrane and blocked the extension of overexpressed XpsG to outside of the cell. By analogy with the Type I pilus structures, we hypothesize that the XpsH and XpsI might act as an adaptor to connect XpsJ with the major pseudopilin XpsG, and XpsJ might act as a tip to restrict the out-growth of XpsG in the pilus-like structure of the T2S pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号