首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extreme morphologies of many insular taxa suggest that islands have unusual properties that influence the tempo and mode of evolution. Yet whether insularity per se promotes rapid phenotypic evolution remains largely untested. We extend a phylogenetic comparative approach to test the influence of novel environments versus insularity on rates of body size and sexual size dimorphism diversification in Anolis . Rates of body size diversification among small-island and mainland species were similar to those of anole species on the Greater Antilles. However, the Greater Antilles taxa that colonized small islands and the mainland are ecologically nonrandom: rates of body size diversification among small-island and mainland species are high compared to their large-island sister taxa. Furthermore, rates of diversification in sexual size dimorphism on small islands are high compared to all large-island and mainland lineages. We suggest that elevated diversifying selection, particularly as a result of ecological release, may drive high rates of body size diversification in both small-island and mainland novel environments. In contrast, high abundance (prevalent among small-island lizard communities) mediating intraspecific resource competition and male–male competition may explain why sexual size dimorphism diversifies faster among small-island lineages than among their mainland and large-island relatives.  相似文献   

2.
We studied the allocation of total egg mass to size and number in the carabid beetle Notiophilus biguttatus F. at several temperature and day length regimes. Eggs increase in number and decrease in size with increasing (constant) temperature. Day length interacts with temperature: at short day the effect of temperature on size and number of eggs is weaker than at long day. In diurnally fluctuating temperature regimes, egg size is affected disproportionately by the high temperature period. All treatments, however, are similar in affecting number and size of eggs in an opposite direction. Consequently, egg size is explained to a high degree by egg production rate. The relationship between size and number of eggs among treatments is furthermore characterized by a decrease in egg size with an increase in total egg mass production. Within treatments, rate of egg production and egg size are negatively correlated among females in the low-temperature groups but not in the high-temperature groups; the correlations among females are also characterized by a decrease in egg size, with an increase in total egg mass production. Hence, possible trade-offs between size and number of eggs are masked by phenotypic variation in reproductive effort. The observations enable us to propose a simple conceptual model that explains the within-treatment correlation by the same causal factor as the negative relationship among treatment means.  相似文献   

3.
Although the flowering of facultative biennials is size-dependent, flowering size varies markedly within a single population as well as among populations. In this study, 15 half-sib families of the facultative biennial Aster kantoensis were grown from seeds at three nutrient levels (low, medium, and high). A significant nutrient × family interaction effect was found for bolting size, and among-family variation in bolting size increased with decreasing nutrient level. Growth from bolting to flowering tended to be greatest at the high nutrient level. Such responses of bolting size and growth from bolting to flowering resulted in an increase in flowering size at the high nutrient level and a significant variation in its reaction norm among families. For flowering age, there was a significant interaction of nutrient × family, and its among-family variation increased with decreasing nutrient levels, as was the case with bolting size. These results indicate that genetic variation in phenotypic plasticity of bolting size with nutrient availability was one cause of the variation in flowering size and age in the A. kantoensis population on the floodplain with the spatially heterogeneous nutrient availability. Moreover, responses of growth from bolting to flowering to nutrient availability could enhance the variation in flowering size.  相似文献   

4.
Maternal investment in reproduction by oviparous non-avian reptiles is usually limited to pre-ovipositional allocations to the number and size of eggs and clutches, thus making these species good subjects for testing hypotheses of reproductive optimality models. Because leatherback turtles (Dermochelys coriacea) stand out among oviparous amniotes by having the highest clutch frequency and producing the largest mass of eggs per reproductive season, we quantified maternal investment of 146 female leatherbacks over four nesting seasons (2001–2004) and found high inter- and intra-female variation in several reproductive characteristics. Estimated clutch frequency [coefficient of variation (CV) = 31%] and clutch size (CV = 26%) varied more among females than did egg mass (CV = 9%) and hatchling mass (CV = 7%). Moreover, clutch size had an approximately threefold higher effect on clutch mass than did egg mass. These results generally support predictions of reproductive optimality models in which species that lay several, large clutches per reproductive season should exhibit low variation in egg size and instead maximize egg number (clutch frequency and/or size). The number of hatchlings emerging per nest was positively correlated with clutch size, but fraction of eggs in a clutch yielding hatchlings (emergence success) was not correlated with clutch size and varied highly among females. In addition, seasonal fecundity and seasonal hatchling production increased with the frequency and the size of clutches (in order of effect size). Our results demonstrate that female leatherbacks exhibit high phenotypic variation in reproductive traits, possibly in response to environmental variability and/or resulting from genotypic variability within the population. Furthermore, high seasonal and lifetime fecundity of leatherbacks probably reflect compensation for high and unpredictable mortality during early life history stages in this species.  相似文献   

5.
The hypothesis that sperm competition should favour increases in sperm size, because it results in faster swimming speeds, has received support from studies on many taxa, but remains contentious for mammals. We suggest that this may be because mammalian lineages respond differently to sexual selection, owing to major differences in body size, which are associated with differences in mass-specific metabolic rate. Recent evidence suggests that cellular metabolic rate also scales with body size, so that small mammals have cells that process energy and resources from the environment at a faster rate. We develop the 'metabolic rate constraint hypothesis' which proposes that low mass-specific metabolic rate among large mammals may limit their ability to respond to sexual selection by increasing sperm size, while this constraint does not exist among small mammals. Here we show that among rodents, which have high mass-specific metabolic rates, sperm size increases under sperm competition, reaching the longest sperm sizes found in eutherian mammals. By contrast, mammalian lineages with large body sizes have small sperm, and while metabolic rate (corrected for body size) influences sperm size, sperm competition levels do not. When all eutherian mammals are analysed jointly, our results suggest that as mass-specific metabolic rate increases, so does maximum sperm size. In addition, species with low mass-specific metabolic rates produce uniformly small sperm, while species with high mass-specific metabolic rates produce a wide range of sperm sizes. These findings support the hypothesis that mass-specific metabolic rates determine the budget available for sperm production: at high levels, sperm size increases in response to sexual selection, while low levels constrain the ability to respond to sexual selection by increasing sperm size. Thus, adaptive and costly traits, such as sperm size, may only evolve under sexual selection when metabolic rate does not constrain cellular budgets.  相似文献   

6.
Takahashi  Kazuaki  Kamitani  Tomohiko 《Plant Ecology》2004,174(2):247-256
We investigated factors affecting seed rain beneath nine fleshy-fruited fruiting plant species growing in a 1-ha plot of planted Pinus thunbergii in central Japan. We tested whether the numbers of seeds and seed species dropped by birds beneath fruiting plants were correlated with the number of fruits removed by birds from the plants. Most of fruiting plant species with high fruit removal had significantly high seed rain. Both the numbers of seeds and seed species dropped were significantly, positively correlated with the number of fruits removed across for all fruiting plant species. Therefore, fruit removal predicted the difference among heterospecific fruiting plants in seed rain. We also tested whether the number of fruits removed from fruiting plants by birds was related with fruit crop size, fruit size, and height of the plants, and the numbers of fruits and fruit species of neighboring plants near the plants. Most of fruiting plant species with high fruit crop size had significantly high fruit removal. The number of fruits removed was significantly, positively correlated with both the fruit crop size and the number of neighboring fruits across the nine fruiting plant species. However, the effect of the neighboring fruit density on fruit removal was lower remarkably than that of fruit crop size. Therefore, fruit crop size best predicted the differences among heterospecific fruiting plants in fruit removal. We suggest that fruiting plant species with high fruit crop size and high fruit removal contribute to intensive seed rain beneath them. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
塔里木河中下游地区荒漠河岸林群落种间关系分析   总被引:18,自引:1,他引:17       下载免费PDF全文
采用 2× 2列联表, 应用Fisher精确检验法研究了新疆塔里木河中下游荒漠河岸林群落种间关系, 测定了16种植物、共 12 0个种对的种间联结性。研究结果表明 :1) 12 0个种对中有 17个种对分别在不同的样方尺度中表现出显著或极显著的种间联结, 约占总数的 14.2 % ;其中 13个种对为正关联, 4个种对为负关联 ;2 ) 不同取样面积对种间联结性分析的有效性有影响, 不同种对表现出种间联结的最小样方尺度不同 ;3) 随着样方面积的增大, 各种对自有不同的种间联结变化规律, 可归纳为 4种类型 ;4 ) 17个具种间联结的种对以灌木草本和草本草本的种对居多, 占总数的 76.5 % ;主要乔木树种胡杨 (Populuseuphratica) 与灌木之间、灌木和灌木之间趋向独立分布。  相似文献   

8.
The black scavenger fly Sepsis punctum exhibits striking among-population variation in the direction and magnitude of sexual size dimorphism, modification to the male forelimb and pre-copulatory behaviour. In some populations, male-biased sexual size dimorphism is observed; in other, less dimorphic, populations males court prior to mating. Such variation in reproductive traits is of interest to evolutionary biologists because it has the potential to limit gene flow among populations, contributing to speciation. Here, we investigate whether large male body size and modified forefemur are associated with higher male mating success within populations, whether these traits are associated with higher mating success among populations, and if these traits carry viability costs that could constrain their response to sexual selection. Flies from five distinct populations were reared at high or low food, generating high and low quality males. The expression of body size, forelimb morphology and courtship rate were each greater at high food, but high food males experienced higher mating success or reduced latency to first copulation in only one of the populations. Among populations, overall mating success increased with the degree of male-bias in overall body size and forelimb modification, suggesting that these traits have evolved as a means of increasing male mating rate. The increased mating success observed in large-male populations raises the question of why variation in magnitude of dimorphism persists among populations. One reason may be that costs of producing a large size constrain the evolution of ever-larger males. We found no evidence that juvenile mortality under food stress was greater for large-male populations, but development time was considerably longer and may represent an important constraint in an ephemeral and competitive growth environment.  相似文献   

9.
Body size is an important correlate of life history, ecology and distribution of species. Despite this, very little is known about body size evolution in fishes, particularly freshwater fishes of the Neotropics where species and body size diversity are relatively high. Phylogenetic history and body size data were used to explore body size frequency distributions in Neotropical cichlids, a broadly distributed and ecologically diverse group of fishes that is highly representative of body size diversity in Neotropical freshwater fishes. We test for divergence, phylogenetic autocorrelation and among-clade partitioning of body size space. Neotropical cichlids show low phylogenetic autocorrelation and divergence within and among taxonomic levels. Three distinct regions of body size space were identified from body size frequency distributions at various taxonomic levels corresponding to subclades of the most diverse tribe, Geophagini. These regions suggest that lineages may be evolving towards particular size optima that may be tied to specific ecological roles. The diversification of Geophagini appears to constrain the evolution of body size among other Neotropical cichlid lineages; non-Geophagini clades show lower species-richness in body size regions shared with Geophagini. Neotropical cichlid genera show less divergence and extreme body size than expected within and among tribes. Body size divergence among species may instead be present or linked to ecology at the community assembly scale.  相似文献   

10.
Patterns of sexual size dimorphism and body size in calanoid copepods are examined. We hypothesize that favorable conditions for development will result in large body size and high sexual size dimorphism among populations of a given species and that differences in this allometric relationship among species is governed by the male's role in insemination. We confirm that there is a greater advantage to large female size, normally the larger sex, when compared to males, hence leading to selection for developmental patterns favoring high size dimorphism. Individuals from populations of four centropagid copepod species were measured; other sizes were obtained from published sources. In the four species we examined, the relationships between prosome length and both clutch size and the ability to produce multiple clutches with one insemination were determined. Results show a trend toward hyperallometry in all centropagid species examined: sexual size dimorphism increases with increasing size. Large females produce larger clutches and more additional clutches on one insemination. That hyperallometry is not observed in diaptomid copepods may result from the greater role the male plays in reproduction. Males are needed for each clutch produced, hence the selective pressure to be larger is greater than that in the centropagidae.  相似文献   

11.
Parker TH  Garant D 《Heredity》2005,95(5):401-407
We studied phenotypic patterns and underlying quantitative genetics of development of sexual size dimorphism in red junglefowl (Gallus gallus). Using a multigenerational pedigree and the 'animal model' technique, we found significant heritability for many of the size and growth-related traits we examined, as well as significant genetic correlations among them. Despite sexual size dimorphism throughout posthatching ontogeny, the genetic correlation between males and females for all size measurements and growth parameters remained high. Significant positive phenotypic and genetic correlations between the fastest rate of growth and mass at week 26 (near asymptote) indicate that faster growth when young promotes larger adult size. However, age at which peak growth is reached does not appear to be phenotypically or genetically correlated with adult size. Positive genetic correlations within traits among ages were common, demonstrating that the genetic variance important to growth is relatively consistent among ages. However, male mass and tarsus length showed no genetic correlation between week 0 values and those from later ages. The body size traits of mass and tarsus length were genetically correlated with each other in females, but this pattern was not significant in males. Thus, despite striking sexual dimorphism in size and growth trajectories, size dimorphic traits in junglefowl show, with some exceptions, genetic integration between the sexes, among ages, and between traits.  相似文献   

12.
J. Gurevitch 《Genetics》1992,130(2):385-394
Achillea lanulosa has complex, highly dissected leaves that vary in shape and size along an altitudinal gradient. Plants from a high and an intermediate altitude population were clonally replicated and grown in a controlled environment at warm and cool conditions under bright light. There were genetic differences among populations and among individuals within populations in leaf size and shape. Heritabilities for leaf size and shape characters were moderate. Leaves of the lower altitude population were larger and differed from the higher altitude plants in both coarse and fine shape. Plastic response to temperature of the growth environment paralleled the genetic differentiation between low and high altitude populations. There was no apparent trade-off between genetic control over morphology and the capacity for directional plastic response to the environment. Differences in leaf dissection and size at contrasting altitudes in this species are the result of both genetic divergence among populations and of acclimative responses to local environments.  相似文献   

13.
Individual variation in seed size and seed production is high in many plant species. How does this variation affect seed-dispersing animals and, in turn, the fitness of individual plants? In this study, we first surveyed intraspecific variation in seed mass and production in a population of a Chinese white pine, Pinus armandii. For 134 target trees investigated in 2012, there was very high variation in seed size, with mean seed mass varying among trees almost tenfold, from 0.038 to 0.361 g. Furthermore, 30 of the 134 trees produced seeds 2 years later, and for these individuals there was a correlation in seed mass of 0.59 between years, implying consistent differences among individuals. For a subset of 67 trees, we monitored the foraging preferences of scatter-hoarding rodents on a total of 15,301 seeds: 8380 were ignored, 3184 were eaten in situ, 2651 were eaten after being cached, and 395 were successfully dispersed (cached and left intact). At the scale of individual seeds, seed mass affected almost every decision that rodents made to eat, remove, and cache individual seeds. At the level of individual trees, larger seeds had increased probabilities of both predation and successful dispersal: the effects of mean seed size on costs (predation) and benefits (caching) balanced out. Thus, despite seed size affecting rodent decisions, variation among trees in dispersal success associated with mean seed size was small once seeds were harvested. This might explain, at least in part, the maintenance of high variation in mean seed mass among tree individuals.  相似文献   

14.
Are latitudinal gradients in regional diversity random or biased with respect to body size? Using data for the New World avifauna, I show that the slope of the increase in regional species richness from the Arctic to the equator is not independent of body size. The increase is steepest among small and medium‐sized species, and shallowest among the largest species. This is reflected in latitudinal variation in the shape of frequency distributions of body sizes in regional subsets of the New World avifauna. Because species are added disproportionately in small and medium size classes towards low latitudes, distributions become less widely spread along the body size axis than expected from the number of species. These patterns suggest an interaction between the effects of latitude and body size on species richness, implying that mechanisms which vary with both latitude and body size may be important determinants of high tropical diversity in New World birds.  相似文献   

15.
Because leaf size scales negatively and isometrically with leaf number per shoot size (leafing intensity) in woody species, and because most tree and shrub species have small leaves, Kleiman and Aarssen (J Ecol 95:376–382, 2007) recently proposed that natural selection favors high leafing intensity resulting in small leaves, i.e., the leafing-intensity-premium hypothesis. However, empirical evidence for or against this hypothesis is still lacking. In addition, this hypothesis has not been examined in the context of how leaf size varies among habitats. To fill this void, we investigated leaf size frequency distributions of woody species from temperate China and explored the relationships among leaf mass, leaf number, and stem mass of current-year shoots of 133 woody species at low and high altitudes of three mountain ranges. The scaling relationships between leaf size and leafing intensity (leaf number per stem mass) were determined using both standardized major axis regression analyses and phylogenetically independent comparative techniques. In light of the leafing-intensity-premium hypothesis, we made three predictions: (1) leaf size frequency distributions should be right-skewed for each local study area and for the entire study region, (2) leafing intensities at different altitudes at different sites should differ while leafing intensities at comparable altitudes should be similar baring large taxonomic differences among sites, and (3) that leafing intensity should be higher for any given leaf size in habitats with small-leaved species. Significant negative and isometric scaling relationships between leaf size and leafing intensity were found to be consistently conserved independent of habitat type, both across species and across correlated evolutionary divergences. Within each mountain range or across the entire study region, leaf size frequency distributions were right-skewed, in accordance with our prediction. However, leafing intensity was smaller for any given leaf size at the altitude with smaller leafed species than for altitudes characterized by large leafed species, i.e., altitudes characterized by species with small leaves did not have consistently higher leafing intensities than other altitudes on each mountain range. Our analyses therefore indicate the direct adaptive value of leaf size but not the selective advantage in high leafing intensity as posited by the leafing-intensity-premium hypothesis. We suggest that this hypothesis explains less about the variation of leaf size among different habitats as it does about variation within habitats, i.e., the relative importance of the adaptive significance of leafing intensity and leaf size can and does vary with habitats.  相似文献   

16.
Summary Although inter- and intraspecific variation in egg size among amphibians has been well documented, the relationship between egg size and fitness remains unclear. Recent attempts to correlate egg size intraspecifically with larval developmental patterns have been equivocal. In this study the development of larvae derived from large eggs and small eggs, from a single population in Maryland were compared under a range of food levels and larval population densities. Both food level and density had significant effects on the length of the larval period and size at metamorphosis. However, the response among larvae derived from different egg sizes was not additive. At low densities and high food levels, larvae from small eggs had longer larval periods and a larger size at metamorphosis than larvae derived from large eggs. In contrast, at high densities larvae from small eggs had longer developmental periods but were smaller at metamorphosis than larvae from large eggs. In addition, larvae from small eggs were more sensitive to density irrespective of food level. These results suggest that optimal egg size is correlated with environmental factors, which may explain the maintenance of both geographic and within population variation in egg size commonly observed in amphibians.  相似文献   

17.
Physiological trade-offs between life-history traits can constrain natural selection and maintain genetic variation in the face of selection, thereby shaping evolutionary trajectories. This study examines physiological trade-offs in simultaneously hermaphroditic banana slugs, Ariolimax dolichophallus. These slugs have high heritable variation in body size, which strongly predicts the number of clutches laid, hatching success and progeny growth rate. These fitness components were associated, but only when examined in correlation with body size. Body size mediated these apparent trade-offs in a continuum where small animals produced rapidly growing progeny, intermediate-sized animals laid many clutches and large animals had high hatching success. This study uses a novel statistical method in which the components of fitness are analysed in a mancova and related to a common covariate, body size, which has high heritability. The mancova reveals physiological trade-offs among the components of fitness that were previously masked by high variation in body size.  相似文献   

18.
A chief structuring force in food webs is the hierarchy of trophic interactions, where bigger animals feed on smaller ones. The anatomic and physiological explanations of why body size determines this hierarchy are embodied within the concept of gape limitation. The relaxation of gape limitation and an increase in energetic demands due to predators' larger body size determine the size and diversity of prey species. However, these patterns may be related to further trends in trophic interactions with body size, which have been less considered. Specifically, the passive incorporation of prey should involve a nested distribution of prey among predator size classes. However, predators avoid smaller resources because of their low energy return, with a clumped distribution of prey potentially generating modular organization with qualitative changes in prey identity (e.g. zooplankton, macroinvertebrates and fishes). Finally, size‐mediated interactions (such as direct and indirect competition) may cause predators of similar body size to differentiate among prey organisms, resulting in a checkerboard distribution of prey identity. Consequently, nestedness, modularity and checkerboard distributions of prey among predators of different size classes should form emergent network structures that are directly related to clear ecological mechanisms. We analyse these predictions in a killifish guild, where trends in trophic positions, prey richness, evenness and the number of energy sources systematically scale with body size. We found significant nestedness and segregation in diet among different size classes, supporting the progressive incorporation of prey items coupled with prey differentiation among similar classes. However, we also detected an ‘anti‐modular’ trend, which contradicts theoretical expectations and previous results. We hypothesize that this anti‐modularity is determined by the high biodiversity of the system and the continuous representation of prey size classes. These results reinforce the concept of size‐mediated interactions and its connection with community biodiversity as a main structuring force of food webs.  相似文献   

19.
Intra-specific brood parasitism is widespread among birds. When genetic evidence is not available, criteria like super-normal clutch size, high within-clutch variance in egg morphology, and shorter than normal laying intervals have been used to identify parasitized broods. Here we report genetically determined parentage of a clutch of super-normal size in a species with fixed clutch size, the northern lapwing Vanellus vanellus . Results from multi-locus DNA fingerprinting revealed no loss of parentage in this brood. Furthermore, no loss of parentage was found in another clutch with a high variance in egg size and colouration. These findings add to previous evidence that reliable classification of brood parasitism requires molecular analysis.  相似文献   

20.
Macroevolutionary patterns of sexual size dimorphism (SSD) indicate how sexual selection, natural selection, and genetic and developmental constraints mold sex differences in body size. One putative pattern, known as Rensch's rule, posits that, among species with female‐larger SSD, the relative degree of SSD declines with species' body size, whereas, among male‐larger SSD species, relative SSD increases with size. Using a dataset of 196 chelonian species from all fourteen families, we investigated the correlation in body size evolution between male and female Chelonia and the validity of Rensch's rule for the taxon and within its major clades. We conclude that male–female correlations in body size evolution are high, although these correlations differ among chelonian families. Overall, SSD scales isometrically with body size; Rensch's rule is valid for only one family, Testudinidae (tortoises). Because macroevolutionary patterns of SSD can vary markedly among clades, even in a taxon as morphologically conservative as Testudines, one must guard against inappropriately pooling clades in comparative studies of SSD. The results of the present study also indicate that regression models that assume the x‐variable (e.g. male body size) is measured without statistical error, although frequently reported, will result in erroneous conclusions about phylogenetic trends in sexual size dimorphism. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 396–413.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号