首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of soybean oil on the volumetric oxygen transfer coefficient during the cultivation ofAerobacter aerogenes cells is presented. For our aeration-agitation conditions (0.278 vvm and 500 rpm), it has been demonstrated that the use 19% (v/v) of soybean oil enabled a 1.85-fold increase of thek l a coefficient (calculated on a per liter aqueous phase basis). For smaller volumetric oil fractions,k L a increased linearly with the oil loading. Because of the oxygen-vector properties of soybean oil, this oil is able to significantly increase thek L a of a bioreactor.Nomenclature C*, C saturation and actual dissolved oxygen concentrations respectively (g/m3) - KLa volumetric oxygen transfer coefficient (h–1) - KLainitial k La measured before the oil addition (h–1) - MO2 molar mass of oxygen (dalton) - N oxygen transfer rate (g/m3. h) - PO2. PN2 partial pressures ofO 2 andN 2 in the gas (atm) - PH2OT partial pressure of water in air at the temperatureT (atm) - PT total pressure (atm) - Q0 volumetric flow rate of outlet air before seeding (m3/h) - Sp spreading coefficient (dynes/cm) - T absolute temperature of outlet gas (K) - Vi volume of the liquidi in the fermentor (m3) - VM molar volume at 273 K and 1 atm (m3/mole) - ij interfacial tension betweeni andj componants (dynes/cm) - v volumetric fraction of the oil (v/v) - G gas - O oil - W water - i inlet - o outlet  相似文献   

2.
Summary A graphical method of determining the Michaelis-Menten constant free of the external mass transfer resistance for a packed bed immobilized enzyme system was illustrated with examples from 3 different enzyme reactions. The intercept at the ordinate obtained by the straight line extrapolation of data points in the plot of apparent Km value vs. the reciprocal of superficial velocity in column allowed an easy calculation of Km free of external mass transfer resistance. An asymptotic value of apparent Km value at infinite zero superficial velocity was ascribed to the fact that the mass transfer coefficient kL, approached a definite value at this condition.Nomenclature Km Michaelis-Menten constant, M/L3 - Km' Km free of external mass transfer resistance in a given ionic strength, M/L3 - Km" apparent Km with external mass transfer resistance, M/L3 - S substrate concentration, M/L3 - So initial substrate concentration, M/L3 - k2 rate constant, t-1 - E enzyme concentration in support, M/L3 - void volume per unit volume of reactor, dimensionless - u superficial velocity of substrate, L/t - KL mass transfer coefficient in liquid film, L/t - a external surface area of support per unit volume of reactor, L-1 - ratio of average channeling length to particle diameter, dimensionless - dp diameter of support particle, L - X fractional conversion of substrate, dimensionless - H partition coefficient, dimensionless - k a constant, 3 k2E(1-)dp/4 - T space time, t - N molecular flux, M/L2t - r radius of immobilized enzyme particle, L  相似文献   

3.
Summary In the presence of protein, Hansenula polymorpha cultivation medium exhibits a maximum volumetric mass transfer coefficient, kLa, as function of the employed antifoam agents (soy oil and Desmophen 3600). With diminishing superficial gas velocity this maximum disappeas.Symbols EG Relative gas holdup - kLa Volumetric mass transfer coefficient (s–1) - wSL Superficial liquid velocity (cm s–1) - wSG Superficial gas velocity (cm s–1)  相似文献   

4.
Abstract: The kinetics of transport across the blood-brain barrier and metabolism in brain (hemisphere) of [14C]2-fluoro-2-deoxy-d -glucose (FDG) were compared to that of [3H]2-deoxy-d -glucose (DG) and d -glucose in the pentobarbital-anesthetized adult rat. Saturation kinetics of transport were measured with the brain uptake index (BUI) method. The BUI for FDG was 54.3 ± 5.6. Nonlinear regression analysis gave a Km of 6.9 ± 1.1 mM and a Vmax of 1.70 ± 0.32 μmol/min/g. The K1 for glucose inhibition of FDG transport was 10.7 ± 4.4 mM. The kinetic constants of influx (k1) and efflux (K2) for FDG were calculated from the Km, Vmax, and glucose concentrations of the hemisphere and plasma (2.3 ± 0.2 μmol/g and 9.9 ± 0.4 mM, respectively). The transport coefficient (k1 FDG/k1glucose) was 1.67 ± 0.07 and the phosphorylation constant was 0.55 ± 0.16. The predicted lumped constant for FDG was 0.89, whereas the measured hexose utilization index for FDG was 0.85 ± 0.16. Conclusion: The value for the lumped constant can be predicted on the basis of the known kinetic constants of FDG and glucose transport and metabolism, as well as brain and plasma glucose levels. Knowledge of the lumped constant is crucial in interpreting data obtained from 18FDG analysis of regional glucose utilization in human brain in pathological states. We propose that the lumped constant will rise to a maximum equal to the transport coefficient for FDG under conditions of transport limitation (hypoglycemia) or elevated glycolysis (ischemia, seizures), and will fall to a minimum equal to the phosphorylation coefficient during phosphorylation limitation (extreme hyperglycemia).  相似文献   

5.
Production of L-tryptophan from L-serine and indole catalyzed by Escherichia coli, immobilized in k-carrageenan gel beads, is technically feasible in the liquidimpelled loop reactor (LLR), using an organic solvent, e.g. n-dodecane.With L-serine in large excess intrinsic reaction kinetics is approximately first order with respect to indole, with a reaction constant of 8.5×10–5 m3 kg dw –1 s–1.The overall process kinetics is jointly controlled by intrinsic kinetics and by intraparticle mass transfer resistance, which can be quantified using an effectiveness factor.Mass transfer of indole from the organic to the aqueous phase and from the aqueous to the gel phase are relatively fast and thus have negligible influence in the overall process kinetics, under the operational conditions tested. However, they may become important if the process is intensified by increasing the cell concentration in the gel and/or the gel hold-up in the reactor.A simple model which includes indole mass balances over the aqueous and organic phases, mass transfer and reaction kinetics, with parameters experimentally determined in independent experiments, was successful in simulating L-tryptophan production in the LLR.List of Symbols a, b, c coefficients of the equilibrium curve for indole between organic and aqueous phases - A, B, C, D, E, F auxiliary variables used in liquid-liquid mass transfer studies - a x specific interfacial area referred to the volume of the aqueous phase (m–1) - A x interfacial area (m2) - a Y specific interfacial area referred to the volume of the organic phase (m–1) - A Y interfacial area (m2) - C b substrate concentration in the bulk of the aqueous phase (kg m–3) - C e substrate concentration in exit stream (kg m–3) - C E biocatalyst concentration referred to the aqueous phase (kg m–3) - C E s biocatalyst concentration referred to the volume of gel (kg m–3) - C s substrate concentration at the gel surface (kgm–3) - d, e, f coefficients of the equilibrium curve for indole between aqueous and organic phases - dp particle diameter (m) - K 2 kinetic constant (s–1) - K 1 kinetic constant K2/KM (kg–1 m3 s–1) - K M Michaälis-Menten constant (kgm–3) - K X mass transfer coefficient referred to the aqueous phase (ms–1) - K XaX volumetric mass transfer coefficient based on the volume of the aqueous phase (s–1) - k Y mass transfer coefficient referred to the organic phase (ms–1) - K YaY volumetric mass transfer coefficient based on the volume of the organic phase (s–1) - N X mass flux of indole from organic to aqueous Phase (kg m–2s–1) - N Y mass flux of indole from aqueous to organic phase (kg m–2s–1) - Q e volumetric flow rate in exit stream (m3s–1) - Q f volumetric flow rate in feed stream (m3s–1) - obs observed reaction rate (kg s–1 m–3) - intrinsic reaction rate (kg s–1 m–3) - Re Reynolds number - Sc Schmidt number - Sh Sherwood number - t time (s) - u superficial velocity (m s–1) - V max maximum reaction rate (kg s–1m–3) - V S volume of the support (m3) - V X volume of aqueous phase (m3) - V Y volume of the organic phase (m3) - X indole concentration in the aqueous phase (kgm–3) - Y indole concentration in the organic phase (kg m–3 Greek Letters overall effectiveness factor - e external effectiveness factor - i internal effectiveness factor - Thiele module A fellowship awarded to one of us (D.M.R.)by INICT is gratefuly acknowledged.  相似文献   

6.
This paper reports on the results of liquid-phase mass transfer experiments carried-out in a bed of immobilized anaerobic sludge. The liquid superficial velocity (vs) was found to deeply affect the liquid-phase volumetric mass transfer coefficient (ksa) in the vs range of 0.007 to 0.075 cm.s–1. Moreover, ksa increased exponentially with vs in that range, due to the decrease of the external mass transfer resistance.  相似文献   

7.
A new model is presented to predict the plant uptake of nitrate supplied by diffusion and mass flow to its roots. Plant growth, root-shoot ratio and the plant's nitrate uptake capacity are all set dependent on the plant's N nutrition state. By thoroughly integrating processes occurring in both plant and soil, the model enables to control the relative importance of both under a wide range of different nutritional scenarios.Soil parameters D0 diffusion coefficient in water (m2 day-1) - De diffusion coefficient in soil (m2 day-1) - C nitrate concentration in soil (mol m-3) - f tortuosity (-) - volumetric moisture content (-) - R radial distance from root axis (m) Plant parameters b1, b2 parameters of biomass partitioning Equation (10) - IR interroot distance (m) - KmU Michaelis-Menten constant of the uptake system (mol m-3) - KmNRA Michaelis-Menten constant of nitrogen reduction system (mol g-1) - k1, k2, k3 parameters of growth model Equation (9) - Lv Root length density (m m-3) - NO3 set - Set point of the cytoplasmatic nitrate pool (mol g-1 dw) - NO3 c - cytoplasmatic nitrate concentration (mol g-1 dw) - NO3 v - vacuolar nitrate concentration (mol g-1 dw) - NRAmax maximum nitrate reductase activity (mol g-1 dw day-1) - Nre reduced nitrogen content (mol) - Nremax maximum reduced N concentration in the plant (mol g-1 dw) - P partitioning coefficient of nitrate between cyplasm and vacuole - R(1) root radius (m) - RGR relative growth rate (day-1) - U uptake rate (mol day-1 m-2) - Umax maximum uptake rate (Eq. 6) (day-1 m-2) - Vo water flux at root surface (m day-1) - Wr root dry weight (g) - Wsh shoot dry weight (g) - X model parameter: number of root compartments - Y model parameter: number of nodes  相似文献   

8.
Summary The kinetics of lactate dehydrogenase in situ were studied in sections of unfixed liver of the male mouse using a quantitative histochemical technique. The sections were incubated on substrate-containing gel films. The absorbance of the final reaction products deposited in a single hepatocyte was measured continuously during the incubation as a function of incubation time using a scanning microdensitometer. The absorbance increased non-linearly during the first minute of incubation, but linearly for at least the next 3 min afterwards. The initial velocity (v i ) of the dehydrogenase was calculated from two equations proposed previously by us, v i=2.82 °A and v i =v+2°A, where v and °A are, respectively, the gradient and intercept o linear regression line of absorbance on time for incubation times between 1 and 3 min.The dependence of v i on lactate concentration gave the following mean kinetic constants. For periportal hepatocytes, the apparent K m =14 mM and V max =80 moles hydrogen equivalents formed cm–3 hepatocyte cytoplasm min–1. For pericentral hepatocytes, K m =12 mM and V max =87 moles hydrogen equivalents cm–3 min–1. The K m values are very similar to those determined previously from biochemical assays. The concentrations of the enzyme in single hepatocytes calculated from the V max values are in good agreement with those obtained by another method. These data substantiate the validity of our equations.  相似文献   

9.
The present work involves the use of p-tert-butylcalix[4,6,8]arene carboxylic acid derivatives (tButyl[4,6,8]CH2COOH) for selective extraction of hemoglobin. All three calixarenes extracted hemoglobin into the organic phase, exhibiting extraction parameters higher than 0.90. Evaluation of the solvent accessible positively charged amino acid side chains of hemoglobin (PDB entry 1XZ2) revealed that there are 8 arginine, 44 lysine and 30 histidine residues on the protein surface which may be involved in the interactions with the calixarene molecules. The hemoglobin–tButyl[6]CH2COOH complex had pseudoperoxidase activity which catalysed the oxidation of syringaldazine in the presence of hydrogen peroxide in organic medium containing chloroform. The effect of pH, protein and substrate concentrations on biocatalysis was investigated using the hemoglobin–tButyl[6]CH2COOH complex. This complex exhibited the highest specific activity of 9.92 × 10?2 U mg protein?1 at an initial pH of 7.5 in organic medium. Apparent kinetic parameters (Vmax, Km, kcat and kcat/Km) for the pseudoperoxidase activity were determined in organic media for different pH values from a Michaelis–Menten plot. Furthermore, the stability of the protein–calixarene complex was investigated for different initial pH values and half-life (t1/2) values were obtained in the range of 1.96 and 2.64 days. Hemoglobin–calixarene complex present in organic medium was recovered in fresh aqueous solutions at alkaline pH, with a recovery of pseudoperoxidase activity of over 100%. These results strongly suggest that the use of calixarene derivatives is an alternative technique for protein extraction and solubilisation in organic media for biocatalysis.  相似文献   

10.
The effect of temperature, light-spectrum, desiccation and salinity gradients on the photosynthesis of a Japanese subtidal brown alga, Sargassum macrocarpum (Fucales), was determined using a pulse amplitude modulation-chlorophyll fluorometer and dissolved oxygen sensors. Temperature responses of the maximum (Fv/Fm in darkness) and effective (ΔF/Fm at 50 μmol photons m−2 s−1; = ΦPSII) quantum yields during 6-day culture (4–36°C) remained high at 12–28°C, but decreased at higher temperatures. Nevertheless, ΔF/Fm also dropped at temperatures below 8°C, suggesting light sensitivity under chilling temperatures because Fv/Fm remained high. Photosynthesis–irradiance responses at 24°C under red (660 nm), green (525 nm), blue (450 nm) and white light (metal halide lamp) showed that maximum net photosynthesis under blue and white light was greater than under red and green light, indicating the sensitivity and photosynthetic availability of blue light in the subtidal light environment. In the desiccation experiment, samples under aerial exposure of up to 8 h under dim-light at 24°C and 50% humidity showed that ΔF/Fm quickly declined after more than 45 min of emersion; furthermore, ΔF/Fm also failed to recover to initial levels even after 1 day of rehydration in seawater. Under the emersion state, the ΔF/Fm remained high when the relative water content (RWC) was greater than 50%; in contrast, it quickly dropped when the RWC was less than 50%. When the RWC was reduced below 50%, ΔF/Fm did not return to initial levels, regardless of subsequent re-hydration, suggesting a low capacity of photosynthesis to recover from desiccation. The stenohaline response of photosynthesis under 3-day culture is evident, given that ΔF/Fm declined when salinity was beyond 20–40 psu. Adaptation to subtidal environments in temperate waters of Japan can be linked to these traits.  相似文献   

11.
Pichia pastoris is considered as one of the prominent host extensively used as a platform for heterologous protein production. In the present study, the growth inhibition kinetics of recombinant P. pastoris expressing human interferon gamma was studied under different initial substrate concentrations of gluconate (10–100?g?L?1) and methanol (2–50?g?L?1) in modified FM22 medium. The highest specific growth rate of 0.0206 and 0.019?hr?1 was observed at 60?g?L?1 of gluconate and 10?g?L?1 of methanol, respectively. Various three- and four-parametric Monod-variant models were chosen to analyze the inhibition kinetics. The model parameters as well as goodness of fit were estimated using nonlinear regression analysis. The three-parameter Haldane model was found to be best fit for both gluconate (R2?=?0.95) and methanol substrate (R2?=?0.96). The parameter sensitivity analysis revealed that µmax, Ki, and Ks are the most sensitive parameters for both methanol and gluconate. Different substrate inhibition models were fitted to the growth kinetic data and the additive form of double Webb model was found to be the best to explain the growth kinetics of recombinant P. pastoris.  相似文献   

12.
The association of coenzyme A(CoASH) and glutathione (GSH) with the water-soluble polymers and their esterolytic reactivities were evaluated through the reaction with p-nitrophenyl acetate in the presence of cationic polymer micelles: partially laurylated poly(2-ethyl-1-vinylimidazole) and poly(4-vinylpyridine). The polymer micelles with high lauryl-group content (more than 12 mol%) markedly accelerated the reaction at very low concentrations of the polymer. Other polymers with no or small lauryl-group content only slightly enhanced the association and the reaction rate. From the rate-polymer concentration profiles, the association constants (K) and the rate constants for thiol coenzymes bound to the polymer (ka,bound) were determined: for polymers with more than 12 mol % lauryl-group content, KCoASH = 1110–2270 M?1, KGSH = 170–503M?1, ka,bound at pH 8.65 = 142–341M?1 sec?1. ka,bound were 20–340 times larger than that observed in the absence of the polymer. The logarithm of ka,bound was found to be correlated well with the polymer hydrophobicity, indicating that the hydrophobic environment of the polymer activated the bound thiol anions. On the other hand, the polymer hydrophobicity did not correlate with the association constant.  相似文献   

13.
Using whole cell invertase of Saccharomyces pastorianus, entrapped in spherical agar pellets, sucrose hydrolysis was carried out in a continuously fed fluidized bed reactor. The effective rate of reaction determined experimentally for the catalytic pellet was correlated with particle radius (R), intraparticle concentration of enzyme (Ep) and external concentration of substrate (S R). The results were elucidated by theoretical analysis incorporating internal mass transfer resistance. At high degrees of diffusional resistance, the effectiveness factor was successfully estimted from Bischoff's equation. A dimensionless number, mA ? R(k2Ep/KmD)0.5(Km/(Km + S R)), was used conveniently to predict the effectiveness factor in those cases wher the intraparticle diffusional effect was less significant. This number was employed to determine critical pellet size for an optimal reaction. The relationship between the properties of the pellet (size and intraparticle enzyme activity) and its apparent kinetic constants (k2 and Km), estimated according to Lineweaver-Burk, are discussed.  相似文献   

14.
Photosynthetic parameters of phytoplankton and sea ice algae from landfast sea ice of the Chukchi Sea off Point Barrow, Alaska, were assessed in spring 2005 and winter through spring 2006 using Pulse Amplitude Modulated (PAM) fluorometry including estimates of maximum quantum efficiency (F v/F m), maximum relative electron transport rate (rETRmax), photosynthetic efficiency (α), and the photoadaptive index (E k). The use of centrifuged brine samples allowed to document vertical gradients in ice algal acclimation with 5 cm vertical resolution for the first time. Bottom ice algae (0–5 cm from ice–water interface) expressed low F v/F m (0.331–0.426) and low α (0.098–0.130 (μmol photons m−2s−1)−1) in December. F v/F m and α increased in March and May (0.468–0.588 and 0.141–0.438 (μmol photons m−2s−1)−1, respectively) indicating increased photosynthetic activity. In addition, increases in rETRmax (3.3–16.4 a.u.) and E k (20–88 μmol photons m−2 s−1) from December to May illustrates a higher potential for primary productivity as communities become better acclimated to under-ice light conditions. In conclusion, photosynthetic performance by ice algae (as assessed by PAM fluorometry) was tightly linked to sea ice salinity, temperature, and inorganic nutrient concentrations (mainly nitrogen).  相似文献   

15.
The objective of this work was to determine (1) the effect of rotational speed (N) and lifters on the oxygen transfer coefficient (k L) of a mineral solution and (2) the effect of solids concentration of a slurry soil-mineral solution on k L, at a fixed value N (0.25 s−1); in both cases the treatment was carried out in an aerated rotating drum reactor (RDR) operated at atmospheric pressure. First, the k L for the mineral solution was in the range 6.38 × 10−4–7.69 × 10−4 m s−1, which was of the same order of magnitude as those calculated for closed rotating drums supplied with air flow. In general, k L of RDR implemented with lifters was superior or equal to that of RDR without lifters. For RDR implemented with lifters, k L increased with N in the range 6.65 × 10−4–10.51 × 10−4 m s−1, whereas k L of RDR without lifters first increased with N up to N = 0.102 s−1, and decreased beyond this point. Second, regarding soil slurry experiments, an abrupt fall of k L (ca. 50%) at low values of the solid concentration (C v) and an asymptotic pattern at high C v were observed at N = 0.25 s−1. These results suggest that mass transfer phenomena were commanded by the slurry properties and a semi-empirical equation of the form Sh = f(Re, Sc) seems to corroborate this finding.  相似文献   

16.
Summary Volumetric mass transfer coefficients (kLa) were measured by a steady state method in a twin bubble column to characterize the coalescence behaviour of the medium. Employing Hansenula polymorpha cultivation broths, kLa values were compared with those measured in model media in the presence and absence of antifoam agents. The ratio of the volumetric mass transfer coefficient in the system investigated to that in water, , was employed to characterize the cultivation medium.Symbols a Specific gas/liquid interfacial area with regard to the liquid volume in reactor - de Dynamical equilibrium bubble diameter - dH Perforated plate hole diameter - dp Primary bubble diameter - dS Sauter bubble diameter - Fv Liquid feed rate - H Bubbling layer height - kL Gas/liquid mass transfer coefficient - kLa Volumetric mass transfer coefficient - m kLa/(kLa)r coalescence index - mcorr Corrected coalescence index [Eq. (3)] - OTR Oxygen transfer rate - PO Dissolved O2-partial pressure in BS2 - P1 Dissolved O2-partial pressure in BS1 - PO PO/PS relative oxygen saturation in BS2 - P1 P1/PS relative oxygen saturation in BS1 - PS Saturation dissolved oxygen partial pressure - Rc dnB/dt coalescence rate - S Substrate concentration - tF Time since the beginning of the cultivation - X Biomass concentration - V1 Liquid volume in BS1 - wSG Superficial gas velocity in BS1 - G Gas holdup in BS1 - 1 V1/Fv mean liquid residence time in BS1 - BS1 O2 absorber column - BS2 O2 desorber column - D Desmophen (antifoam agent) - NS Nutrient salt solution (Table 1)  相似文献   

17.
Abstract: Pentobarbital anesthesia (40 mg kg–1) was accompanied by a 50% decrease of blood flow and a 40% decrease of unidirectional blood-brain glucose transfer in the parietal cortex of the rat brain. The correlation was explained by a decrease of the number of perfused capillaries. The maximal transport capacity, Tmax, decreased from 409 to 235 μ mol 100 g–1 min–1 and the half-saturation constant, Km, from 8.8 to 4.9 mm. At 8.3–8.7 mm -glucose in arterial plasma, the transfer constant (clearance) for unidirectional blood-brain transfer decreased from 0.195 ± 0.011 in awake rats to 0.132 ± 0.005 ml g–1 min–1 in anesthetized rats. Half of the decrease was due to less complete diffusion-limitation of glucose uptake at the low plasma flow rate in brain, the other half to the decreased Tmax.  相似文献   

18.
Blood-brain barrier (BBB) transport of choline and certain choline analogs was studied in adult and suckling rats, and additionally compared in the paleocortex and neocortex of adult rats. Saturable uptake was characterized by a single kinetic system in all cases examined, and in adult rat forebrains we determined a Km= 442 ± 60 μM and Vmax= 10.0 ± 0.6 nmol min-1 g-1. In 14–15-day-old suckling forebrains a similar Km (= 404 ± 88 μM) but higher Vmax (= 12.5 ± 1.5 nmol min-1 g-1) was determined. When choline uptake was compared in two regions of the forebrain, similar Michaelis-Menten constants were determined but a higher uptake velocity was found in the neocortex (i.e. neocortex Km= 310 ± 103 μM and Vmax= 12.6 ± 2.8 nmol min-1g-1; paleocortex Km= 217 ± 76 μM and Vmax= 7.2 ± 1.5 nmol min-1 g-1). Administration of radiolabelled choline at low (5 μM) and high (100 μM) concentrations, followed by microwave fixation 60 s later and chloroform-methanol-water separations of the homogenized brain did not suggest a relationship between concentration and the appearance of label in lipid or aqueous fractions as observed in another in-vitro study elaborating two-component kinetics of choline uptake. It was observed that 60s after carotid injection 12–14% of the radiolabel in the ipsilateral cortex was found in the chloroform-soluble fraction. Hemicholinium-3 (Ki= 111 μM), dimethylaminoethanol (Ki= 42 μM), tetraethyl ammonium chloride, tetramethyl ammonium chloride, 2-hydroxyethyl triethylammonium iodide, carnitine, normal rat serum, and to a lesser extent lithium and spermidine all inhibited choline uptake in the BBB. Unsubstituted ammonium chloride and imipramine did not inhibit choline uptake. No difference was observed in blood-brain barrier choline uptake of unanesthetised, carotid artery-catheterized animals, and comparable sodium pentobarbital-anesthetized controls.  相似文献   

19.
Abstract: The unidirectional transfer of d -glucose from blood to parietal cortex tissue of the brain of awake rats was measured by single intravenous injection of tracer glucose, as well as by single intracarotid injection according to the method of Oldendorf. The maximal unidirectional blood–brain glucose transfer rate (Tmax) was 407 μ mol (100 g)–1 min–1 when measured by intravenous injection, and 352 μ mol (100 g)–1 min–1 when measured by intracarotid injection. The half–saturation constants (Km) were 7.8 mm and 16.8 HIM, respectively. The comparison shows that the two methods give similar results when cerebral perfusion is assessed accurately.  相似文献   

20.
Laccase from the white-rot fungus Fomes fomentarius was used for the biodegradation of ferulic acid (FA) in the presence of chloride anions. The initial reaction rates of substrate depletion were obtained by reverse-phase HPLC determination of remaining FA since substrate and reaction products have absorption peaks at similar wavelengths. Modelling of time-course data was accomplished by discrimination of the best enzyme inhibition equation from an initial set of seven different models based on Michaelis–Menten kinetics: competitive; uncompetitive; non-competitive; mixed; mixed hyperbolic; mixed parabolic; mixed hyperbolic and parabolic. Corrected Akaike information criterion was used to evaluate the relative merit of each kinetic model in order to rank them and find the more likely one. The discrimination results showed that the models with higher probabilities were the competitive and mixed inhibition types, but Akaike weights supported the selection of competitive inhibition (CI). After optimization by nonlinear regression, laccase kinetic parameters of FA biodegradation in the presence of chloride anions were: Vmax?=?0.11?μmol?min?1?mg?1, Km?=?44?μmol?L?1 and a CI constant Kic?=?14?mmol?L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号