首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In most retroviruses, plasma membrane (PM) association of the Gag structural protein is a critical step in viral assembly, relying in part on interaction between the highly basic Gag MA domain and the negatively charged inner leaflet of the PM. Assembly is thought to begin with Gag dimerization followed by multimerization, resulting in a hexameric lattice. To directly address the role of multimerization in membrane binding, we fused the MA domains of Rous sarcoma virus (RSV) and HIV-1 to the chemically inducible dimerization domain FK506-binding protein (FKBP) or to the hexameric protein CcmK4 from cyanobacteria. The cellular localization of the resulting green fluorescent protein (GFP)-tagged chimeric proteins was examined by fluorescence imaging, and the association of the proteins with liposomes was quantified by flotation in sucrose gradients, following synthesis in a reticulocyte extract or as purified proteins. Four lipid compositions were tested, representative of liposomes commonly reported in flotation experiments. By themselves, GFP-tagged RSV and HIV-1 MA proteins were largely cytoplasmic, but both hexamerized proteins were highly concentrated at the PM. Dimerization led to partial PM localization for HIV-1 MA. These in vivo effects of multimerization were reproduced in vitro. In flotation analyses, the intact RSV and HIV-1 Gag proteins were more similar to multimerized MA than to monomeric MA. RNA is reported to compete with acidic liposomes for HIV-1 Gag binding, and thus we also examined the effects of RNase treatment or tRNA addition on flotation. tRNA competed with liposomes in the case of some but not all lipid compositions and ionic strengths. Taken together, our results further underpin the model that multimerization is critical for PM association of retroviral Gag proteins. In addition, they suggest that the modulation of membrane binding by RNA, as previously reported for HIV-1, may not hold for RSV.  相似文献   

2.
During retrovirus assembly, Gag proteins bind to the inner leaflet of the plasma membrane to initiate the budding process. The molecular basis of this protein-lipid interaction is poorly understood. For the human, immunodeficiency virus type 1 Gag protein, we recently reported that the membrane-binding domain resides within the N-terminal 31 amino acids and consists of two components: myristate and a cluster of basic residues, which together promote membrane binding in vitro and budding in vivo (W. Zhou, L. J. Parent, J. W. Wills, and M. D. Resh, J. Virol. 68:2556-2569, 1994). The positively charged residues associate electrostatically with acidic phospholipids to stabilize membrane binding, while myristate provides membrane-binding energy via hydrophobic interactions. Here we demonstrate that the human immunodeficiency virus type 1 Gag membrane-binding domain can fully replace the membrane-targeting function of the N-terminal 100 residues of the non-myristylated Rous sarcoma virus (RSV) Gag protein. To further explore the importance of myristate and basic residues in membrane binding, we developed a gain-of-function assay whereby budding was restored to defective mutants of RSV Gag. Detailed mutational analysis revealed that the position, number, and context of charged residues are crucial to budding. Myristate provides additional membrane-binding energy, which is critical when a Gag protein is near the threshold of stable membrane association. Finally, viruses with altered matrix (MA) proteins that are noninfectious, even though they produce particles with high efficiency, were identified. Thus, we present the first evidence that the RSV MA sequence plays two distinct roles, membrane binding during particle assembly and a second, as yet undefined function required for viral infectivity.  相似文献   

3.
The assembly of most retroviruses occurs at the plasma membrane. Membrane association is directed by MA, the N-terminal domain of the Gag structural protein. For human immunodeficiency virus type 1 (HIV-1), this association is mediated in part by a myristate fatty acid modification. Conflicting evidence has been presented on the relative importance of myristoylation, of ionic interactions between protein and membrane, and of Gag multimerization in membrane association in vivo. We addressed these questions biochemically by determining the affinity of purified myristoylated HIV-1 MA for liposomes of defined composition, both for monomeric and for dimeric forms of the protein. Myristoylation increases the barely detectable intrinsic affinity of the apo-protein for liposomes by only 10-fold, and the resulting affinity is still weak, similar to that of the naturally nonmyristoylated MA of Rous sarcoma virus. Membrane binding of HIV-1 MA is absolutely dependent on the presence of negatively charged lipid and is abrogated at high ionic strength. Forced dimerization of MA increases its membrane affinity by several orders of magnitude. When green fluorescent protein fusions of monomeric or dimeric MA are expressed in cells, the dimeric but not the monomeric protein becomes strongly membrane associated. Computational modeling supports these results and suggests a molecular mechanism for the modest effect of myristoylation on binding, wherein the membrane provides a hydrophobic environment for the myristate that is energetically similar to that provided by the protein. Overall, the results imply that the driving force for membrane association stems largely from ionic interactions between multimerized Gag and negatively charged phospholipids.  相似文献   

4.
The MA (matrix) domain of the retroviral Gag polyprotein plays several critical roles during virus assembly. Although best known for targeting the Gag polyprotein to the inner leaflet of the plasma membrane for virus budding, recent studies have revealed that MA also contributes to selective packaging of the genomic RNA (gRNA) into virions. In this Review, we summarize recent progress in understanding how MA participates in genome incorporation. We compare the mechanisms by which the MA domains of different retroviral Gag proteins influence gRNA packaging, highlighting variations and similarities in how MA directs the subcellular trafficking of Gag, interacts with host factors and binds to nucleic acids. A deeper understanding of how MA participates in these diverse functions at different stages in the virus assembly pathway will require more detailed information about the structure of the MA domain within the full-length Gag polyprotein. In particular, it will be necessary to understand the structural basis of the interaction of MA with gRNA, host transport factors and membrane phospholipids. A better appreciation of the multiple roles MA plays in genome packaging and Gag localization might guide the development of novel antiviral strategies in the future.  相似文献   

5.
X Yu  X Yuan  Z Matsuda  T H Lee    M Essex 《Journal of virology》1992,66(8):4966-4971
Accumulating evidence suggests that the matrix (MA) protein of retroviruses plays a key role in virus assembly by directing the intracellular transport and membrane association of the Gag polyprotein. In this report, we show that the MA protein of human immunodeficiency virus type 1 is also critical for the incorporation of viral Env proteins into mature virions. Several deletions introduced in the MA domain (p17) of human immunodeficiency virus type 1 Gag polyprotein did not greatly affect the synthesis and processing of the Gag polyprotein or the formation of virions. Analysis of the viral proteins revealed normal levels of Gag and Pol proteins in these mutant virions, but the Env proteins, gp120 and gp41, were hardly detectable in the mutant virions. Our data suggest that an interaction between the viral Env protein and the MA domain of the Gag polyprotein is required for the selective incorporation of Env proteins during virus assembly. Such an interaction appears to be very sensitive to conformational changes in the MA domain, as five small deletions in two separate regions of p17 equally inhibited viral Env protein incorporation. Mutant viruses were not infectious in T cells. When mutant and wild-type DNAs were cotransfected into T cells, the replication of wild-type virus was also hindered. These results suggest that the incorporation of viral Env protein is a critical step for replication of retroviruses and can be a target for the design of antiviral strategies.  相似文献   

6.
Human immunodeficiency virus (HIV) and equine infectious anemia virus (EIAV) are closely related lentiviruses that infect immune cells, but their pathogenesis differ. Localization to the cytosolic leaflet of the plasma membrane is critical for replication of both viruses. This localization is accomplished through the matrix (MA) domain of the Gag precursor protein. In HIV-1, association of MA to anionic membranes appears to be primarily driven by a linear cluster of basic residues in the MA domain and an N-myristoylation signal. Interestingly, the MA protein of EIAV does not contain either of these signals. To understand which factors could promote EIAV assembly we characterized the membrane binding properties of its MA protein using fluorescence and biochemical methods. We find that EIAV MA exists as a multimer in solution whose protein-protein interactions are destabilized by membrane binding. EIAV MA binds strongly to electrically neutral membranes as well as to negatively charged membranes. Fluorescence quenching and chemical modification techniques, as well as trypsin proteolysis, indicate a different exposure of the EIAV MA Trp residues when bound to the two types of membranes, and EIAV MA proteolysis by trypsin differs when bound to the two types of membranes. Based on these data and the known structures of closely related matrix proteins, we constructed a structural model. This model predicts that EIAV MA binds to negatively charged membranes, but EIAV MA has an additional membrane binding region rich in residues that partition favorably into the membrane headgroup region. This secondary site may play a role in early events of viral infection.  相似文献   

7.
Retrovirus assembly proceeds via multimerisation of the major structural protein, Gag, into a tightly packed, spherical particle that buds from the membrane of the host cell. The lateral packing arrangement of the human immunodeficiency virus type 1 (HIV-1) Gag CA (capsid) domain in the immature virus has been described. Here we have used cryo-electron microscopy (cryo-EM) and image processing to determine the lateral and radial arrangement of Gag in in vivo and in vitro assembled Rous sarcoma virus (RSV) particles and to compare these features with those of HIV-1. We found that the lateral packing arrangement in the vicinity of the inner sub-domain of CA is conserved between these retroviruses. The curvature of the lattice, however, is different. RSV Gag protein adopts a more tightly curved lattice than is seen in HIV-1, and the virions therefore contain fewer copies of Gag. In addition, consideration of the relationship between the radial position of different Gag domains and their lateral spacings in particles of different diameters, suggests that the N-terminal MA (matrix) domain does not form a single, regular lattice in immature retrovirus particles.  相似文献   

8.
Chan J  Dick RA  Vogt VM 《Journal of virology》2011,85(20):10851-10860
The MA domain of the retroviral Gag protein mediates interactions with the plasma membrane, which is the site of productive virus release. HIV-1 MA has a phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] binding pocket; depletion of this phospholipid from the plasma membrane compromises Gag membrane association and virus budding. We used multiple methods to examine the possible role of PI(4,5)P2 in Gag-membrane interaction of the alpharetrovirus Rous sarcoma virus (RSV). In contrast to HIV-1, which was tested in parallel, neither membrane localization of RSV Gag-GFP nor release of virus-like particles was affected by phosphatase-mediated depletion of PI(4,5)P2 in transfected avian cells. In liposome flotation experiments, RSV Gag required acidic lipids for binding but showed no specificity for PI(4,5)P2. Mono-, di-, and triphosphorylated phosphatidylinositol phosphate (PIP) species as well as high concentrations of phosphatidylserine (PS) supported similar levels of flotation. A mutation that increases the overall charge of RSV MA also enhanced Gag membrane binding. Contrary to previous reports, we found that high concentrations of PS, in the absence of PIPs, also strongly promoted HIV-1 Gag flotation. Taken together, we interpret these results to mean that RSV Gag membrane association is driven by electrostatic interactions and not by any specific association with PI(4,5)P2.  相似文献   

9.
Ono A  Freed EO 《Journal of virology》2004,78(3):1552-1563
The human immunodeficiency virus type 1 (HIV-1) assembly-and-release pathway begins with the targeting of the Gag precursor to the site of virus assembly. The molecular mechanism by which Gag is targeted to the appropriate subcellular location remains poorly understood. Based on the analysis of mutant Gag proteins, we and others have previously demonstrated that a highly basic patch in the matrix (MA) domain of Gag is a major determinant of Gag transport to the plasma membrane. In this study, we determined that in HeLa and T cells, the MA mutant Gag proteins that are defective in plasma membrane targeting form virus particles in a CD63-positive compartment, defined as the late endosome or multivesicular body (MVB). Interestingly, we find that in primary human macrophages, both wild-type (WT) and MA mutant Gag proteins are targeted specifically to the MVB. Despite the fact that particle assembly in macrophages occurs at an intracellular site rather than at the plasma membrane, we observe that WT Gag expressed in this cell type is released as extracellular virions with high efficiency. These results demonstrate that Gag targeting to and assembly in the MVB are physiologically important steps in HIV-1 virus particle production in macrophages and that particle release in this cell type may follow an exosomal pathway. To determine whether Gag targeting to the MVB is the result of an interaction between the late domain in p6(Gag) and the MVB sorting machinery (e.g., TSG101), we examined the targeting and assembly of Gag mutants lacking p6. Significantly, the MVB localization of Gag was still observed in the absence of p6, suggesting that an interaction between Gag and TSG101 is not required for Gag targeting to the MVB. These data are consistent with a model for Gag targeting that postulates two different cellular binding partners for Gag, one on the plasma membrane and the other in the MVB.  相似文献   

10.
The N-terminally myristoylated matrix (MA) domain of the HIV-1 Gag polyprotein promotes virus assembly by targeting Gag to the inner leaflet of the plasma membrane. Recent studies indicate that, prior to membrane binding, MA associates with cytoplasmic tRNAs (including tRNALys3), and in vitro studies of tRNA-dependent MA interactions with model membranes have led to proposals that competitive tRNA interactions contribute to membrane discrimination. We have characterized interactions between native, mutant, and unmyristylated (myr-) MA proteins and recombinant tRNALys3 by NMR spectroscopy and isothermal titration calorimetry. NMR experiments confirm that tRNALys3 interacts with a patch of basic residues that are also important for binding to the plasma membrane marker, phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Unexpectedly, the affinity of MA for tRNALys3 (Kd = 0.63 ± 0.03 μM) is approximately 1 order of magnitude greater than its affinity for PI(4,5)P2-enriched liposomes (Kd(apparent) = 10.2 ± 2.1 μM), and NMR studies indicate that tRNALys3 binding blocks MA association with liposomes, including those enriched with PI(4,5)P2, phosphatidylserine, and cholesterol. However, the affinity of MA for tRNALys3 is diminished by mutations or sample conditions that promote myristate exposure. Since Gag–Gag interactions are known to promote myristate exposure, our findings support virus assembly models in which membrane targeting and genome binding are mechanistically coupled.  相似文献   

11.
For all enveloped viruses, the actual mechanism by which nascent virus particles separate or "pinch off" from the cell surface is largely unknown. In the case of retroviruses, the Gag protein drives the budding process, and the virus release step is directed by the late (L) assembly domain within Gag. A PPPPY motif within the L domain of Rous sarcoma virus (RSV) was previously characterized as being critical for the release of virions and shown to interact in vitro with the WW domain of Yes-associated protein (Yap). To determine whether WW domain-L domain interactions can occur in vivo, we attempted to interfere with the host cell machinery normally recruited to the site of budding by inserting this WW domain in different locations within Gag. At a C-terminal location, the WW(Yap) domain had no effect on budding, suggesting that the intervening I domains (which provide the major region of Gag-Gag interaction) prevent its access to the L domain. When positioned on the other side of the I domains closer to the L domain, the WW(Yap) domain resulted in a dramatic interference of particle release, and confocal microscopy revealed a block to budding on the plasma membrane. Budding was restored by attachment of the heterologous L domain of human immunodeficiency virus type 1 Gag, which does not bind WW(Yap). These findings suggest that cis expression of WW domains can interfere with RSV particle release in vivo via specific, high-affinity interactions at the site of assembly on the plasma membrane, thus preventing host factor accessibility to the L domain and subsequent virus-cell separation. In addition, they suggest that L domain-specific host factors function after Gag proteins begin to interact.  相似文献   

12.
The human immunodeficiency virus type 1 (HIV-1) Gag matrix (MA) domain facilitates Gag targeting and binding to the plasma membrane (PM) during virus assembly. Interaction with a PM phospholipid, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)], plays a key role in these MA functions. Previous studies showed that overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV), which depletes cellular PI(4,5)P(2), mislocalizes HIV-1 Gag to the cytosol and greatly reduces HIV-1 release efficiency. In this study, we sought to determine the role of the MA-PI(4,5)P(2) interaction in Gag localization and membrane binding of a deltaretrovirus, human T-lymphotropic virus type 1 (HTLV-1). We compared the chimeric HIV-1 Gag (HTMA), in which MA was replaced with HTLV-1 MA, with wild-type HIV-1 and HTLV-1 Gag for PI(4,5)P(2) dependence. Our results demonstrate that, unlike HIV-1 Gag, subcellular localization of and VLP release by HTLV-1 and HTMA Gag were minimally sensitive to 5ptaseIV overexpression. These results suggest that the interaction of HTLV-1 MA with PI(4,5)P(2) is not essential for HTLV-1 particle assembly. Furthermore, liposome-binding analyses showed that both HTLV-1 and HTMA Gag can bind membrane efficiently even in the absence of PI(4,5)P(2). Efficient HTLV-1 Gag binding to liposomes was largely driven by electrostatic interaction, unlike that of HIV-1 Gag, which required specific interaction with PI(4,5)P(2). Furthermore, membrane binding of HTLV-1 Gag in vitro was not suppressed by RNA, in contrast to HIV-1 Gag. Altogether, our data suggest that Gag targeting and membrane binding mediated by HTLV-1 MA does not require PI(4,5)P(2) and that distinct mechanisms regulate HIV-1 and HTLV-1 Gag membrane binding.  相似文献   

13.
The interaction of the human immunodeficiency virus (HIV) Gag protein with the plasma membrane of a cell is a critical event in the assembly of HIV particles. The matrix protein region (MA) of HIV type 1 (HIV-1) Pr55Gag has previously been demonstrated to confer membrane-binding properties on the precursor polyprotein. Both the myristic acid moiety and additional determinants within MA are essential for plasma membrane binding and subsequent particle formation. In this study, we demonstrated the myristylation-dependent membrane interaction of MA in an in vivo membrane-binding assay. When expressed within mammalian cells, MA was found both in association with cellular membranes and in a membrane-free form. In contrast, the intact precursor Pr55Gag molecule analyzed in an identical manner was found almost exclusively bound to membranes. Both membrane-bound and membrane-free forms of MA were myristylated and phosphorylated. Differential membrane binding was not due to the formation of multimers, as dimeric and trimeric forms of MA were also found in both membrane-bound and membrane-free fractions. To define the requirements for membrane binding of MA, we analyzed the membrane binding of a series of MA deletion mutants. Surprisingly, deletions within alpha-helical regions forming the globular head of MA led to a dramatic increase in overall membrane binding. The stability of the MA-membrane interaction was not affected by these deletions, and no deletion eliminated membrane binding of the molecule. These results establish that myristic acid is a primary determinant of the stability of the Gag protein-membrane interaction and provide support for the hypothesis that a significant proportion of HIV-1 MA molecules may adopt a conformation in which myristic acid is hidden and unavailable for membrane interaction.  相似文献   

14.
Rous sarcoma virus (RSV) and murine leukemia virus (MLV) are examples of distantly related retroviruses that normally do not encounter one another in nature. Their Gag proteins direct particle assembly at the plasma membrane but possess very little sequence similarity. As expected, coexpression of these two Gag proteins did not result in particles that contain both. However, when the N-terminal membrane-binding domain of each molecule was replaced with that of the Src oncoprotein, which is also targeted to the cytoplasmic face of the plasma membrane, efficient copackaging was observed in genetic complementation and coimmunoprecipitation assays. We hypothesize that the RSV and MLV Gag proteins normally use distinct locations on the plasma membrane for particle assembly but otherwise have assembly domains that are sufficiently similar in function (but not sequence) to allow heterologous interactions when these proteins are redirected to a common membrane location.  相似文献   

15.
Bouamr F  Scarlata S  Carter C 《Biochemistry》2003,42(21):6408-6417
Assembly of the human immunodeficiency virus type 1 (HIV-1) first occurs on the plasma membrane of host cells where binding is driven by strong electrostatic interactions between the N-terminal matrix (MA) domain of the structural precursor polyprotein, Gag, and the membrane. MA is also myristylated, but the exact role this modification plays is not clear. In this study, we compared the protein oligomerization and membrane binding properties of Myr(+) and Myr(-) Gag(MA) expressed in COS-1 cells. Sedimentation studies in solution showed that both the myristylated Gag precursor and the mature MA product were detected in larger complexes than their unmyristylated counterparts, and the myristylated MA protein bound liposomes with approximately 3-fold greater affinity than unmyristylated MA. Aromatic residues near the N-terminal region of the MA protein were more accessible to chymotrypsin in the unmyristylated form and, consistent with this, an epitope in the N-terminal region was more exposed. Moreover, the cyclophilin binding site in the CA domain downstream of MA was more accessible in the unmyristylated Gag protein, while the Tsg101 binding site in the C-terminal region was equally available in the unmyristylated and myristylated Gag proteins. Taken together, our results suggest that myristylation promotes assembly by inducing conformational changes and facilitating MA multimerization. This observation offers a novel role for myristylation.  相似文献   

16.
The interaction of the human immunodeficiency virus type 1 (HIV-1) Pr55Gag molecule with the plasma membrane of an infected cell is an essential step of the viral life cycle. Myristic acid and positively charged residues within the N-terminal portion of MA constitute the membrane-binding domain of Pr55Gag. A separate assembly domain, termed the interaction (I) domain, is located nearer the C-terminal end of the molecule. The I domain is required for production of dense retroviral particles, but has not previously been described to influence the efficiency of membrane binding or the subcellular distribution of Gag. This study used a series of Gag-green fluorescent protein fusion constructs to define a region outside of MA which determines efficient plasma membrane interaction. This function was mapped to the nucleocapsid (NC) region of Gag. The minimal region in a series of C-terminally truncated Gag proteins conferring plasma membrane fluorescence was identified as the N-terminal 14 amino acids of NC. This same region was sufficient to create a density shift in released retrovirus-like particles from 1.13 to 1.17 g/ml. The functional assembly domain previously termed the I domain is thus required for the efficient plasma membrane binding of Gag, in addition to its role in determining the density of released particles. We propose a model in which the I domain facilitates the interaction of the N-terminal membrane-binding domain of Pr55Gag with the plasma membrane.  相似文献   

17.
Retroviruses are unusual in that expression of a single protein, Gag, leads to budding of virus-like particles into the extracellular space. We have developed conditions under which virus-like particles are formed spontaneously in vitro from fragments of Rous sarcoma virus (RSV) Gag protein purified after expression in Escherichia coli. The CA-NC fragment of Gag was shown previously to assemble into hollow cylinders (S. Campbell and V. M. Vogt, J. Virol. 69:6487-6497, 1995). We have now extended these studies to larger Gag proteins. In every case examined, assembly into regular structures required RNA. A nearly full-length Gag missing only the C-terminal PR domain, as well as similar proteins missing in addition the N-terminal half of MA, the C-terminal half of MA, the entire MA sequence, or the entire p2 sequence, all assembled into spherical particles resembling RSV in size. By contrast, proteins missing p10 assembled into cylindrical particles like those formed by CA-NC alone. Thin section electron microscopy showed that each of these Gag proteins formed in the expressing E. coli cells particles similar in shape to those seen in vitro. We conclude from these results that neither the sequences required for membrane binding in vivo, near the N terminus of Gag, nor the sequences required for a late step in budding, in the p2 portion of Gag, are essential for formation of virus-like particles in this system. Furthermore, we postulate the existence of a shape-determining sequence in p10, which provides or facilitates interactions required for the growing particle to be constrained to a spherical shape.  相似文献   

18.
R P Bennett  T D Nelle    J W Wills 《Journal of virology》1993,67(11):6487-6498
The Gag protein encoded by Rous sarcoma virus (RSV) is the only viral product required for the process of budding whereby virus particles are formed at the plasma membrane. Deletion analysis of this Gag molecule has revealed several regions (assembly domains) that are important for budding. One of these domains is located at the amino terminus and is needed for membrane binding. Another is located within the carboxy-terminal third of the protein. Though there is little sequence homology among the Gag proteins of unrelated retroviruses, it seemed possible that their assembly domains might be functionally conserved, and to explore this idea, numerous Gag chimeras were made. The results indicate that the first 10 amino acids of the human immunodeficiency virus (HIV) Gag protein can suppress the block to budding caused by deletions in the RSV MA sequence, much as described previously for the first 10 residues from the Src oncoprotein (J.W. Wills, R.C. Craven, R. A. Weldon, Jr., T. D. Nelle, and C.R. Erdie, J. Virol. 65:3804-3812, 1991). In addition, the carboxy-terminal half of the HIV Gag protein was fused to a truncated RSV Gag molecule, mutant Bg-Bs, which is unable to direct core assembly. This chimera was able to produce particles at a rate identical to that of RSV and of a density similar to that of authentic virions. Deletion analysis of the carboxy-terminal chimera revealed two small regions within the HIV NC protein that were sufficient for endowing mutant Bg-Bs with these properties. Chimeras lacking both regions produced particles of a low density, suggesting that these sequences may be involved in the tight packing of Gag molecules during assembly. In a related set of experiments, replacement of the RSV protease with that of HIV resulted in premature processing within the RSV sequence and a block to budding. Particle assembly was restored when the HIV PR activity was inactivated by mutagenesis. Collectively, the data presented here illustrate the functional similarities of Gag proteins from unrelated retroviruses.  相似文献   

19.
Little is known about the mechanisms used by enveloped viruses to separate themselves from the cell surface at the final step of budding. However, small sequences in the Gag proteins of several retroviruses (L domains) have been implicated in this process. A sequence has been identified in the M proteins of rhabdoviruses that closely resembles the PPPPY motif in the L domain of Rous sarcoma virus (RSV), an avian retrovirus. To evaluate whether the PPPY sequence in vesicular stomatitis virus (VSV) M protein has an activity analogous to that of the retroviral sequence, M-Gag chimeras were characterized. The N-terminal 74 amino acids of the VSV (Indiana) M protein, including the PPPY motif, was able to replace the L domain of RSV Gag and allow the assembly and release of virus-like particles. Alanine substitutions in the VSV PPPY motif severely compromised the budding activity of this hybrid protein but not that of another chimera which also contained the RSV PPPPY sequence. We conclude that this VSV sequence is functionally homologous to the RSV L domain in promoting virus particle release, making this the first example of such an activity in a virus other than a retrovirus. Both the RSV and VSV motifs have been shown to interact in vitro with certain cellular proteins that contain a WW interaction module, suggesting that the L domains are sites of interaction with unknown host machinery involved in virus release.  相似文献   

20.
X Yuan  X Yu  T H Lee    M Essex 《Journal of virology》1993,67(11):6387-6394
The matrix domain of human immunodeficiency virus type 1 Gag polyprotein was studied for its role in virus assembly. Deletion and substitution mutations caused a dramatic reduction in virus production. Mutant Gag polyproteins were myristoylated and had a high affinity for membrane association. Immunofluorescence staining revealed a large accumulation of mutant Gag precursors in the cytoplasm, while wild-type Gag proteins were primarily associated with the cell surface membrane. These results suggest a defect in intracellular transport of the mutant Gag precursors. Thus, in addition to myristoylation, the N-terminal region of the matrix domain is involved in determining Gag protein transport to the plasma membrane. Wild-type Gag polyproteins interacted with and efficiently packaged mutant Gag into virions. This finding is consistent with the hypothesis that intermolecular interaction of Gag polyproteins might occur in the cytoplasm prior to being transported to the assembly site on the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号