首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inspired by the developments of synthetic biology and the need for improved genetic tools to exploit cyanobacteria for the production of renewable bioproducts, we developed a versatile platform for the construction of broad-host-range vector systems. This platform includes the following features: (i) an efficient assembly strategy in which modules released from 3 to 4 donor plasmids or produced by polymerase chain reaction are assembled by isothermal assembly guided by short GC-rich overlap sequences. (ii) A growing library of molecular devices categorized in three major groups: (a) replication and chromosomal integration; (b) antibiotic resistance; (c) functional modules. These modules can be assembled in different combinations to construct a variety of autonomously replicating plasmids and suicide plasmids for gene knockout and knockin. (iii) A web service, the CYANO-VECTOR assembly portal, which was built to organize the various modules, facilitate the in silico construction of plasmids, and encourage the use of this system. This work also resulted in the construction of an improved broad-host-range replicon derived from RSF1010, which replicates in several phylogenetically distinct strains including a new experimental model strain Synechocystis sp. WHSyn, and the characterization of nine antibiotic cassettes, four reporter genes, four promoters, and a ribozyme-based insulator in several diverse cyanobacterial strains.  相似文献   

2.
Single-molecule methods such as force spectroscopy give experimental access to the mechanical properties of protein molecules. So far, owing to the limitations of recombinant construction of polyproteins, experimental access has been limited to mostly the N-to-C terminal direction of force application. This protocol gives a fast and simple alternative to current recombinant strategies for preparing polyproteins. We describe in detail the method to construct polyproteins with precisely controlled linkage topologies, based on the pairwise introduction of cysteines into protein structure and subsequent polymerization in solution. Stretching such constructed polyproteins in an atomic force microscope allows mechanical force application to a single protein structure via two precisely controlled amino acid positions in the functional three-dimensional protein structure. The capability for site-directed force application can provide valuable information about both protein structure and directional protein mechanics. This protocol should be applicable to almost any protein that can be point mutated. Given correct setup of all necessary reagents, this protocol can be accomplished in fewer than 10 d.  相似文献   

3.
4.
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved.  相似文献   

5.
Recent experiments on frogs and rats, have led to the hypothesis that sensory-motor systems are organized into a finite number of linearly combinable modules; each module generates a motor command that drives the system to a predefined equilibrium. Surprisingly, in spite of the infiniteness of different movements that can be realized, there seems to be only a handful of these modules. The structure can be thought of as a vocabulary of "elementary control actions". Admissible controls, which in principle belong to an infinite dimensional space, are reduced to the linear vector space spanned by these elementary controls. In the present paper we address some theoretical questions that arise naturally once a similar structure is applied to the control of nonlinear kinematic chains. First of all, we show how to choose the modules so that the system does not loose its capability of generating a "complete" set of movements. Secondly, we realize a "complete" vocabulary with a minimal number of elementary control actions. Subsequently, we show how to modify the control scheme so as to compensate for parametric changes in the system to be controlled. Remarkably, we construct a set of modules with the property of being invariant with respect to the parameters that model the growth of an individual. Robustness against uncertainties is also considered showing how to optimally choose the modules equilibria so as to compensate for errors affecting the system. Finally, the motion primitive paradigm is extended to locomotion and a related formalization of internal (proprioceptive) and external (exteroceptive) variables is given.  相似文献   

6.
The object of this study was to investigate the effect of instantaneous prestretching on the force degradation behavior of three kinds of four-link plastic modules. A simple sliding apparatus was used to prestretch instantaneously the plastic modules to 100, 200 and 300% of their original length. After prestretching, specimens were tested at 20, 25 and 30 mm stretch distances. Force measurements were performed at the following occasions: before prestretching; at the end of prestretching; after 1, 4 and 24 hours; and after 1, 2 and 3 weeks. The following conclusions can be drawn from this investigation: The control specimens which had not been instantaneously prestretched exhibited considerable force loss over the three-week test period. Most of the force loss occurred rapidly during the first few hours, with a much lower subsequent force degradation rate. Instantaneous prestretching to a greater length resulted in a lower force value remaining at the end of prestretching. Instantaneous prestretching of the plastic modules is an efficient method to dissipate the high initial force level which is clinically undesirable. Prestretching of the modules around or slightly longer than the stretch distance could reduce the high initial force level and still maintain the same force level as the control groups. However, if the length of instantaneous prestretching of the four-link plastic module was much longer than the testing stretch distance which corresponds to the average distance from the first molar to the canine in the same quadrant, the prestretching would reduce both the high initial force value and the force value during the three-week test period, as compared with the control group.  相似文献   

7.
8.
ScFv recombinant antibody fragments can provide specific tumor binding modules for targeting drugs. In the process of building multimeric tumor targeting pharmaceuticals, a prerequisite is the conservation of functional scFv antigen binding domains, thereby excluding scFv random conjugation to a carrier molecule or to another scFv. The pCANTAB 5E phage display/expression vector was genetically engineered to express any scFv gene as scFv with an additional C-terminal cysteine (scFv-Cys) such that the specific conjugation site is removed from the binding domain. Selected scFvs derived from an anti-MUC-1 scFv phage library were expressed in pCANTAB 5E and its modified version pCANTAB 5E Cys vectors, and compared for key characteristics. Production yields of scFv and scFv-Cys in shaker flask and biofermentor were compared. In the absence of a reducing agent, stable dimers (covalent scFv homodimers (scFv-Cys)2) were the major form of scFv-Cys. These diabodies provided substantial signal enhancement for immunohistochemical staining of tissues. In the presence of a reducing agent, scFv-Cys molecules remained monomeric, with the free SH available for conjugation to a PEG(maleimide)2 scaffold to form immunoreactive PEG(scFv)2 bioconjugates. ScFv expression from pCANTAB 5E Cys allowed for the production of soluble scFv-Cys protein from E.coli, either as stable scFv-Cys or (scFv-Cys)2. ScFv-Cys can be used for conjugation to PEG to form bivalent PEG (scFv-Cys)2 molecules or used as (scFv-Cys)2 for increased sensitivity in IHC.  相似文献   

9.
10.
Structural data led to the proposal that the molecular motor myosin moves actin by a swinging of the light chain binding domain, or "neck." To test the hypothesis that the neck functions as a mechanical lever, smooth muscle heavy meromyosin (HMM) mutants were expressed with shorter or longer necks by either deleting or adding light chain binding sites. The mutant HMMs were characterized kinetically and mechanically, with emphasis on measurements of unitary displacements and forces in the laser trap assay. Two shorter necked constructs had smaller unitary step sizes and moved actin more slowly than WT HMM in the motility assay. A longer necked construct that contained an additional essential light chain binding site exhibited a 1.4-fold increase in the unitary step size compared with its control. Kinetic changes were also observed with several of the constructs. The mutant lacking a neck produced force at a somewhat reduced level, while the force exerted by the giraffe construct was higher than control. The single molecule displacement and force data support the hypothesis that the neck functions as a rigid lever, with the fulcrum for movement and force located at a point within the motor domain.  相似文献   

11.
双荧光素酶报告基因系统能够提供灵敏的读数,但该系统需要依赖组成型表达的内参对读数进行归一化。然而,大多数内参并不是在所有条件下都组成型表达。为此,文中建立了一个有效的方法制备适于家蚕细胞双荧光素酶报告基因系统的内参质粒。首先,突变BmV gP78启动子上的激素应答相关元件,获得了在家蚕细胞中稳定表达的组成型启动子BmV gP78M;然后,用BmV gP78M替换pRL-SV40质粒上的SV40启动子和嵌合内含子序列,成功构建了pRL-V gP78M内参质粒;最后,通过细胞转染实验证实pRL-V gP78M内参在家蚕细胞系中稳定表达,并且pRL-V gP78M内参的表达活性不受蜕皮激素、保幼激素及激素相关转录因子的影响。最终,获得了在家蚕细胞中稳定表达且表达量适中的内参质粒pRL-V gP78M。该内参可以有效地作为双荧光素酶报告基因系统的内参质粒用于家蚕细胞系中激素的研究。同时,该内参质粒的构建方法也为构建适于其他物种细胞系的双荧光素酶报告基因系统的内参质粒提供了参考。  相似文献   

12.
For use in humans, human immunodeficiency virus (HIV) DNA vaccines may need to include immunostimulatory adjuvant molecules. CD40 ligand (CD40L), a member of the tumor necrosis factor (TNF) superfamily (TNFSF), is one candidate adjuvant, but it has been difficult to use because it is normally expressed as a trimeric membrane molecule. Soluble trimeric forms of CD40L have been produced, but in vitro data indicate that multimeric, many-trimer forms of soluble CD40L are more active. This multimerization requirement was evaluated in mice using plasmids that encoded either 1-trimer, 2-trimer, or 4-trimer soluble forms of CD40L. Fusion with the body of Acrp30 was used to produce the 2-trimer form, and fusion with the body of surfactant protein D was used to produce the 4-trimer form. Using plasmids for secreted HIV-1 antigens Gag and Env, soluble CD40L was active as an adjuvant in direct proportion to the valence of the trimers (1 < 2 < 4). These CD40L-augmented DNA vaccines elicited strong CD8(+) T-cell responses but did not elicit significant CD4(+) T-cell or antibody responses. To test the applicability of the multimeric fusion protein approach to other TNFSFs, a 4-trimer construct for the ligand of glucocorticoid-induced TNF family-related receptor (GITR) was also prepared. Multimeric soluble GITR ligand (GITRL) augmented the CD8(+) T-cell, CD4(+) T-cell, and antibody responses to DNA vaccination. In summary, multimeric CD40L and GITRL are new adjuvants for DNA vaccines. Plasmids for expressing multimeric TNFSF fusion proteins permit the rapid testing of TNFSF molecules in vivo.  相似文献   

13.
Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic force microscopy experiments, that using an immiscible polymer brush system terminating the substrate and the slider surfaces, respectively, can eliminate such interdigitation. As a consequence, wear in the contacts is reduced. Moreover, the friction force is two orders of magnitude lower compared to traditional miscible polymer brush systems. This newly proposed system therefore holds great potential for application in industry. Here, the methodology to construct an immiscible polymer brush system of two different brushes each solvated by their own preferred solvent is presented. The procedure how to graft poly(N-isopropylacrylamide) (PNIPAM) from a flat surface and poly(methyl methacrylate) (PMMA) from an atomic force microscopy (AFM) colloidal probe is described. PNIPAM is solvated in water and PMMA in acetophenone. Via friction force AFM measurements, it is shown that the friction for this system is indeed reduced by two orders of magnitude compared to the miscible system of PMMA on PMMA solvated in acetophenone.  相似文献   

14.
15.
The present study is part of a research project that includes different components for the simulation of orthodontic tooth movement and comparing experimental results. This concept includes the development of a bone remodelling algorithm, as well as experimental studies on tooth movement. After the acquisition and evaluation of specific experimental data of the patient's situation, the individual components have to be integrated to verify and forecast tooth movement. The aim is to design individual treatment devices as well as to shorten treatment while making it more effective. The geometry of the teeth and that of the surrounding alveolar bone both influence the orthodontic tooth movement. For this reason, an exact morphological tooth model for the valid simulation of the tooth movement is needed, and can be constructed from computed tomography data. Simulation of tooth movement can then be compared with "in vivo" measurements of the orthodontic tooth movement. In this study, a specially developed hybrid retraction spring is employed. This spring enables the application of a defined, almost constant force system. The "in vivo" determined tooth movement is simulated with the aid of special positioning and measuring devices. Meanwhile, the active force system can be determined by 6-component force/moment sensors. The experimentally measured force system, "in vivo" measurements of tooth movement and the CT model are now available for numerical simulation for the first time.  相似文献   

16.
Atomic force microscopy (AFM) experiments have provided intriguing insights into the mechanical unfolding of proteins such as titin I27 from muscle, but will the same be possible for proteins that are not physiologically required to resist force? We report the results of AFM experiments on the forced unfolding of barnase in a chimeric construct with I27. Both modules are independently folded and stable in this construct and have the same thermodynamic and kinetic properties as the isolated proteins. I27 can be identified in the AFM traces based on its previous characterization, and distinct, irregular low-force peaks are observed for barnase. Molecular dynamics simulations of barnase unfolding also show that it unfolds at lower forces than proteins with mechanical function. The unfolding pathway involves the unraveling of the protein from the termini, with much more native-like secondary and tertiary structure being retained in the transition state than is observed in simulations of thermal unfolding or experimentally, using chemical denaturant. Our results suggest that proteins that are not selected for tensile strength may not resist force in the same way as those that are, and that proteins with similar unfolding rates in solution need not have comparable unfolding properties under force.  相似文献   

17.
Construction of spatially extended, self-supporting structures requires a consideration of structural stability throughout the building sequence. For collective construction systems, where independent agents act with variable order and timing under decentralized control, ensuring stability is a particularly pronounced challenge. Previous research in this area has largely neglected considering stability during the building process. Physical forces present throughout a structure may be usable as a cue to inform agent actions as well as an indirect communication mechanism (stigmergy) to coordinate their behavior, as adding material leads to redistribution of forces which then informs the addition of further material. Here we consider in simulation a system of decentralized climbing robots capable of traversing and extending a two-dimensional truss structure, and explore the use of feedback based on force sensing as a way for the swarm to anticipate and prevent structural failures. We consider a scenario in which robots are tasked with building an unsupported cantilever across a gap, as for a bridge, where the goal is for the swarm to build any stable spanning structure rather than to construct a specific predetermined blueprint. We show that access to local force measurements enables robots to build cantilevers that span significantly farther than those built by robots without access to such information. This improvement is achieved by taking measures to maintain both strength and stability, where strength is ensured by paying attention to forces during locomotion to prevent joints from breaking, and stability is maintained by looking at how loads transfer to the ground to ensure against toppling. We show that swarms that take both kinds of forces into account have improved building performance, in both structured settings with flat ground and unpredictable environments with rough terrain.  相似文献   

18.

Background

Studies of functional modules in a Protein-Protein Interaction (PPI) network contribute greatly to the understanding of biological mechanisms. With the development of computing science, computational approaches have played an important role in detecting functional modules.

Results

We present a new approach using multi-agent evolution for detection of functional modules in PPI networks. The proposed approach consists of two stages: the solution construction for agents in a population and the evolutionary process of computational agents in a lattice environment, where each agent corresponds to a candidate solution to the detection problem of functional modules in a PPI network. First, the approach utilizes a connection-based encoding scheme to model an agent, and employs a random-walk behavior merged topological characteristics with functional information to construct a solution. Next, it applies several evolutionary operators, i.e., competition, crossover, and mutation, to realize information exchange among agents as well as solution evolution. Systematic experiments have been conducted on three benchmark testing sets of yeast networks. Experimental results show that the approach is more effective compared to several other existing algorithms.

Conclusions

The algorithm has the characteristics of outstanding recall, F-measure, sensitivity and accuracy while keeping other competitive performances, so it can be applied to the biological study which requires high accuracy.  相似文献   

19.
CRISPR/Cas9是新兴的基因编辑技术,在生命科学研究中发挥着重要的作用。将它引入本科生的实验教学,使本科生了解这项前沿科研技术很有意义。我们创建了一个基于CRISPR/ Cas9技术的本科教学实验体系。该实验体系侧重CRISPR/Cas9技术在哺乳动物细胞中的应用,选用一株基因组上被插入mCherry基因的小鼠胚胎成纤维细胞为实验材料,命名为STO-82。首先设计靶向mCherry的sgRNA,构建CRISPR-Cas9/sgRNA共表达质粒。经测序验证无误后,转染到STO-82细胞。采用流式细胞仪分析检测mCherry阴性和阳性两群细胞,分选出阴性单细胞并扩大培养。最后用测序检验单克隆细胞中靶标DNA序列的编辑情况。结果显示,靶位点有插入或缺失突变,说明体系创建成功。该实验体系将sgRNA设计、CRISPR-Cas9/sgRNA共表达质粒的构建、细胞转染、单细胞分选、单克隆细胞培养、测序序列分析等内容融合为一个综合实验,用于高年级本科生的实验教学。根据实际情况,将教学实践内容分解分块教学,也可以做完整性项目教学。本教学实践采用10人左右的小班分块教学,2人一组,经过3个班(共13组)的实践,绝大部分学生都能完成实验,得到预期结果。通过这个实验,学生加深了对CRISPR/Cas9技术的原理和实验流程的理解,锻炼了实验操作能力和严谨的科研思维,也使学生对该技术的医疗应用风险有了一些认识。  相似文献   

20.
The heating of protein preparations of mesophilic organism (e.g., E. coli) produces the obliteration of all soluble multimeric proteins from this organism. In this way, if a multimeric enzyme from a thermophilic microorganism is expressed in these mesophilic hosts, the only large protein remaining soluble in the preparation after heating is the thermophilic enzyme. These large proteins may be then selectively adsorbed on lowly activated anionic exchangers, enabling their full purification in just these two simple steps. This strategy has been applied to the purification of an alpha-galactosidase and a beta-galactosidase from Thermus sp. strain T2, both expressed in E. coli, achieving the almost full purification of both enzymes in only these two simple steps. This very simple strategy seems to be of general applicability to the purification of any thermophilic multimeric enzyme expressed in a mesophilic host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号