首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了从原子水平上揭示青蒿素及其类似物的结构与抗疟活性之间的关系,运用密度泛函理论DFT方法,在B3LYP/6-31G*水平上对青蒿素及其类似物二氢青蒿素、蒿甲醚和青蒿琥酯的结构和性质进行了理论计算。从分子的平衡构型、Wiberg键级、溶剂化能、偶极矩和静电势等方面分析了青蒿素及其类似物的抗疟构效关系。结果表明,青蒿素及其类似物结构中七元环上的过氧桥键、醚氧键以及六元环上的内酯结构是其抗疟作用的关键活性位,过氧桥键处负的静电势越多,青蒿素与血红素的相互作用越强,分子的抗疟活性越强。理论预测四个药物分子的抗疟活性顺序为:青蒿素<二氢青蒿素<蒿甲醚<青蒿琥酯,与实验活性结果一致。  相似文献   

2.
In the present work, a library of 120 compounds was prepared using various aliphatic and aromatic amines. Finally, 10 compounds were selected through in silico screening carrying 4-aminobenzoyl-l -glutamic acid and 1,3,5-triazine moiety. The docking results of compounds 4d16 and 4d38 revealed higher binding interaction with amino acids Asp54 (−537.96 kcal/mol) and Asp54, Phe116 (−618.22 kcal/mol) against wild (1J3I) and quadruple mutant (1J3K) type of Pf-DHFR inhibitors and were comparable to standard WR99210. These compounds were developed by facile and microwave-assisted synthesis via nucleophilic substitution reaction and characterized by different spectroscopic methods. In vitro antimalarial assay results also suggested that these two compounds were having higher antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strain out of the ten synthesized compounds with IC50 13.25 μM and 14.72 μM, respectively. These hybrid scaffolds might be useful in the lead discovery of a new class of Pf-DHFR inhibitors.  相似文献   

3.
Antimalarial activity of anthothecol, a limonoid of Khaya anthotheca (Meliaceae) against Plasmodium falciparum was tested using a [3H]-hypoxanthine and 48 h culture assay in vitro. Anthotechol showed potent antimalarial activity against malaria parasites with IC50 values of 1.4 and 0.17 μM using two different assays. Also, gedunin had antimalarial activity with IC50 values of 3.1 and 0.14 μM. However, the citrus limonoids, limonin and obacunone did not show any antimalarial activity. The antimalarial activities were compared with the three currently used antimalarial medicines quinine, chloroquinine and artemisinin.  相似文献   

4.
Novel artemisinin derivatives bearing Mannich base group were prepared and tested for their antimalarial activity. These water-soluble artemisinin derivatives were more stable than sodium artesunate and few compounds were found to be more active against Plasmodium berghei in mice than artesunic acid by oral administration. Two most potent derivatives 17b and 17d were examined for their antimalarial activity against Plasmodium knowlesi in rhesus monkeys.  相似文献   

5.
Artemisinin, derived from a Chinese herbal remedy, is a potent peroxide-containing antimalarial. New types of peroxides, derived from this structure, as well as other naturally occurring antimalarial peroxides, have been synthesized and found to have potent antimalarial activities. Studies on the activities, modes of action, and toxicities of these compounds are discussed here by Steven Meshnick and colleagues.  相似文献   

6.
The oxidative system H2O2/fluorinated alcohol (TFE, HFIP) was used for direct acid- and MeReO3-catalyzed synthesis of 1,2,4,5-tetraoxanes from cyclic (C6, C7, and C12) and acyclic ketones. The influence of ring size and alkyl chain length were studied and antimalarial activities of synthetic 3,3,6,6-tetraalkyl-1,2,4,5-tetraoxanes were determined. Variations in their antimalarial activities were significant, although they share similar electrochemical properties of the peroxide bond.  相似文献   

7.
Guanylthiourea (GTU) has been identified as an important antifolate antimalarial pharmacophore unit, whereas, 4-amino quinolones are already known for antimalarial activity. In the present work molecules carrying 4-aminoquinoline and GTU moiety have been designed using molecular docking analysis with PfDHFR enzyme and heme unit. The docking results indicated that the necessary interactions (Asp54 and Ile14) and docking score (−9.63 to −7.36 kcal/mmol) were comparable to WR99210 (−9.89 kcal/mol). From these results nine molecules were selected for synthesis. In vitro analysis of these synthesized compounds reveal that out of the nine molecules, eight show antimalarial activity in the range of 0.61–7.55 μM for PfD6 strain and 0.43–8.04 μM for PfW2 strain. Further, molecular dynamics simulations were performed on the most active molecule to establish comparative binding interactions of these compounds and reference ligand with Plasmodium falciparum dihydrofolate reductase (PfDHFR).  相似文献   

8.
Muscarinic acetylcholine receptors (mAChRs) consisting of five known subtypes, are widely distributed in both central and peripheral nervous systems for regulation of a variety of critical functions. The present theoretical study describes correlations between experimental and calculated molecular properties of 15 α-substituted 2,2-diphenylpropionate antimuscarinics using quantum chemical and pharmacophore generation methods to characterize the drug mAChR properties and design new therapeutics. The calculated stereoelectronic properties, such as total energies, bond distances, valence angles, torsion angles, HOMO–LUMO energies, reactivity indices, vibrational frequencies of ether and carbonyl moieties, and nitrogen atom proton affinity were found to be well correlated when compared with experimentally determined inhibition constants from the literature using three muscarinic receptor assays: [3H]NMS receptor binding, α-amylase release from rat pancreas, and guinea pig ileum contraction. In silico predicted toxicity on rat oral LD50 values correlated well with the [3H]NMS binding in N4TG1 cells and α-amylase release assays, but not the ileum contraction assay. Next, to explore the functional requirements for potent activity of the compounds, we developed a preliminary 3D pharmacophore model using the in silico techniques. The resulting model contained a hydrogen bond acceptor site on the carbonyl oxygen atom and a ring aromatic feature on one of the two aromatic rings in these compounds. This model was used as a template to search an in-house database for novel analogs. We found compounds equal in inhibition potency to atropine and, importantly, six not reported before as antimuscarinics. These results demonstrate that this QSAR approach not only provides a basis for understanding the molecular mechanism of action but a pharmacophore to aid in the discovery and design of novel potent muscarinic antagonists.  相似文献   

9.
Construction of the 3D structure of PfATP6 by homology modeling and docking simulation of artemisinin derivatives to this protein model are reported. Docking and consequent LUDI scores show good relation with in vitro antimalarial activities. The main binding source of artemisinins to the PfATP6 is hydrophobic interaction and biologically important peroxide bonds were exposed to outside of the binding pocket. This study suggests binding of artemisinin to PfATP6 precedes activation of peroxide bond by Fe(2+) species.  相似文献   

10.
Artemisia annua L. (Qinghao) is a promising and potent antimalarial herbal drug. This activity has been ascribed to its component artemisinin, a sesquiterpene lactone that is very effective against drug-resistant Plasmodium species with a low toxicity. Our studies indicate that several flavonoids of A. annua can promote and enhance the reaction of artemisinin with hemin. These data are in good agreement with previous investigations on the in vitro potentiation of antimalarial activity of artemisinin by such flavonoids. As a consequence, in view of a possible use of the phytocomplex rather than pure artemisinin, an HPLC/DAD/MS method is proposed for the simultaneous detection and quantification of both flavonoids and artemisinin. Different extracts, obtained from two different herbal drugs, a commercial sample and a selected cultivar, were analyzed in order to determine which solvents provide the best yields of both artemisinin and flavonoids. Qualitative and quantitative results obtained using an HPLC method are described, which will be useful for developing highly effective herbal drug preparations.  相似文献   

11.
Artemisia annua L. (Qinghao, Asteraceae) is a promising and potent antimalarial herbal drug. Its activity has been ascribed to the content of artemisinin, a sesquiterpene lactone that is very effective against drug-resistant Plasmodium. Many studies have pointed out that the presence of polymethoxyflavonoids in the phytocomplex can enhance the bioavailability or the activity of artemisinin. In this study the production of both artemisinin and flavonoids by plants of an aromatic ecotype of A. annua L. was characterized in different aerial parts of the plants at different developmental stages. The qualitative profile of the investigated plant parts was similar; in addition to artemisinin, four flavonoids were identified: chrysoplenetin, casticin, eupatin and artemetin. The highest contents of both flavonoids and artemisinin were found at the full blooming stage. At this developmental stage, artemisinin was higher in leaves than in inflorescences, while the total flavonoid levels were similar in both plant organs.  相似文献   

12.
Following our search for novel compounds with high antimalarial activity, a series of artemisinin (QHS) derivatives containing a ferrocenic nucleus was prepared and tested in vitro against Plasmodium falciparum strains. Two new metallocenic derivatives (1 and 3) were found as potent as QHS. All compounds showed a capacity to bind with ferroprotoporphyrin IX. A decrease in the Soret band absorbance of ferroprotoporphyrin IX, resulting from the addition of different drugs concentrations, was shown. The association stoichiometry of compounds to ferroprotoporphyrin IX appears to be 1:2 at equilibrium, with an intermediate 1:1 complexation. These results appear to strengthen the role of adducts between artemisinin derivatives and heme in generation of artemisinin radicals. Such interaction of artemisinin ferrocenyl derivatives with ferroprotoporphyrin IX and its biological significance could form a basis in future drug development.  相似文献   

13.
Homoprotocatechuate (HPCA) dioxygenases are enzymes that take part in the catabolism of aromatic compounds in the environment. They use molecular oxygen to perform the ring cleavage of ortho-dihydroxylated aromatic compounds. A theoretical investigation of the catalytic cycle for HPCA 2,3-dioxygenase isolated from Brevibacterium fuscum (Bf 2,3-HPCD) was performed using hybrid DFT with the B3LYP functional, and a reaction mechanism is suggested. Models of different sizes were built from the crystal structure of the enzyme and were used in the search for intermediates and transition states. It was found that the enzyme follows a reaction pathway similar to that for other non-heme iron dioxygenases, and for the manganese-dependent analog MndD, although with different energetics. The computational results suggest that the rate-limiting step for the whole reaction of Bf 2,3-HPCD is the protonation of the activated oxygen, with an energy barrier of 17.4 kcal/mol, in good agreement with the experimental value of 16 kcal/mol obtained from the overall rate of the reaction. Surprisingly, a very low barrier was found for the O-O bond cleavage step, 11.3 kcal/mol, as compared to 21.8 kcal/mol for MndD (sextet spin state). This result motivated additional studies of the manganese-dependent enzyme. Different spin coupling between the unpaired electrons on the metal and on the evolving substrate radical was observed for the two enzymes, and therefore the quartet spin state potential energy surface of the MndD reaction was studied. The calculations show a crossing between the sextet and the quartet surfaces, and it was concluded that a spin transition occurs and determines a barrier of 14.4 kcal/mol for the O-O bond cleavage, which is found to be the rate-limiting step in MndD. Thus the two 83% identical enzymes, using different metal ions as co-factors, were found to have similar activation energies (in agreement with experiment), but different rate-limiting steps.  相似文献   

14.
At some point during biosynthesis of the antimalarial artemisinin in glandular trichomes of Artemisia annua, the Delta11(13) double bond originating in amorpha-4,11-diene is reduced. This is thought to occur in artemisinic aldehyde, but other intermediates have been suggested. In an effort to understand double bond reduction in artemisinin biosynthesis, extracts of A. annua flower buds were investigated and found to contain artemisinic aldehyde Delta11(13) double bond reductase activity. Through a combination of partial protein purification, mass spectrometry, and expressed sequence tag analysis, a cDNA clone corresponding to the enzyme was isolated. The corresponding gene Dbr2, encoding a member of the enoate reductase family with similarity to plant 12-oxophytodienoate reductases, was found to be highly expressed in glandular trichomes. Recombinant Dbr2 was subsequently characterized and shown to be relatively specific for artemisinic aldehyde and to have some activity on small alpha,beta-unsaturated carbonyl compounds. Expression in yeast of Dbr2 and genes encoding four other enzymes in the artemisinin pathway resulted in the accumulation of dihydroartemsinic acid. The relevance of Dbr2 to trichome-specific artemisinin biosynthesis is discussed.  相似文献   

15.
In this study, a series of 11 10-aminoethylether derivatives of artemisinin were synthesised and their antimalarial activity against both the chloroquine sensitive (D10) and resistant (Dd2) strains of Plasmodium falciparum was determined. The compounds were prepared by introducing aliphatic, alicyclic and aromatic amine groups with linkers of various chain lengths through an ethyl ether bridge at C-10 of artemisinin using conventional and microwave assisted syntheses, and their structures were confirmed by NMR and HRMS. All derivatives proved to be active against both strains of the parasite. The highest overall activity was displayed by the short chain aromatic derivative 8 (IC(50)=1.44nM), containing only one nitrogen atom, while long chain polyamine derivatives were found to have the lowest activity against both strains. An interesting correlation between the IC(50), pK(a) values and resistance index (RI) was found.  相似文献   

16.
Artemisia annua L. produces the sesquiterpene lactone, artemisinin, a potent antimalarial drug that is also effective in treating other parasitic diseases, some viral infections and various neoplasms. Artemisinin is also an allelopathic herbicide that can inhibit the growth of other plants. Unfortunately, the compound is in short supply and thus, studies on its production in the plant are of interest as are low cost methods for drug delivery. Here we review our recent studies on artemisinin production in A. annua during development of the plant as it moves from the vegetative to reproductive stage (flower budding and full flower formation), in response to sugars, and in concert with the production of the ROS, hydrogen peroxide. We also provide new data from animal experiments that measured the potential of using the dried plant directly as a therapeutic. Together these results provide a synopsis of a more global view of regulation of artemisinin biosynthesis in A. annua than previously available. We further suggest an alternative low cost method of drug delivery to treat malaria and other neglected tropical diseases.  相似文献   

17.
The isoquinuclidine (2-azabicyclo[2.2.2]octane) ring system may be viewed as a semi-rigid boat form of the piperidine ring and, when properly substituted, a scaffold for rigid analogs of biologically active ethanolamines and propanolamines. It is present in natural products (such as ibogaine and dioscorine) that display interesting pharmacological properties. In this study, we have expanded our continuing efforts to incorporate this ring system in numerous pharmacophores, by designing and synthesizing semirigid analogs of the antimalarial drug chloroquine. The analogs were tested in vitro against Plasmodium falciparum strains and Leishmania donovani promastigote cultures. Compounds 6 and 13 displayed potent antimalarial activity against both chloroquine-susceptible D6 and the -resistant W2 strains of P. falciparum. All analogs also demonstrated significant antileishmanial activity with compounds 6 and 13 again being the most potent. The fact that these compounds are active against both chloroquine-resistant and chloroquine-sensitive strains as well as leishmanial cells makes them promising candidates for drug development.  相似文献   

18.
In this report, we describe the semisynthesis of two series of ursolic and betulinic acid derivatives through designed by modifications at the C-3 and C-28 positions and demonstrate their antimalarial activity against chloroquine-resistant P. falciparum (W2 strain). Structural modifications at C-3 were more advantageous to antimalarial activity than simultaneous modifications at C-3 and C-28 positions. The ester derivative, 3β-butanoyl betulinic acid (7b), was the most active compound (IC50?=?3.4?µM) and it did not exhibit cytotoxicity against VERO nor HepG2 cells (CC50?>?400?µM), showing selectivity towards parasites (selectivity index?>?117.47). In combination with artemisinin, compound 7b showed an additive effect (CI?=?1.14). While docking analysis showed a possible interaction of 7b with the Plasmodium protease PfSUB1, with an optimum binding affinity of ?7.02?kcal/mol, the rather low inhibition displayed on a Bacillus licheniformis subtilisin A protease activity assay (IC50?=?93?µM) and the observed accumulation of ring forms together with a delay of appearance of trophozoites in vitro suggests that the main target of 3β-butanoyl betulinic acid on Plasmodium may be related to other molecules and processes pertaining to the ring stage. Therefore, compound 7b is the most promising compound for further studies on antimalarial chemotherapy. The results obtained in this study provide suitable information about scaffolds to develop novel antimalarials from natural sources.  相似文献   

19.
The biological mode of action of artemisinin, a potent antimalarial, has long been controversial. Previously we established a yeast model addressing its mechanism of action and found mitochondria the key in executing artemisinin''s action. Here we present data showing that artemisinin directly acts on mitochondria and it inhibits malaria in a similar way as yeast. Specifically, artemisinin and its homologues exhibit correlated activities against malaria and yeast, with the peroxide bridge playing a key role for their inhibitory action in both organisms. In addition, we showed that artemisinins are distributed to malarial mitochondria and directly impair their functions when isolated mitochondria were tested. In efforts to explore how the action specificity of artemisinin is achieved, we found strikingly rapid and dramatic reactive oxygen species (ROS) production is induced with artemisinin in isolated yeast and malarial but not mammalian mitochondria, and ROS scavengers can ameliorate the effects of artemisinin. Deoxyartemisinin, which lacks an endoperoxide bridge, has no effect on membrane potential or ROS production in malarial mitochondria. OZ209, a distantly related antimalarial endoperoxide, also causes ROS production and depolarization in isolated malarial mitochondria. Finally, interference of mitochondrial electron transport chain (ETC) can alter the sensitivity of the parasite towards artemisinin. Addition of iron chelator desferrioxamine drastically reduces ETC activity as well as mitigates artemisinin-induced ROS production. Taken together, our results indicate that mitochondrion is an important direct target, if not the sole one, in the antimalarial action of artemisinins. We suggest that fundamental differences among mitochondria from different species delineate the action specificity of this class of drugs, and differing from many other drugs, the action specificity of artemisinins originates from their activation mechanism.  相似文献   

20.
Summary Cell suspension cultures developed from Artemisia annua exhibited antimalarial activity against Plasmodium faldparum in vitro both in the n-hexane extract of the plant cell culture medium and in the chloroform extract of the cells. Trace amounts of the antimalarial sesquiterpene lactone artemisinin may account for the activity of the n-hexane fraction but only the methoxylated flavonoids artemetin, chrysoplenetin, chrysosplenol-D and cirsilineol can account for the activity of the chloroform extract. These purified flavonoids were found to have IC50 values at 2.4 – 6.5 × 10–5M against P. falciparum in vitro compared with an IC50 value of about 3 × 10–8M for purified artimisinin. At concentrations of 5 × 10–6M these flavonoids were not active against P. falciparum but did have a marked and selective potentiating effect on the antiplasmodial activity of artemisinin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号