首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The hedgehog family of intercellular signalling molecules have essential functions in patterning both Drosophila and vertebrate embryos. Drosophila has a single hedgehog gene, while vertebrates have evolved at least three types of hedgehog genes (the Sonic, Desert and Indian types) by duplication and divergence of a single ancestral gene. Vertebrate Sonic-type genes typically show conserved expression in the notochord and floor plate, while Desert- and Indian-type genes have different patterns of expression in vertebrates from different classes. To determine the ancestral role of hedgehog in vertebrates, I have characterised the hedgehog gene family in amphioxus. Amphioxus is the closest living relative of the vertebrates and develops a similar body plan, including a dorsal neural tube and notochord. A single amphioxus hedgehog gene, AmphiHh, was identified and is probably the only hedgehog family member in amphioxus, showing the duplication of hedgehog genes to be specific to the vertebrate lineage. AmphiHh expression was detected in the notochord and ventral neural tube, tissues that express Sonic-type genes in vertebrates. This shows that amphioxus probably patterns its ventral neural tube using a molecular pathway conserved with vertebrates. AmphiHh was also expressed on the left side of the pharyngeal endoderm, reminiscent of the left-sided expression of Sonic hedgehog in chick embryos which forms part of a pathway controlling left/right asymmetric development. These data show that notochord, floor plate and possibly left/right asymmetric expression are ancestral sites of hedgehog expression in vertebrates and amphioxus. In vertebrates, all these features have been retained by Sonic-type genes. This may have freed Desert-type and Indian-type hedgehog genes from selective constraint, allowing them to diverge and take on new roles in different vertebrate taxa. Received: 20 July 1998 / Accepted: 23 September 1998  相似文献   

2.
3.
This review examines the basal chordate, amphioxus, as a simple model for providing insights into the development and evolution of the vertebrates, with which it shares many features, including a pharynx perforated with gill slits, a dorsal nerve cord, segmented muscles, and a notochord. Conversely, amphioxus is simpler than vertebrates in lacking neural crest and paired cephalic sensory organs. Amphioxus embryos are less derived than those of vertebrates, because it lacks large quantities of yolk and/or extra-embryonic tissues. Embryogenesis involves only a simple folding of tissue layers. In addition, the amphioxus genome lacks the large-scale gene duplications of vertebrates. However, in spite of the comparative simplicity of amphioxus, its developmental mechanisms are proving to be highly conserved with those of vertebrates. Thus, studies of amphioxus development can shed light on similar, but more complex, development of vertebrates. Such studies are especially interesting for their insights into the genetic basis of craniofacial birth defects in humans.  相似文献   

4.
5.
6.
The Evolution of Dorsoventral Pattern Formation in the Chordate Neural Tube   总被引:1,自引:0,他引:1  
Living members of Phylum Chordata are divided into three groups:the Urochordata, the Cephalochordata (amphioxus) and the Craniata(vertebrates). These animals are united by a common body plan,a key component of which is the development of a neural tubedorsal to a notochord. Studying the genetics and embryologyof these animals allows evolutionary comparison to be made betweenthe mechanisms controlling the development of homologous bodyparts in different taxa. This paper focuses specifically onthe evolution of dorsoventral pattern in the neural tube. Invertebrate embryos external inductive signals, originating fromthe notochord and the dorsal ectoderm, initiate a program ofcell differentiation that subdivides the neural tube into astereotyped pattern of neurons and glia. To understand the evolutionof this pattern I have been characterising amphioxus membersof the gene families involved, including genes from the HNF-3,Msx, Hh, Gli and Netrin families. Coupled with similar analysesof urochordate development, analysis of these genes shows thatthe signalling functions of the notochord and lateral ectodermseem to predate vertebrate origins, and have not increased incomplexity in vertebrates despite duplication of the gene familiesinvolved. Conversely, expansion of gene families downstreamof these signals has increased the complexity of gene expressionand function in vertebrate embryos. These data therefore providean indication of how gene duplication and divergence may haveprovided the raw material for the evolution of the complex patternof cell types that develops in the vertebrate neural tube.  相似文献   

7.
8.
9.
Structure and developmental expression are described for amphioxus AmphiVent, a homolog of vertebrate Vent genes. In amphioxus, AmphiVent-expressing ventral mesoderm arises at midneurula by outgrowth from the paraxial mesoderm, but in vertebrates, Vent-expressing ventral mesoderm originates earlier, at the gastrula stage. In other embryonic tissues (nascent paraxial mesoderm, neural plate, endoderm, and tailbud), AmphiVent and its vertebrate homologs are expressed in similar spatiotemporal domains, indicating conservation of many Vent gene functions during chordate evolution. The ventral mesoderm evidently develops precociously in vertebrates because their relatively large embryos probably require an early and extensive deployment of the mesoderm-derived circulatory system. The vertebrate ventral mesoderm, in spite of its strikingly early advent, still resembles the nascent ventral mesoderm of amphioxus in expressing Vent homologs. This coincidence may indicate that Vent homologs in vertebrates and amphioxus play comparable roles in ventral mesoderm specification.  相似文献   

10.
The amphioxus tail bud is similar to the amphibian tail bud in having an epithelial organization without a mesenchymal component. We characterize three amphioxus Wnt genes (AmphiWnt3, AmphiWnt5, and AmphiWnt6) and show that their early expression around the blastopore can subsequently be traced into the tail bud; in vertebrate embryos, there is a similar progression of expression domains for Wnt3, Wnt5, and Wnt6 genes from the blastopore lip (or its equivalent) to the tail bud. In amphioxus, AmphiWnt3, AmphiWnt5, and AmphiWnt6 are each expressed in a specific subregion of the tail bud, tentatively suggesting that a combinatorial code of developmental gene expression may help generate specific tissues during posterior elongation and somitogenesis. In spite of similarities within their tail buds, vertebrate and amphioxus embryos differ markedly in the relation between the tail bud and the nascent somites: vertebrates have a relatively extensive zone of unsegmented mesenchyme (i.e., presomitic mesoderm) intervening between the tail bud and the forming somites, whereas the amphioxus tail bud gives rise to new somites directly. It is likely that presomitic mesoderm is a vertebrate innovation made possible by developmental interconversions between epithelium and mesenchyme that first became prominent at the dawn of vertebrate evolution.  相似文献   

11.
Vertebrate Hairy genes are highly pleiotropic and have been implicated in numerous functions, such as somitogenesis, neurogenesis and endocrine tissue development. In order to gain insight into the timing of acquisition of these roles by the Hairy subfamily, we have cloned and studied the expression pattern of the Hairy gene(s) in amphioxus. The cephalochordate amphioxus is widely believed to be the living invertebrate more closely related to vertebrates, the genome of which has not undergone the massive gene duplications that took place early during vertebrate evolution. Surprisingly, we have isolated eight Hairy genes from the 'pre-duplicative' amphioxus genome. In situ hybridisation on amphioxus embryos showed that Hairy genes had experienced a process of subfunctionalisation that is predicted in the DDC model (for duplication-degeneration-complementation). Only the summation of four out of the eight Amphi-Hairy genes expression resembles the expression pattern of vertebrate Hairy genes, i.e. in the central nervous system, presomitic mesoderm, somites, notochord and gut. In addition, Amphi-Hairy genes expression suggest that amphioxus early somites are molecularly prefigured in an anteroposterior sequence in the dorsolateral wall of the archenteron, and the presence of a midbrain/hindbrain boundary. The expansion of the amphioxus Hairy subfamily request for caution when deducing the evolutionary history of a gene family in chordates based in the singularity of the amphioxus genome. Amphioxus may resemble the ancestor of the vertebrates, but it is not the ancestor, only its closest living relative, a privileged position that should not assume the freezing of its genome.  相似文献   

12.
13.
The cephalochordates, commonly known as amphioxus or lancelets, are now considered the most basal chordate group, and the studies of these organisms therefore offer important insights into various levels of evolutionary biology. In the past two decades, the investigation of amphioxus developmental biology has provided key knowledge for understanding the basic patterning mechanisms of chordates. Comparative genome studies of vertebrates and amphioxus have uncovered clear evidence supporting the hypothesis of two-round whole-genome duplication thought to have occurred early in vertebrate evolution and have shed light on the evolution of morphological novelties in the complex vertebrate body plan. Complementary to the amphioxus genome-sequencing project, a large collection of expressed sequence tags (ESTs) has been generated for amphioxus in recent years; this valuable collection represents a rich resource for gene discovery, expression profiling and molecular developmental studies in the amphioxus model. Here, we review previous EST analyses and available cDNA resources in amphioxus and discuss their value for use in evolutionary and developmental studies. We also discuss the potential advantages of applying high-throughput, next-generation sequencing (NGS) technologies to the field of amphioxus research.  相似文献   

14.
 The embryonic development of amphioxus (cephalochordates) has much in common with that of vertebrates, suggesting a close phylogenetic relationship between the two chordate groups. To gain insight into alterations in the genetic cascade that accompanied the evolution of vertebrate embryogenesis, we investigated the formation of the chordamesoderm in amphioxus embryos using the genes Brachyury and fork head/HNF-3 as probes. Am(Bb)Bra1 and Am(Bb)Bra2 are homologues of the mouse Brachyury gene isolated from Branchiostoma belcheri. Molecular phylogenetic analysis suggests that the genes are independently duplicated in the amphioxus lineage. Both genes are initially expressed in the involuting mesoderm of the gastrula, then in the differentiating somites of neurulae, followed by the differentiating notochord and finally in the tail bud of ten-somite stage embryos. On the other hand, Am(Bb)fkh/HNF3-1, an amphioxus (B. belcheri) homologue of the fork head/HNF-3 gene, is initially expressed in the invaginating endoderm and mesoderm, then later in the differentiating notochord and in the tail bud. With respect to these two types of genes, the formation of the notochord and tail bud in amphioxus embryos shows similarity and dissimilarity with that of the notochord and tail bud in vertebrate embryos. Received: 21 November 1996 / Accepted: 24 January 1997  相似文献   

15.
16.

Background  

The lancelet amphioxus (Cephalochordata) is a close relative of vertebrates and thus may enhance our understanding of vertebrate gene and genome evolution. In this context, the globins are one of the best studied models for gene family evolution. Previous biochemical studies have demonstrated the presence of an intracellular globin in notochord tissue and myotome of amphioxus, but the corresponding gene has not yet been identified. Genomic resources of Branchiostoma floridae now facilitate the identification, experimental confirmation and molecular evolutionary analysis of its globin gene repertoire.  相似文献   

17.
18.
19.
Amphioxus is the closest relative to vertebrates but lacks key vertebrate characters, like rhombomeres, neural crest cells, and the cartilaginous endoskeleton. This reflects major differences in the developmental patterning of neural and mesodermal structures between basal chordates and vertebrates. Here, we analyse the expression pattern of an amphioxus FoxB ortholog and an amphioxus single-minded ortholog to gain insight into the evolution of vertebrate neural segmentation. AmphiFoxB expression shows cryptic segmentation of the cerebral vesicle and hindbrain, suggesting that neuromeric segmentation of the chordate neural tube arose before the origin of the vertebrates. In the forebrain, AmphiFoxB expression combined with AmphiSim and other amphioxus gene expression patterns shows that the cerebral vesicle is divided into several distinct domains: we propose homology between these domains and the subdivided diencephalon and midbrain of vertebrates. In the Hox-expressing region of the amphioxus neural tube that is homologous to the vertebrate hindbrain, AmphiFoxB shows the presence of repeated blocks of cells along the anterior-posterior axis, each aligned with a somite. This and other data lead us to propose a model for the evolution of vertebrate rhombomeric segmentation, in which rhombomere evolution involved the transfer of mechanisms regulating neural segmentation from vertical induction by underlying segmented mesoderm to horizontal induction by graded retinoic acid signalling. A consequence of this would have been that segmentation of vertebrate head mesoderm would no longer have been required, paving the way for the evolution of the unsegmented head mesoderm seen in living vertebrates.  相似文献   

20.
In the vertebrate central nervous system (CNS), mutual antagonism between posteriorly expressed Gbx2 and anteriorly expressed Otx2 positions the midbrain/hindbrain boundary (MHB), but does not induce MHB organizer genes such as En, Pax2/5/8 and Wnt1. In the CNS of the cephalochordate amphioxus, Otx is also expressed anteriorly, but En, Pax2/5/8 and Wnt1 are not expressed near the caudal limit of Otx, raising questions about the existence of an MHB organizer in amphioxus. To investigate the evolutionary origins of the MHB, we cloned the single amphioxus Gbx gene. Fluorescence in situ hybridization showed that, as in vertebrates, amphioxus Gbx and the Hox cluster are on the same chromosome. From analysis of linked genes, we argue that during evolution a single ancestral Gbx gene duplicated fourfold in vertebrates, with subsequent loss of two duplicates. Amphioxus Gbx is expressed in all germ layers in the posterior 75% of the embryo, and in the CNS, the Gbx and Otx domains abut at the boundary between the cerebral vesicle (forebrain/midbrain) and the hindbrain. Thus, the genetic machinery to position the MHB was present in the protochordate ancestors of the vertebrates, but is insufficient for induction of organizer genes. Comparison with hemichordates suggests that anterior Otx and posterior Gbx domains were probably overlapping in the ancestral deuterostome and came to abut at the MHB early in the chordate lineage before MHB organizer properties evolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号