首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solid state conformations of cyclo[Gly–Proψ[CH2S]Gly–D –Phe–Pro] and cyclo[Gly–Proψ[CH2–(S)–SO]Gly–D –Phe–Pro] have been characterized by X-ray diffraction analysis. Crystals of the sulfide trihydrate are orthorhombic, P212121, with a = 10.156(3) Å, b = 11.704(3) Å, c = 21.913(4) Å, and Z = 4. Crystals of the sulfoxide are monoclinic, P21, with a = 10.662(1) Å, b = 8.552(3) Å, c = 12.947(2) Å, β = 94.28(2), and Z = 2. Unlike their all-amide parent, which adopts an all-trans backbone conformation and a type II β-turn encompassing Gly-Pro-Gly-D -Phe, both of these peptides contain a cis Gly1-Pro2 bond and form a novel turn structure, i.e., a type II′ β-turn consisting of Gly–D –Phe–Pro–Gly. The turn structure in each of these peptides is stabilized by an intramolecular H bond between the carbonyl oxygen of Gly1 and the amide proton of D -Phe4. In the cyclic sulfoxide, the sulfinyl group is not involved in H bonding despite its strong potential as a hydrogen-bond acceptor. The crystal structure made it possible to establish the absolute configuration of the sulfinyl group in this peptide. The two crystal structures also helped identify a type II′ β-turn in the DMSO-d6 solution conformers of these peptides. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Pivaloyl-L -Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of β-turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II β-turn conformations are about 2 kcal mol?1 more stable than Type III structures. A crystallographic study has established the Type II β-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, β = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II β-turn conformation is stabilized by an intramolecular 4 → 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are ?Pro = ?57.8°, ψPro = 139.3°, ?Aib = 61.4°, and ψAib = 25.1°. The Type II β-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.  相似文献   

3.
Analysis of electron-transfer (ET) kinetics data obtained from experiments on Ru-modified proteins (azurin, cytochrome c, myoglobin) and the bacterial photosynthetic reaction center reveals that distant donor-acceptor electronic couplings depend upon the secondary structure of the intervening polypeptide matrix. The β-sheet azurin structure efficiently and isotropically mediates coupling with an exponential distance-decay constant of 1.1?Å–1. The experimentally derived distance-decay constant of 1.4?Å–1 for long-range ET in myoglobin and the reaction center suggests that hydrogen-bond couplings are weaker through α helices than across β sheets. The donor-acceptor interactions of systems with comparable tunneling energies fall into two coupling zones: the β zone (bounded by distance-decay constants of 0.9?and 1.15 Å–1) includes all the β-sheet (azurin) couplings and all but one coupling in cytochrome c; the α zone (boundaries: 1.25 and 1.6?Å–1) includes less strongly coupled donor-acceptor pairs in myoglobin and the reaction center as well as a relatively weakly coupled pair in cytochrome c.  相似文献   

4.
Small-angle neutron scattering studies of Escherichia coli tyrosyl-tRNA synthetase indicate that in solution this enzyme is a dimer of Mr, 91 (±6) × 103 with a radius of gyration RG of 37.8 ± 1.1 Å.The increase in the scattering mass of the enzyme upon binding tRNATyr has been followed in 20 mm-imidazole · HCl (pH 7.6), 10 mm-MgCl2, 0.1 mm-EDTA, 10 mm-2-mercaptoethanol, 150 mm-KCl. A stoichiometry of one bound tRNA per dimeric enzyme molecule was found. The RG of the complex is equal to 41 ± 1 Å. Titration experiments in 74% 2H2O, close to the matching point of tRNA, show an RG of 38.5 ± 1 Å for the enzyme moiety in the complex. From these values, a minimum distance of 49 Å between the centre of mass of the bound tRNA and that of the enzyme was calculated.In low ionic strength conditions (20 mm-imidazole-HCl (pH 7.6), 10 mm-MgCl2, 0.1 mm-EDTA, 10 mm-2-mercaptoethanol) and at limiting tRNA concentrations with respect to the enzyme, titrations of the enzyme by tRNATyr are characterized by the appearance of aggregates, with a maximum scattered intensity at a stoichiometry of one tRNA per two enzyme molecules. At this point, the measured Mr and RG values are compatible with a compact 1:2, tRNA: enzyme complex. This complex forms with a remarkably high stability constant: (enzyme:tRNA:enzyme)/(enzyme:tRNA)(enzyme) of 0.1 to 0.3(× 106) m?1 (at 20 °C). Upon addition of more tRNA, the complex dissociates in favour of the 1:1, enzyme:tRNA complex, which has a higher stability constant (1 to 3 (× 106) m?1).  相似文献   

5.
The outer sphere reductions of Co(NH3)5B3+ by Fe(CN)5A3− have been studied. The observed pseudo first order rate constants (Co complex in excess) obey the dependence kobs=Kosket[Co]/(1 +Kos[Co]), as expected for outer sphere electron transfer reactions. Values of the fundamental electron transfer rate constants ket have been determined, along with the equilibrium constant Kos for a range of reactions in which A and B are pyridyl ligands of different sizes. The first order electron transfer rate constants vary in a manner that is consistcnt with adiabatic electron transfer. The outer sphere ion pairing equilibrium constants Kos have been calculated: Kos=8.6 ± 0.1 × 102 M−1 when A and B=pyridine; Kos=1.07 ± 0.09 × 103 M−1 where A=pyridine, B=1-phenyl-3-(4-pyridyl)propane; Kos=1.86 ± 0.11 × 103 M−1 when A=4,4′-bipyridine, B=pyridine; Kos=1.27 ± 0.08 × 103 M−1 when A=4,4′-bipyridine, B=4-phenylpyridine. Distances of closest approach between the metal centers in the reactive ion pairs are compared, and it is concluded that there is a common mechanism, in which the ammonia side of the cobalt complex approaches the cyano side of the iron complex in each reactive ion pair.The distance of closest approach between the two metal centers (a) was calculated from the experimental values for the ion pairing equilibrium constant Kos at 25 °C: 5.2 Å when A=4,4′-bipyridine, B=pyridine; 5.4 Å when A=4,4′-bipyridine, B=4-phenylpyridine; 5.5 Å when A=pyridine, B=1-phenyl-3-(4-pyridyl)propane; 5.7 Å when A=B=pyridine. These relatively short metal-metal distances, when compared to the X-ray structure of the compound [Co(NH3)5(4-phenylpyridine)]2[S2O6]3· 4H2O, do not support an ion pair orientation in which the two substituted pyridine ligands A and B are oriented toward each other. [P21/c,a=7.399(3), b=22.355(10), c=13.776(4) Å, β=92.02(3)°, R=0.070.] The crystallographic results show that if the two pseudo-octahedral coordination spheres are oriented in the reactive ion pair so that an ammonia face of the cobalt complex is at hydrogen bonding distance from a cyano face on the iron complex, the metal-metal distance is 5.3 Å, a distance which is in agreement with the kinetic results.  相似文献   

6.
A new type of crystal of glycylglycine (GlyGly) hydrate was crystallized from an aqueous solution, and the structure of the crystal has been determined by x-ray diffraction. The crystal is monoclinic, and the space group is C2/c, with the cell constants of a = 15.941(2) Å, b = 4.774(2) Å, c = 19.428(2) Å and β = 109.884(7)° at 296 K. There are eight GlyGly molecules and six water solvent in the cell. The GlyGly molecules are packed in a parallel β-sheet arrangement. The single crystal was obtained with a maximum size of 10 × 7 × 4 mm and is not stable under atmospheric conditions. The transparent crystal turned to turbid with the elapse of time. The isotropic 13C chemical shifts obtained from the 13C cross polarization magic angle spinning nmr experiments reveal that GlyGly hydrate was changed into GlyGly (form α) by dehydration. © 1998 John Wiley & Sons, Inc. Biopoly 45: 333–339, 1998  相似文献   

7.
Trypanosoma brucei ornithine decarboxylase, expressed and purified from E. coli, has been crystallized by the vapor diffusion method using PEG 3350 as a precipitant. The crystals belong to the monoclinic space group P21 and have cell constants of a = 66.3 Å, b = 151.8 Å, c = 83.7 Å, and β = 101.2°. While larger crystals are twinned, smaller crystals (0.4 × 0.3 × 0.05 mm3) are single.  相似文献   

8.
In continuation of our studies on the structure and function of peptaibol antibiotics, the conformational properties of a sequence analogous to that of Trichodecenin I (Z-Gly-Gly-D -Leu-Aib-Gly-D -Ile-D -Leu-OMe, where Z = benzyloxycarbonyl, Aib = α-aminoisobutyric acid, and OMe = methyl ester) have been investigated crystallographically. This sequence is the mirror image of the naturally occurring molecule and also of the C-terminal heptapeptide of the related lipo-peptaibol Trichogin A IV (where, however, the Leu-OMe residue has replaced the original Leuol residue). The molecule crystallized in the monoclinic system, space group P21, Z = 4, and cell parameters a = 11.610(5), b = 33.342(8), c = 11.735(4) Å, β = 110.42(1)*, V = 4257(3) Å3. The crystallographic refinement converges at residual values of R = 0.047 and wR2 = 0.134 on F2. In the 1–5 segment the molecular conformation is virtually identical to that one reported from solution nmr studies of a similarly protected sequence [Biopolymers (1995), Vol. 35, pp. 21–29)] and is characterized by β-turns of type I at Gly1-Gly2, II′ at Leu3-Aib4, and I at Aib4-Gly5. In the crystal structure, a β-sheet-like arrangement is seen at the C-terminus. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
In 1968 C. Venkatachalam (Biopolymers, Vol. 6, pp. 1425–1436) predicted the ideal forms of β-turns (type I, type II, etc.) based entirely on theoretical calculations. Subsequently, over a thousand x-ray structures of different globular proteins have been analyzed, with results suggesting that the most important form among the hairpin conformers is the type I β-turn. For the latter type of hairpin conformation, the original computations had predicted ϕi+1 = −60°, ψi+1 = −30°, ϕi+2 = −90°, and ψi+2 = 0° as backbone torsion angle values, and these have been used from that time as reference values for the identification of the type I β-turn. However, it has never been clarified whether these “ideal” backbone torsion angle values exist in real structures, or whether these torsion angles are only “theoretical values.” Using the most recent release of the Protein Data Bank (1994), a survey has been made to assign amino acid pairs that approach the ideal form of the type I β-turn. The analysis resulted in four sequences where the deviation from ideal values for any main-chain torsion angles was less than 2°. In order to determine whether such a backbone fold is possible only in proteins owing to fortuitous cooperation of different folding effects, or whether it occurs even in short peptides, various attempts have been made to design the optimal amino acid sequence. Such a peptide model compound adopting precisely the predicted torsion angle values [ϕi+1 = −60°, ψi+1 = −30°, ϕi+2 = −90°, and ψi+2 = 0°] could provide valuable information. The solid state conformation of cyclo[(δ) Ava-Gly-Pro-Thr (O1Bu)-Gly] reported herein, incorporating the -Pro-Thr- subunit, yields values suggesting that the “ideal” type I β-turn is even possible for a peptide where there are no major environmental effects present. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The solid state conformational analysis of [Tyr4] cyclolinopeptide A has been carried out by x-ray diffraction studies. The crystal structure of the monoclinic form, grown from a dioxane-water mixture [a = 9.849 (5) Å, b = 20.752 (4) Å, c = 16.728 (5) Å, β = 98.83 (3)°, space group P21, Z = 2], shows the presence of five intramolecular N-H? O?C hydrogen bonds, with formation of one C17 ring structure, one α-turn (C13), one inverse γ-turn (C7), and two β-turns (C10, one of type III and one of type 1). The Pro1-Pro2 peptide unit is cis (ω = 5°) all others are trans. The structure is almost superimposable with that of cyclolinopeptide A. The rms deviation for the atoms of the backbones is on the average 0.33 Å. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
In order to test the helical preference of short oligo-L -leucines, we crystallized the tripeptide L -leucyl-L .-leucyl-L -leucine (LLL) and carried out x-ray diffraction studies of it (L -leucyl-L -leucyl-L leucine)2. 3CH3OH. H2O, (C39H84N6O12). Crystallized in the monoclinic system, space group P21, cell parameters: a = 12.031(2), b = 15.578(3), c = 14.087(2) Å, α = 90°, β = 97.29(1)°, γ = 90°, V = 2618.6 Å3. MW = 829.1, Dc = 1.051 gcm?3. R index of 0.057 for 4213 reflections (λcukα = 1.5418 Å) > 2σ. LLL takes tip the β-sheet rather than a helical conformation in the crystalline stale. The three methanol molecules and the water molecule that constitute the solvent of crystallization form a network of hydrogen bonds to the LLL molecules and to one another. It is rather remarkable that though A and L have stronger helical preferences than G, neither AAA nor LLL form the crystalline helix but GAL does, indicating that the helical preferences depend on the sequence context. The residue L2 in molecule A and the residues L1 and L3 of molecule B do not show the preferred conformation for forming helices. Further, very remarkably. LLL exhibits a unique super secondary feature of the protein folding topology, namely the twisted β-sheet. Where as most short peptides show only the classical p-sheet conformation. Thai even the tripeptide LLL is able to exhibit the twisted β-sheet conformation, and with the correct left-handed twist this suggests that even very short peptide segments possess the ability to assume several of the characteristic topological features exhibited by proteins. An extensive review of tripeptide conformations has been carried out and some results of this study have been included here. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Analysis of electron-transfer (ET) kinetics data obtained from experiments on Ru-modified proteins (cytochrome c, azurin, myoglobin) reveals that distant donor-acceptor electronic couplings depend upon the secondary structure of the intervening polypeptide matrix. Rates of Fe2+→Ru3+ ET reactions in cytochrome c decay exponentially with tunneling-pathway length (decay constant 0.73?Å–1); these rates also decay exponentially with Ru-Fe distance (decay constant 1.1?Å–1). In azurin, a β-sheet protein, Cu+→Ru3+ rates exhibit an exponential Cu-Ru distance dependence with a decay constant of 1.1?Å–1. Comparison of distant couplings in azurin and myoglobin suggests that hydrogen bonds are better mediators across β sheets than through α helices.  相似文献   

13.
The aim of this study was to carry out a bioaccessibility-based risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soils from sites of different anthropogenic activities in Lagos, Nigeria. Using an in vitro gastrointestinal model—Fed Organic Estimation Human Simulation Test method (FOREShT), the concentration of bioaccessible 16 priority US Environmental Protection Agency (USEPA) PAHs in soils were determined. Total concentration of 16 priority USEPA PAHs was also determined. The concentration range was 702–253,922 ng g?1 and 92–760 ng g?1 for total and bioaccessible PAHs, respectively. For persons involved with activities at these sites no health risks were observed, based on bioaccessibility values of PAHs. Mean daily intake of PAHs from these soils were below the oral mean daily intake threshold for PAHs in food. Also, overall estimated theoretical cancer risk (2.5 × 10?09, 6.5 × 10?07, 5.5 × 10?10, 2.7 × 10?09, 6.5 × 10?10, 9.5 × 10?10, 2.0 × 10?09, and 4.1 × 10?07 for the eight sites based on their bioaccessible concentration) for exposure to PAHs in surface soils were below the health guidelines for extreme (1 × 10?04) and normal (1 × 10?06) exposures.  相似文献   

14.
Small globular protein, β-lactoglobulin (βLG), which has significant affinity toward many drugs, is the most abundant whey protein in milk. In this study, the interaction of βLG with three important nutrients, ascorbic acid (ASC), folic acid (FOL), and vitamin K3 (VK3) was investigated by spectroscopic methods (UV–visible and fluorescence) along with molecular docking technique. The results of fluorescence measurements showed that studied nutrients strongly quenched βLG fluorescence in static (FOL and ACS) or static–dynamic combined quenching (VK3) mode. The values of binding constants (KβLG-ASC ~ 4.34 × 104 M?1, KβLG-FOL ~ 1.67 × 104 M?1and KβLG-VK3 ~ 13.49 × 104 M?1 at 310 K) suggested that VK3 and FOL had stronger binding affinity toward βLG than ASC. Thermodynamic analysis indicated that hydrophobic interactions are the major forces in the stability of FOL–βLG complex with enthalpy- and entropy-driving mode while, hydrogen bonds and van der Waals interactions play a major role for βLG–ASC and βLG–VK3 associations. The results of 3D fluorescence FT-IR and UV–Visible measurements indicated that the binding of above nutrients to βLG may induce conformational and micro-environmental changes of protein. Also, there is a reciprocal complement between spectroscopic techniques and molecular docking modeling. The docking results indicate that the ASC, FOL, and VK3 bind to residues located in the subdomain B of βLG. Finally, this report suggests that βLG could be used as an effective carrier of above nutrients in functional foods.  相似文献   

15.
The title compound of 3‐benzothiazole‐9‐ethyl carbazole was synthesized by the reaction of 3‐aldehyde‐9‐ethyl carbazole and 2‐aminothiophenol. The compound was characterized by 1H nuclear magnetic resonance (NMR) and mass spectrometry (MS). Its crystal structure was obtained and determined by single crystal X‐ray diffraction. The results showed that the crystal belongs to the orthorhombic crystal system and the cell parameters of space group P2(1)2(1)2(1) were a = 5.6626 (12) Å, b = 12.606 (3) Å, c = 22.639 (5) Å, α = 90°, β = 90°, γ = 90°, V = 1616.0 (6) Å3, Z = 4, Dc = 1.350 mg/m3. The UV–vis and fluorescence spectra were also studied preliminarily. The fluorescence spectra of the title compound with bovine serum albumin (BSA) showed that BSA could be marked with the compound and the stability constant between them was 0.82 × 107 M?1. Meanwhile, the crystal and molecule were theoretically surveyed by density functional tight‐binding (DFTB). The results showed that there was an orbital overlap for lowest unoccupied molecular orbital (LUMO) between the neighbouring molecules for the crystal, which is different from the molecule structure. It was also showed that the crystal structure is a non‐conductor. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The crystal structure of the nonapeptide Boc-D -Phe-Aib-Aib-Aib-Aib-Gly-Leu-Aib-AibOMe (I), which is an analogue of the N-terminal sequence of antiamoebins and emerimicins, establishes a completely 310-helical conformation with seven successive intramolecular 4 → 1 hydrogen bonds. The average, ?, ψ values for residues 1–8 are ?59° and ?32°, respectively. Crystal parameters are C47H77N9O12, space group P1, a = 10.636(4) Å, b = 11.239(4) Å, c = 12.227(6) Å, α = 101.17(4)°, β = 97.22(4)°, γ = 89.80(3)°, Z = 1, R = 5.95% for 3018 data with |F0| > 3α(F), resolution 0.93 Å. The use of the torsion angle κ = C(i ? 1)N(i)Cα(i)Cβ(i), where κ = 68° for D -Phe and κ = 164° for L -Leu, confirms the opposite configurations of these residues. The ?, ψ values of ?62° and ?32° at D -Phe are unusual, since this region is characteristic of residues with L configurations. Peptide I possesses only two chiral residues of opposing configuration. The observed right-handed 310-helical structure suggests that helix sense has probably been determined by the stereo-chemical preferences of the Leu residue. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
18.
Some theoretical studies have predicted that the conformational freedom of the α-aminoisobutyric acid (H-Aib-OH) residue is restricted to the α-helical region of the Ramachandran map. In order to obtain conformational experimental data, two model peptide derivatives, MeCO-Aib-NHMe 1 and ButCO-LPro-Aib-NHMe 2 , have been investigated. The Aib dipeptide 1 crystallizes in the monoclinic system (a = 12.71 Å, b = 10.19 Å, c = 7.29 Å, β = 110.02°, Cc space group) and its crystal structure was elucidated by x-ray diffraction analysis. The azimuthal angles depicting the molecular conformation (? = ?55.5°, ψ = ?39.3°) fall in the α-helical region of the Ramachandran map and molecules are hydrogen-bonded in a three-dimensional network. In CCl4 solution, ir spectroscopy provides evidence for the occurrence of the so-called 5 and C7 conformers stabilized by the intramolecular ii and i + 2 → i hydrogen bonds, respectively. The tripeptide 2 was studied in various solvents [CCl4, CD2Cl2, CDCl3, (CD3)2SO, and D2O] by ir and pmr spectroscopies. It was shown to accommodate predominantly the βII folded state stabilized by the i + 3 → i hydrogen bond. All these experimental findings indicate that the Aib residue displays the same conformational behavior as the other natural chiral amino acid residues.  相似文献   

19.
An Nα-protected model pentapeptide containing two consecutive ΔPhe residues, Boc-Leu-ΔPhe-ΔPhe-Ala-Phe-NHMe, has been synthesized by solution methods and fully characterized. 1H-nmr studies provided evidence for the occurrence of a significant population of a conformer having three consecutive, intramolecularly H-bonded β-bends in solution. The solid state structure has been determined by x-ray diffraction methods. The crystals grown from aqueous methanol are orthorhombic, space group P212121, a = 11.503(2), b = 16.554(2), c = 22.107(3) Å, V = 4209(1) Å,3 and Z = 4. The x-ray data were collected on a CAD4 diffractometer using CuKa radiation (λ = 1.5418 Å). The structure was determined using direct methods and refined by full-matrix least-squares procedure. The R factor is 5.3%. The molecule is characterized by a right handed 310-helical conformation (〈ϕ〉 = −68.2°, 〈ψ〉 = −26.3°), which is made up of two consecutive type III β-bends and one type I β-bend. In the solid state the helical molecules are aligned head-to-tail, thus forming long rod like structures. A comparison with other peptide structures containing consecutive ΔPhe residues is also provided. The present study confirms that the -ΔPhe-ΔPhe-sequence can be accommodated in helical structures. © 1997 John Wiley & Sons, Inc. Biopoly 42: 373–382, 1997  相似文献   

20.
Sweet potato β-amylase is a tetramer of identical subunits, which are arranged to exhibit 222 molecular symmetry. Its subunit consists of 498 amino acid residues (Mr 55,880). It has been crystallized at room temperature using polyethylene glycol 1500 as precipitant. The crystals, growing to dimensions of 0.4 mm × 0.4 mm × 1.0 mm within 2 weeks, belong to the tetragonal space group P42212 with unit cell dimensions of a = b = 129.63 Å and c = 68.42 Å. The asymmetric unit contains 1 subunit of β-amylase, with a crystal volume per protein mass (VM) of 2.57 Å3/Da and a solvent content of 52% by volume. The three-dimensional structure of the tetrameric β-amylase from sweet potato has been determined by molecular replacement methods using the monomeric structure of soybean enzyme as the starting model. The refined subunit model contains 3,863 nonhydrogen protein atoms (488 amino acid residues) and 319 water oxygen atoms. The current R-value is 20.3% for data in the resolution range of 8–2.3 Å (with 2 σ cut-off) with good stereochemistry. The subunit structure of sweet potato β-amylase (crystallized in the absence of α-cyclodextrin) is very similar to that of soybean β-amylase (complexed with α-cyclodextrin). The root-mean-square (RMS) difference for 487 equivalent Cα atoms of the two β-amylases is 0.96 Å. Each subunit of sweet potato β-amylase is composed of a large (α/β)8 core domain, a small one made up of three long loops [L3 (residues 91–150), LA (residues 183–258), and L5 (residues 300–327)], and a long C-terminal loop formed by residues 445–493. Conserved Glu 187, believed to play an important role in catalysis, is located at the cleft between the (α/β)8 barrel core and a small domain made up of three long loops (L3, L4, and L5). Conserved Cys 96, important in the inactivation of enzyme activity by sulfhydryl reagents, is located at the entrance of the (α/β)8 barrel. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号