首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 646 毫秒
1.
(1) A simple method is described for the isolation of the lysosomal enzyme, acid alpha-glucosidase (alpha-D-glucoside glucohydrolase, EC 3.2.1.20) from normal human liver. Antibodies raised against the purified enzyme were immobilized by covalent coupling to Sepharose 4B. (2) Acid alpha-glucosidase can be quantitatively removed from normal urine by incubating with an excess of immobilized antibody. With p-nitrophenyl-alpha-glucoside as substrate, acid alpha-glucosidase accounts for 91 +/- 3% of the total alpha-glucosidase activity at pH 4.0 IN Normal urine. (3) In urine from a patient with the infantile form of Pompe's disease ('acid maltase deficiency'), no alpha-glucosidase activity could be removed by the immobilized antibody, in agreement with the fact that acid alpha-glucosidase is absent in these patients. (4) In urine from patients with the late-onset form of Pompe's disease, 46 +/- 11% of the alpha-glucosidase activity at pH 4.0 can be removed by incubation with immobilized antibodies, indicating that residual acid alpha-glucosidase activity is present in urine of these patients. The residual acid alpha-glucosidase activity amounts to about 5% of that in the urine of control persons. (5) If acid alpha-glucosidase is adsorbed to immobilized antibodies, the activity can still be measured with p-nitrophenyl-alpha-glucoside as substrate. The Km for p-nitrophenyl-alpha-glucoside is not significantly changed by adsorbing purified acid alpha-glucosidase to immobilized antibodies. (6) The properties of acid alpha-glucosidase from urine of patients with late-onset Pompe's disease were compared with those of acid alpha-glucosidase from normal urine, both adsorbed to immobilized antiserum. The pH-activity profile of the enzyme from urine of patients with late-onset Pompe's disease can not be distinguished from that of the normal urinary enzyme. The Km for p-nitro-phenyl-alpha-glucoside of the two enzymes is identical, both at pH 4 and 3. The titration curves of the two enzymes with immobilized antibodies are identical.  相似文献   

2.
A chemical affinity system exhibiting antibody-like properties is described. The system exploits bioconjugates with appended phenylboronic acid (PBA) moieties and a support-bound phenylboronic acid complexing reagent derived from salicylhydroxamic acid (SHA) for protein immobilization on a chromatographic support. The structure of the PBA.SHA complex was characterized by 11B NMR and mass spectrometry and compared with complexes derived from model compounds. Protein modification reagents were synthesized from 3-aminophenylboronic acid and utilized to prepare bioconjugates from alkaline phosphatase (AP) and horseradish peroxidase (HRP). AP obtained from one source afforded PBA bioconjugates exhibiting significant loss of enzymatic activity, whereas AP obtained from a second source afforded PBA bioconjugates exhibiting only a modest loss of enzymatic activity. Conversely, HRP afforded PBA bioconjugates exhibiting no loss of enzymatic activity. SHA-modified Sepharose was prepared by reaction of methyl 4-[(6-aminohexanoylamino)methyl]salicylate with CNBr-activated Sepharose 4B, followed by treatment with aqueous alkaline hydroxylamine. PBA-AP and PBA-HRP conjugates were efficiently immobilized on SHA-Sepharose at pH 8.3. PBA-AP conjugates were retained after washing with acidic buffers at pH 6.7, 4.2, and 2.5, whereas PBA-HRP conjugates were retained after washing with buffer at pH 6.7, but were eluted to some extent at and below pH 4.2. The results are interpreted in terms of multivalent interactions involving boronic acid complex formation between the enzyme bioconjugates and immobilized complexing reagent.  相似文献   

3.
Optimal conditions with respect to pH, concentration of glutaraldehyde and enzyme, and order of addition of enzyme and crosslinking reagent were established for the immobilization of hog kidney D-amino acid oxidase to an attapulgite support. Yields of 40 to 70% were generally attained although when low concentrations of enzyme were used yields were consistently greater than 100%. It is suggested that this is due to a dimer leads to monomer shift at low protein concentrations. The stability of soluble D-amino acid oxidase was dependent on the buffer in which it was stored (pyrophosphate-phosphate greater than borate greater than Tris). Stability of immobilized enzyme was less than soluble in pyrophosphate-phosphate buffer, but storage in the presence of FAD improved stability. In addition, treatment of stored, immobilized enzyme with FAD before assay restored some of its activity. The immobilized D-amino acid oxidase was less stable to heat (50 degrees C) than the soluble enzyme from pH 6 to 8 but was more stable above and below these values. Apparent Km values for D-alanine, D-valine, and D-tryptophan decreased for the immobilized enzyme compared to the soluble.  相似文献   

4.
Sugar-cane invertase (β-d-fructofuranoside fructohydrolase, EC 3.2.1.26) immobilized on bentonite clay in 0.05 m acetate buffer, pH 4.5, has been shown to be capable of hydrolysing sucrose. The bentonite-invertase (BI) complex gave 55.5% retention of enzyme activity on the surface. A further 17 and 22% increase in retention of enzyme activity was obtained using the covalent linking agents, cyanuric chloride and thionyl chloride, giving bentonite-cyanuric chloride-invertase (BCCI) and bentonite-thionyl chloride-invertase (BTCI) complexes. Concentrations of acetate buffer >0.2 M disrupt the bentonite-invertase complexes. The immobilized invertase complexes showed high temperature optima (60–65°C) and high thermal stability compared to the free enzyme. The pH profiles of the free and immobilized enzyme were the same. The rate of hydrolysis of sucrose was increased using immobilized enzymes, which required a higher substrate concentration than the free enzyme. The insoluble enzyme conjugate-carrier complexes when used for sucrose hydrolysis in a batch process showed 53.1 (BI), 57.4 (BCCI) and 59.6% (BTCI) conversions, respectively, in 12 h, compared to 42.3% conversion in 24 h with the free enzyme. The immobilized invertase complexes can be used for sucrose inversion for about five cycles. The application of this immobilization procedure may help in the removal of invertase from cane juice to reduce sugar losses in industry.  相似文献   

5.
The lysosomal enzyme alpha-galactosidase A (alpha-Gal A) metabolizes neutral glycosphingolipids that possess alpha-galactoside residues at the non-reducing terminus, and inherited defects in the activity of alpha-Gal A lead to Fabry disease. We describe here an efficient and rapid purification procedure for recombinant alpha-Gal A by sequential Concanavalin A (Con A)-Sepharose and immobilized thio-alpha-galactoside (thio-Gal) agarose column chromatography. Optimal elution conditions for both columns were obtained using overexpressed human alpha-Gal A. We recommend the use of a mixture of 0.9 M methyl alpha-mannoside and 0.9 M methyl alpha-glucoside in 0.1 M acetate buffer (pH 6.0) with 0.1 M NaCl for the maximum recovery of glycoproteins with multiple high-mannose type sugar chains from Con A column chromatography, and that the Con A column should not be reused for the purification of glycoproteins that are used for structural studies. Binding of the enzyme to the thio-Gal column requires acidic condition at pH 4.8. A galactose-containing buffer (25 mM citrate-phosphate buffer, pH 5.5, with 0.1 M galactose, and 0.1 M NaCl) was used to elute alpha-Gal A. This procedure is especially useful for the purification of mutant forms of alpha-Gal A, which are not stable under conventional purification techniques. A protocol that purifies an intracellular mutant alpha-Gal A (M279I) expressed in COS-7 cells within 6h at 62% overall yield is presented.  相似文献   

6.
This paper is to study the preparation and characterization of an immobilized L-glutamic decarboxylase (GDC) and develop a sensitive method for the determination of L-glutamate using a new biosensor, which consists of an enzyme column reactor of GDC immobilized on a novel ion exchange resin (carboxymethyl-copolymer of allyl dextran and N.N'-methylene-bisacrylamide CM-CADB) and ion analyzer coupled with a CO(2) electrode. The conditions for the enzyme immobilization were optimized by the parameters: buffer composition and concentration, adsorption equilibration time, amount of enzyme, temperature, ionic strength and pH. The dynamic response of Na(2)HPO(4)-citric acid buffer system selected is much better than that of the others, 0.10 M HAc-0.10 M NaAc and 0.10 M sodium citrate-0.10 M citric acid. The initial rate of the enzyme reaction v(0) in this buffer system is 1.76 mol. l(-1) min(-1), moreover, the rate of the enzyme reaction appears linear in the first 4 min. The optimum adsorption equilibrium time is around 6 h. The amount of enzyme adsorbed on CM-CADB resin affects the response to substrate L-glutamic acid, the widest range of linearity is obtained with over 30 mg (GDC)/g(resin). The GDC activity immobilized on CM-CADB reaches a maximum when the immobilization temperature was kept around 40 degrees C. pH was kept at 4.4 when measuring the activity of the immobilized GDC. No variation of the activity of immobilized GDC is observed when the capacity is over 2.5 meq/g.(CM-CADB resin). The properties of the immobilized enzyme on CM-CADB were characterized. No significant improvement can be achieved when the substrate concentration exceeds 12.00 mmol/l, where the activity of immobilized GDC is equal to 1.58 mmol/l.min.g. The optimum pH is found to be 5.2, which changes 0.2 unit, comparing with that of the free GDC (5.0). The optimum temperature is found to be around 48 degrees C, which is lower than that of free GDC (55 degrees C). The critical temperature of the free GDC and the immobilized GDC is approximately 50 degrees C and 45 degrees C, respectively. The half-life of the activity is 127 days when the immobilized enzyme was stored in the cold (4 degrees C). An immobilized GDC enzyme column reactor matched with a flow injection system-ion analyzer coupled with CO(2) electrode-data collection system made up the original form of the apparatus of biosensor for determining of L-glutamic acid. The determination conditions are that the buffer solution is 0.10 M Na(2)HPO(4)-0.05 M citric acid at pH 4.4 and t = 37 degrees C. The limit of detection is 1.0 x 10(-)(5) M. The linearity response is in the range of 5 x 10 (-2) - 5 x 10 (-5) M. The equation of linear regression of the calibration curve is y = 43.3x + 181.6 (y is the milli-volt of electrical potential response, x is the logarithm of the concentration of the substrate of L-glutamic acid). The correlation coefficient equals 0.99. The coefficient of variation equals 2.7%.  相似文献   

7.
Crude alpha-glucosidase from Baker's yeast was immobilized in polygalacturonic acid beads and coated with chitosan. Chemical and physical characterization were performed by using p-nitrophenyl-alpha-D-glucopyranoside (pNPG) as an artificial substrate. Operation, thermal, pH, and strorage stabilities of the free and immobilized enzyme were also examined. The stabilities of immobilized enzyme were found to be better than that of the free enzyme. Furthermore, the hydrolysis rate of the chitosan coated alpha-glucosidase polygalacturonic acid beads were studied. In conclusion, the enzyme beads appear to have good characteristics and offer the prospect that this system may find application in enzyme immobilization, in addition to controlled drug release studies.  相似文献   

8.
A novel-immobilized enzyme strategy created by magnetic nanospheres for monitoring enzyme activity and screening inhibitors followed by high performance liquid chromatography (HPLC) has been demonstrated. Through the reaction of the aldehyde groups with amine groups, alpha-glycosidase was simply and stably immobilized onto magnetic nanospheres by the cross-linking agent glutaraldehyde. In order to profiling the activity of the immobilized alpha-glucosidase, the natural substrate was hydrolyzed by it and the yield of product was determined by HPLC. Compared with traditional bioassay approach, the prepared immobilized alpha-glucosidase displays a high activity and stability which allows it to be easily reused for 10 times. Enzyme inhibition assays by known inhibitor glucobay and three candidate traditional Chinese medicines (TCMs) were then investigated using a similar methodology. This assay was able to readily detect the change of the immobilized enzyme activity based on measuring a decrease of product formation using HPLC. The approach is general and offers many attractive advantages including easy product isolation, inexpensive cost, and high efficiency in terms of reagent consumption.  相似文献   

9.
Pyridoxal kinase (PK) is an important enzyme involved in bioactivation of vitamin B(6). Binding of PK with its substrate is the prerequisite step for the subsequent catalytic phosphorylation of the substrate. In the present study, a surface plasmon resonance biosensor (BIAcore) was employed to characterize the binding interaction between wild-type porcine PK and an immobilized substrate, pyridoxamine. Pyridoxamine was modified with 11-mercaptoundecanic acid and immobilized on a sensor chip through the formation of a self-assembled monolayer. The binding of PK to the immobilized pyridoxamine was followed in real time and the kinetic parameters were derived from non-linear analysis of the sensorgram. The effects of buffer pH, monovalent cations (Na(+), K(+)) and divalent cations (Mn(2+), Zn(2+), Mg(2+)) on the binding kinetics were determined. Optimal pH for PK-pyridoxamine interaction in the absence of divalent ions is at around 7.4. While K(+) increased and Na(+) decreased the binding affinity (K(A)) of PK to immobilized pyridoxamine, all divalent cations increased the K(A) of PK for pyridoxamine. Solution phase affinity measurement based on a competitive binding assay was used to determine the affinities of PK for different vitamin B(6) analogues. The order of affinity of PK for different analogues is: pyridoxal-oxime>pyridoxine>pyridoxamine>pyridoxal>pyridoxal phosphate. This is the first study to demonstrate that buffer conditions such as pH and concentration of monovalent and/or divalent ions can directly alter the binding of PK for its substrates. The quantitative kinetic and thermodynamic parameters obtained by SPR measurement provide the insight information into the catalytic activity of this enzyme.  相似文献   

10.
The copolymer of 3-(acrylamido)phenylboronic acid and N-isopropylacrylamide (82:18, Mn = 47000 g/mol) was prepared by free radical polymerization. The copolymer showed typical thermoprecipitation behavior in aqueous solutions; its phase transition temperature (TP) was 26.5 +/- 0.2 degrees C in 0.1 M glycine-NaOH buffer containing 0.1 M NaCl, pH 9.2. Due to specific complex formation of the pendant boronates with sugars, TP was strongly affected by the type of sugar and its concentration at pH 9.2. Fructose, lactulose, and glucose caused the largest increase in TP (up to 4 degrees C) at 0.56 mM concentration, attributed to the high binding affinity of the sugars to borate and phenylboronate. Among the sugars typical of nonreducing ends of oligosaccharides, N-acetylneuraminic acid had the strongest effect on TP (ca. 2 degrees C at 0.56 mM concentration and pH 9.2), while the effects of other sugars are well expressed at the higher concentrations (16 and 80 mM) and decreased in the order xylose approximately galactose >or= N-acetyllactosamine >or= mannose approximately fucose > N-acetylglucosamine. The effect exerted on the phase transition by glycoproteins was the strongest with mucin from porcine stomach and decreased in the series mucin > horseradish peroxidase > human gamma-globulin at pH 9.2. As a first approximation, the weight percentage and/or the number of oligosaccharides in glycoproteins determined the character of their interaction with the pendant phenylboronates and, therefore, the effect on the copolymer phase transition.  相似文献   

11.
The effects of temperature, pH, and concentration of sodium cacodylate buffer on the activity of partially purified terminal deoxynucleotidyl transferase from cattle thymus immobilized on BrCN-Sepharose were studied. The enzyme retained at least 60% of the initial activity after 6 h of incubation at 30 degrees in 50 mM potassium phosphate buffer, pH 7.2 in the absence of substrate. Short-term activation of the enzyme during incubation was noticed. The maximum activity of the immobilized preparations was observed in 240-280 mM sodium cacodylate buffer in the reaction mixture, pH 7.5-7.9 at 37-40 degrees.  相似文献   

12.
1. Glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate-NADP+ oxidoreductase, EC 1.1.1.49) from baker's yeast (Saccharomyces cerevisiae) was immobilized on CNBr-activated Sepharose 4B with retention of about 3% of enzyme activity. This uncharged preparation was stable for up to 4 months when stored in borate buffer, pH7.6, at 4 degrees C. 2. Stable enzyme preparations with negative or positive overall charge were made by adding valine or ethylenediamine to the CNBr-activated Sepharose 4B 30min after addition of the enzyme. 3. These three immobilized enzyme preparations retained 40-60% of their activity after 15 min at 50 degrees C. The soluble enzyme is inactivated by these conditions. 4. The soluble enzyme lost 45 and 100% of its activity on incubation for 3h at pH6 and 10 respectively. The three immobilized-enzyme preparations were completely stable over this entire pH range. 5. The pH optimum of the positively and negatively charged immobilized-enzyme preparations were about 8 and 9 respectively. The soluble enzyme and the uncharged immobilized enzyme had an optimum pH at about 8.5 6. Glucose 6-phosphate dehydrogenase immobilized on CNBr-activated Sephadex G-25 was unstable, as was enzyme attached to CNBr-activated Sepharose 4B to which glycine, asparitic acid, valine or ethylenediamine was added at the same time as the enzyme.  相似文献   

13.
S Pazhanisamy  R F Pratt 《Biochemistry》1989,28(17):6870-6875
The steady-state kinetics of the Enterobacter cloacae P99 beta-lactamase-catalyzed aminolysis of the depsipeptide m-[[(phenylacetyl)glycyl]oxy]benzoic acid by D-phenylalanine were consistent with an ordered sequential mechanism with D-phenylalanine binding first [Pazhanisamy, S., Govardhan, C. P., & Pratt, R. F. (1989) Biochemistry (first of three papers in this issue)]. In terms of this mechanism, the kinetics data required that in 20 mM MOPS buffer, pH 7.5, the dissociation constant of the initially formed enzyme/D-phenylalanine complex be around 1.3 mM; at pH 9.0 in 0.1 M carbonate buffer, the complex should be somewhat more stable. Attempts to detect this complex in a binary mixture by spectroscopic methods (fluorescence, circular dichroic, and nuclear magnetic resonance spectra) failed. Kinetic methods were also unsuccessful--the presence of 20 mM D-phenylalanine did not appear to affect beta-lactamase activity nor inhibition of the enzyme by phenylmethanesulfonyl fluoride, phenylboronic acid, or (3-dansylamidophenyl)boronic acid. Equilibrium dialysis experiments appeared to indicate that the dissociation constant of any binary enzyme/D-phenylalanine complex must be somewhat higher than the kinetics allowed (greater than 2 mM). Since the kinetics also required that, at high depsipeptide concentrations, and again with the assumption of the ordered sequential mechanism, the reaction of the enzyme/D-phenylalanine complex to aminolysis products be faster than its reversion to enzyme and D-phenylalanine, a double-label isotope-trapping experiment was performed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The pigeon liver fatty acid synthetase complex (14 S) is dissociated in low ionic strength buffer containing dithiothreitol to form a half-molecular weight subunits (9 S) which are completely inactive for the synthesis of saturated fatty acids. The dithiothreitol-protected (reduced) subunits are rapidly reassociated and reactivated to form the active enzyme complex, not only by an increase in salt concentration but also by micromolar concentrations of NADP+ or NADPH. Increases in KCl or NADPH concentration result in an increase in the extent of reactivation (equilibrium) with no change in the over-all rate of the reaction or the half-life ofreactivation of the enzyme. The extent (equilibrium) of reactivation of the enzyme is the same in 0.2 M potassium phosphate buffer, pH 7.0; 0.2 M KCl in 5 mM Tris-35 mM glycine buffer, PH 8.3; and 50 muM NADP+ or NADPH in the Tris-glycine buffer. The extent and rate of reactivation of the enzyme is dependent not only on ionic strength and NADPH concentration, but also on pH and temperature. Reactivation with 0.2 M KCl is optimal between pH 7.3 and 8.5. At higher and lower pH values the rate and extent of reactivation are lowered. The rate and extent of reactivation are also decreased as the temperature is lowered below 10 degrees. At 0 degrees there is little reactivation of enzyme activity. However, in the presence of 0.2 M KCl containing 15 to 40% glycerol at 0 degrees, reactivation of the enzyme is about 50% complete. The rate of reactivation of enzyme in the presence of KCl or NADPH conforms to first order kinetics. This result suggests that the subunits first combine to form an inactive complex which is subsequently transformed to an enzymatically active complex. Evidence for the presence of inactive complex was obtained in experiments carried out in 0.2 M KCl at pH 6.0, and in 0.2 M KCl at pH 8.3, at both 6 and 3 degrees. Under these conditions the amount of complex observed upon ultracentrifugation was greater than expected from determinations of enzyme activity. The above findings suggest that ionic and hydrophobic interactions, and possibly the water structure surrounding the interacting sites, are of prime importance in reassociation and reactivation of enzyme. In addition, NADP+ and NADPH have very specific effects in bringing about reassociation and in maintaining the structural integrity of the multienzyme complex.  相似文献   

15.
We have recently proposed a catalytic mechanism for human plasma lecithin-cholesterol acyltransferase (EC 2.3.1.43) (J. Biol. Chem. (1986) 261, 7032-7043), implicating single serine and histidine residues in phosphatidylcholine cleavage and two cysteine residues in cholesterol esterification. We now confirm the involvement of serine and histidine in catalysing the phospholipase A2 action of lecithin-cholesterol acyltransferase by demonstrating the inhibition of this activity by phenylboronic acid (Ki = 1.23 mM) and m-aminophenylboronic acid (Ki = 2.32 mM), inhibitors of known serine/histidine hydrolases. The specificity of the interaction of aromatic boronic acids with catalytic serine and histidine residues and the putative formation of a tetrahedral adduct between boron and the lecithin-cholesterol acyltransferase serine hydroxyl group which is similar to the transition-state intermediate formed between phosphatidylcholine and the catalytic serine residue was suggested by: substrate protection against inhibition by phenylboronic acids; a much reduced incorporation of phenylmethane[35S]sulphonyl fluoride into the enzyme in the presence of phenylboronic acid; the lack of interaction of histidine- or serine-modified enzyme with immobilized phenylboronic acid in the presence of glycerol (Ve/Vo = 2.7 and 2.3 respectively) when compared to the native enzyme (Ve/Vo = 5.25). Fatty acyl-lecithin-cholesterol acyltransferase, produced by incubation of the enzyme with a lecithin-apolipoprotein A-I proteoliposome substrate, was not retarded upon the sorbent column (Ve/Vo = 1.5). Modification of the enzyme's two free cysteine residues with 5,5'-dithiobis(2-nitrobenzoic acid) or potassium ferricyanide reduced (Ve/Vo = 3.5) but did not abolish retardation on the sorbent column, indicating that these modifications resulted in steric hinderance of the interaction of the boron atom with the lecithin-cholesterol acyltransferase serine hydroxyl group. These data suggest that the serine and histidine residues are proximal within the enzyme catalytic site and that both cysteine thiol groups are close to the serine hydroxyl group. The presence of significant amino-acid sequence homologies between lecithin-cholesterol acyltransferase, triacylglycerol lipases and the transacylases of fatty acid synthase is also reported.  相似文献   

16.
5'-Nucleotidase from rat heart   总被引:7,自引:0,他引:7  
Y Naito  J M Lowenstein 《Biochemistry》1981,20(18):5188-5194
5'-Nucleotidase has been extracted from rat heart and purified to apparent homogeneity. The enzyme is a glycoprotein. Gel electrophoresis in the presence of sodium dodecyl sulfate indicates that the apparent molecular weight of the subunit is 74 000 at several different gel concentrations. Cross-linking of the native enzyme with dimethylpimelimidate followed by gel electrophoresis shows that the enzyme is a dimer. The enzyme hydrolyzes all nucleoside 5'-monophosphates tested. A comparison of Vmax/Km for 14 different substrates shows that AMP is the best substrate. The enzyme shows lowest Km values for AMPS, AMP, isoAMP, GMP, and IMP. It shows no activity with nucleoside 2'- and 3'-monophosphates, sugar phosphates, and p-nitrophenyl phosphate, even when tested at high enzyme concentrations. The optimum activity of the enzyme occurs at pH 7.5 with AMP as substrate. Above this pH, buffer ions affect the activity in a complex manner, a second optimum being observed under some conditions. Magnesium ions activate the enzyme above pH 7.5 in the presence of some buffer ions but not of others. Magnesium ions show only a slight activation when the reaction is run in diethanolamine buffer, pH 9.5, at 30 degrees C; the activation in this buffer is considerably greater when the reaction is run at 37 degrees C. The enzyme is strongly inhibited by free ADP, maximum inhibition occurring below pH 6. The ADP inhibition is diminished as the pH is raised above 6, becoming negligible above pH9. The enzyme is inhibited by EDTA. The inhibition is partially reversed when the EDTA is removed from the enzyme by gel filtration. This as well as other evidence indicates that the enzyme contains a tightly bound metal ion.  相似文献   

17.
The purpose of the present investigation was to study the pH dependence of both the immobilization process and the enzyme activity of a feruloyl esterase (FoFaeC from Fusarium oxysporum) immobilized in mesoporous silica. This was done by interpreting experimental results with theoretical molecular modeling of the enzyme structure. Modeling of the 3D structure of the enzyme together with calculations of the electrostatic surface potential showed that changes in the electrostatic potential of the protein surface were correlated with the pH dependence of the immobilization process. High immobilization yields were associated with an increase in pH. The transesterification activity of both immobilized and free enzyme was studied at different values of pH and the optimal pH of the immobilized enzyme was found to be one unit lower than that for the free enzyme. The surface charge distribution around the binding pocket was identified as being a crucial factor for the accessibility of the active site of the immobilized enzyme, indicating that the orientation of the enzyme inside the pores is pH dependent. Interestingly, it was observed that the immobilization pH affects the specific activity, irrespective of the changes in reaction pH. This was identified as a pH memory effect for the immobilized enzyme. On the other hand, a change in product selectivity of the immobilized enzyme was also observed when the transesterification reaction was run in MOPS buffer instead of citrate phosphate buffer. Molecular docking studies revealed that the MOPS buffer molecule can bind to the enzyme binding pocket, and can therefore be assumed to modulate the product selectivity of the immobilized enzyme toward transesterification.  相似文献   

18.
Galactose oxidase from Dactyllium dendroides was purified and immobilised on a carbon electrode in a redox polymer network of a polyvinylpyridine, partially N-complexed with osmiumbis(bipyridine)chloride (POsEA). The current density of the electrodes depended on the concentration of phosphate elution buffer. By additional crosslinking with a 1% glutaraldehyde solution in 50 mM phosphate buffer, pH 7.0, an electrode with an initial current density of 0.8 mA/cm2 was obtained. Operational half life times were in the order of 1.2 h. The affinity of the immobilized enzyme for galactose,lactose, raffinose, glycerol and dihydroxyaceton was higher than described in literature for the enzyme in solution. Optimal temperature for the enzyme electrode was 30°C. The pH optimum for the immobilized enzyme was higher than for the enzyme in solution.  相似文献   

19.
S D Bolmer  J Kleinerman 《Enzyme》1985,34(3):144-151
Previous studies have shown that chronic administration of D-galactosamine (GalNH2) in rats produces alpha 1-antiprotease (AAP) deficiency and causes accumulation of aberrantly glycosylated AAP in hepatic granules. In order to examine the disordered mechanism which produces this altered glycosylation, the activities of 6 glycosidases in liver homogenates of control and AAP-deficient rats were determined. GalNH2 treatment increases acid pH glycosidase activity, while it decreases intermediate pH alpha-mannosidase and alpha-glucosidase activities. beta-D-Glucosidase, beta-D-mannosidase and beta-D-N-acetylglucosaminidase activities, measured at acid pH, increase more than 2-fold in the GalNH2-treated rats compared to controls. alpha-D-Glucosidase activity measured at intermediate pH decreases 2.5-fold in the experimental rats. alpha-L-Fucosidase and acid phosphatase activities are not significantly changed by GalNH2 treatment. alpha-D-Mannosidase activity can be separated into 2 fractions by ion exchange chromatography. Acid pH alpha-D-mannosidase is increased nearly 2-fold in the GalNH2-treated rats. Intermediate pH alpha-D-mannosidase optimum is decreased alpha-D-mannosidase activities have been observed in humans with AAP deficiency. alpha-Glucosidases and alpha-mannosidases play a crucial role in glycoprotein synthesis. The altered synthesis and structure of AAP in GalNH2-induced AAP deficiency may be a reflection of altered enzyme activities.  相似文献   

20.
A potentiometric enzyme electrode for the direct measurement of organophosphate (OP) nerve agents was developed. The basic element of this enzyme electrode was a pH electrode modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking OPH with bovine serum albumin (BSA) and glutaradehyde. OPH catalyses the hydrolysis of organophosphorus pesticides to release protons, the concentration of which is proportional to the amount of hydrolysed substrate. The sensor signal and response time was optimized with respect to the buffer pH, ionic concentration of buffer, temperature, and units of OPH immobilized using paraoxon as substrate. The best sensitivity and response time were obtained using a sensor constructed with 500 IU of OPH and operating in pH 8.5, 1 mM HEPES buffer. Using these conditions, the biosensor was used to measure as low as 2 microM of paraoxon, ethyl parathion, methyl parathion and diazinon. The biosensor was completely stable for at least one month when stored in pH 8.5, 1 mM HEPES + 100 mM NaCl buffer at 4 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号