首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The transformation of a rat cell line, 3Y1, by nonmammalian tropic strains of avian sarcoma virus was tested using cell-virus fusion mediated by Sendai virus or polyethylene glycol. Furthermore, the establishment of several transformed 3Y1 cell clones induced by the Schmidt-Ruppin strain of Rous sarcoma virus (RSV), its derivative mutants, and the Bryan high-titer strain of RSV is reported. The presence and expression of the viral genomes in these cells were examined, and all transformed cell clones tested were found to contain rescuable RSV genomes when they had been fused with normal chicken embryo fibroblast cells or those preinfected with Rous-associated virus type 1. However, the gag gene product, pr76, was barely detectable in wild-type RSV-transformed cells, whereas it was produced in considerable amounts in cells transformed by env-deleted mutants, the Bryan high-titer strain of RSV and NY8 derived from the Schmidt-Ruppin strain of RSV.  相似文献   

3.
A 96,000-dalton glycoprotein, p(96), was present in cell extracts obtained from gs-chf- chicken embryo fibroblasts infected with the avian RNA tumor viruses Rous-associated virus-2 subgroup B (RAV-2) and the Schmidt-Ruppin strain of Rous sarcoma virus subgroup A (SR-RSV-A), as well as from uninfected gsLchf+ (HE) cell extracts. It was not found in cell extracts from uninfected gs-chf- or gs+chf+ (HH) cells, nor from gs-chf- cells infected with envelope-deficient Bryan high-titer Rous sarcoma virus. Immunoprecipitation, kinetic, and biochemical data indicate the this polyprotein contains information that gives rise to the major virion glycoprotein gp85. A second polyprotein of 80,000 daltons, p/80), is also present in the RAV-2- and SR-RSV-A-infected gs-chf- cells. This second polyprotein contains less carbohydrate than p(96), and kinetic and biochemical data indicate that p(80) may be an immature form of p(96).  相似文献   

4.
The effect DNA repair might have on the integration of exogenous proviral DNA into host cell DNA was investigated by comparing the efficiency of proviral DNA integration in normal chicken embryonic fibroblasts and in chicken embryonic fibroblasts treated with UV or 4-nitroquinoline-1-oxide. The cells were treated with UV or 4-nitroquinoline-1-oxide at various time intervals ranging from 6 h before to 24 h after infection with Schmidt-Ruppin strain A of Rous sarcoma virus. The chicken embryonic fibroblasts were subsequently cultured for 18 to 21 days to ensure maximal integration and elimination of nonintegrated exogenous proviral DNA before DNA was extracted. Integration of proviral DNA into the cellular genome was quantitated by hybridization of denatured cellular DNA on filters with an excess of (3)H-labeled 35S viral RNA. The copy number of the integrated proviruses in normal cells and in infected cells was also determined from the kinetics of liquid RNA-DNA hybridization in DNA excess. Both RNA excess and DNA excess methods of hybridization indicate that two to three copies of the endogenous provirus appear to be present per haploid normal chicken cell genome and that two to three copies of the provirus of Schmidt-Ruppin strain A of Rous sarcoma virus become integrated per haploid cell genome after infection. The copy number of viral genome equivalents integrated per cell treated with UV or 4-nitroquinoline-1-oxide at different time intervals before or after infection did not differ from the copy number in untreated but infected cells. This finding supports our previous report that the integration of oncornavirus proviral DNA is restricted to specific sites in the host cell DNA and suggests a specific mechanism for integration.  相似文献   

5.
Electron microscopy observations of purified Bryan high-titer Rous sarcoma virus (BH RSV) using the freeze-drying technique showed that progeny made in the absence of a helper virus lacked visible surface projections or spikes. Phenotypic mixing experiments employing BH RSV and a thermolabile mutant of vesicular stomatitis virus, tl 17, yielded no evidence of pseudotype formation. Since tl 17 is known to be defective for an envelope glycoprotein, the lack of successful phenotypic mixing with BH RSV is consistent with the observed absence of viral spikes.  相似文献   

6.
Although a glycoprotein with an approximate molecular weight of 43,000 is associated with purified virions of the Bryan high-titer strain of Rous sarcoma virus propagated on R(-)Q cells, these virions lack gp85, the major glycoprotein of the avian tumor virus envelope. As measured by immune precipitation with a specific antiserum, gp85 does not accumulate to detectable levels in R(-)Q cells.  相似文献   

7.
8.
The genome of the genetically transmitted endogenous C type virus of chickens, RAV-O, is closely related to that of Rous sarcoma virus (RSV). Nevertheless, these viruses differ widely in oncogenicity and regulation by the host cell. Competitive hybridization analysis of 125I-labeled genomic RNA demonstrated that the genome of RAV-O lacks about 35% of the sequences of nondefective RSV which formed hybrids with proviral DNA from RSV-infected cells, and that the genome of transformation-defective deletion mutants of RSV (td RSV) lacks about 15% of these sequences. Conversely, about 12% of the RAV-O sequences forming hybrids with normal chicken cell DNA were not detected in the sarcoma virus. A technique was developed to map the location of these unshared sequences by competitive hybridization. The deletion in the genome of td RSV was seen to begin at about 0.2 and to end at about 0.05 of the genome length from the 3′ end of sarcoma virus RNA, confirming the results of other laboratories using the method of mapping RNAase TI resistance of oligonucleotides. The 35% of RSV sequences missing and/or diverged in the genome of RAV-O were concentrated within 40% of the sarcoma virus genome from the 3′ end, and most of this large section did not appear to form hybrids with chicken DNA under the conditions of these experiments. A low level of hybrid formation was, however, detected between uninfected chicken cellular DNA and a small fraction of the nucleotides in the region of the td deletion. Analysis of RAV-O 3′ end fragments demonstrated that the genomic sequences of RAV-O missing in RSV were concentrated at the 3′ end of the endogenous viral genome. We conclude that the sequence differences between endogenous and sarcoma viruses are largely concentrated in specific regions of the viral genome.  相似文献   

9.
10.
11.
12.
Rous sarcoma virus, an avian retrovirus, transforms but does not replicate in mammalian cells. To determine to what extent differences in RNA splicing might contribute to this lack of productive infection, cloned proviral DNA derived from the Prague A strain of Rous sarcoma virus was transfected into mouse NIH 3T3 cells, and the viral RNA was compared by RNase protection with viral RNA from transfected chicken embryo fibroblasts by using a tandem antisense riboprobe spanning the three major splice sites. The levels of viral RNA in NIH 3T3 cells compared with those in chicken embryo fibroblasts were lower, but the RNA was spliced at increased efficiency. The difference in the ratio of unspliced to spliced RNA levels was not due to the increased lability of unspliced RNA in NIH 3T3 cells. Although chicken embryo fibroblasts contained equal levels of src and env mRNAs, spliced viral mRNAs in NIH 3T3 cells were almost exclusively src. In NIH 3T3 cells the env mRNA was further processed by using a cryptic 5' splice site located within the env coding sequences and the normal src 3' splice site to form a double-spliced mRNA. This mRNA was identical to the src mRNA, except that a 159-nucleotide sequence from the 5' end of the env gene was inserted at the src splice junction. Smaller amounts of single-spliced RNA were also present in which only the region between the cryptic 5' and src 3' splice sites was spliced out. The aberrant processing of the viral env mRNA in NIH 3T3 cells may in part explain the nonpermissiveness of these cells to productive Rous sarcoma virus infection.  相似文献   

13.
14.
The subcellular localization in chicken Rous sarcoma of nucleotide sequence, complementary to Rous sarcoma virus RNA was examined by RNA/RNA molecular hybridization. The preparations of radioiodinated virion RNA were annealed with RNAs from different fractions (nuclei, mitochondria, free and membrane-bound polyribosomes) isolated from chicken Rous sarcoma. Formation of RNA-ase resistant hybrids between the viral 125I-RNA and RNA from the mitochondria and membrane-bound polyribosomes was revealed. The latter were characterized by a higher relative redundancy of nucleotide sequences complementary to virion RNA than that in the former, by factor 446. The role of complementary ribonucleotide sequences is discussed.  相似文献   

15.
Summary This report describes the unique biological properties of a transgenic chicken line that contains a defective avian leukosis virus (ALV) proviral insert that we call alv6. Chick embryo fibroblasts (CEF) containing this insert express subgroup A envelope glycoprotein since they yield focus-forming pseudotype virus when co-cultivated with transformed quail cells expressing envelope-defective Bryan high-liter Rous sarcoma virus (RSV). In addition, these cells display high interference to subgroup A RSV but not to subgroup B RSV infection. Chickens containing this insert are highly resistant to pathogenic subgroup A ALV infection, but show little immunological tolerance to subgroup B ALV infection. Thus we have artificially inserted a dominant gene for resistance to avian leukosis infection into the chicken germ line.  相似文献   

16.
Nonproducing Rous sarcoma cells of the chicken were capable of transmitting the Rous sarcoma virus genome to neighboring chick embryo fibroblasts. This transfer required close proximity of sarcoma and normal cells and may have been mediated by a subcellular infectious agent which was found to be released from nonproducing cells.  相似文献   

17.
Stocks of Rous sarcoma virus Bryan strain were mutagenized using a bromodeoxyuridine treatment immediately after infection. Thirty temperature-sensitive (ts) mutants defective in transformation (td) were isolated by a replica plating technique. Twenty of these mutants were preliminarily characterized and found to be defective in late functions related to transformation. These mutants were used in experiments of cooperative transformation with four Prague strain td ts mutants of different co-transformation group. A small number of Bryan ts mutants were found to cooperate with some of the Prague mutants in transforming chicken embryo cells at the nonpermissive temperature. However, the amount of co-transformation observed was lower than that observed with cooperating Prague ts mutants and no clear-cut pattern of cotransformation was obtained in Prague and Bryan crosses. Indirect evidence indicates that cooperative transformation is the result of recombination events.  相似文献   

18.
The state of integration of avian sarcoma virus DNA in the genomes of transformed chicken, duck, and quail fibroblasts was deduced by means of restriction enzyme digestion of total cell DNA, gel electrophoresis, and subsequent analysis by the procedure of Southern. The cells used in these studies were either mass-infected cultures or clones of infected cells selected by their ability to form colonies in agar. For both mass-infected cultures and clones of cells of all three species, we found that integration occurred at a specific site on the viral genome but appeared to occur at many sites on the cell genome. At least some of the integrated viral DNA existed as intact nonpermuted species flanked by direct terminal repeats of at least 0.134 megadalton (217 base pairs). For each of 12 transformed quail clones studied, it was possible to detect, after digestion with Kpn I, unique junctions between viral and cellular DNA. That is, at our level of analysis, the integration site on the cell genome for each clone was different. However, within each of the 17 chicken and 9 duck clones of transformed cells, a heterogeneity presumably occurred during the outgrowth of the cell clone population, in that we could not readily detect identifiable cell-virus junction fragments.  相似文献   

19.
A marker rescue assay of noninfectious fragments of avian leukosis virus DNAs is describe. DNA fragments were prepared either by sonication of EcoRI-digestion of DNAs of chicken cells infected with wild-type Rous sarcoma virus, with a nontransforming avian leukosis virus, and with a mutant of Rous sarcoma virus temperature sensitive for transformation. Recipient cultures of chicken embryo fibroblasts were treated with noninfectious DNA fragments and infected with temperature-sensitive mutants of Rous sarcoma virus defective in DNA polymerase or in an internal virion structural protein. Wild-type progeny viruses which replicated at the nonpermissive temperature were isolated. Some of the wild-type progeny acquired both the wild-type DNA polymerase and the subgroup specificity of the Rous sarcona virus strain used for preparation of sonicated or EcoRI-digested DNA fragments. Therefore the genetic markers for DNA polymerase and envelope were linked and appeared to be located on the same EcoRi fragment of the DNA of Rous sarcoma virus-infected cells.  相似文献   

20.
Rous sarcoma virus encodes a tyrosine-specific protein kinase (p60src) which is necessary for cell transformation. To identify substrates for this kinase, we set out to detect phosphotyrosine-containing proteins in Rous sarcoma virus-transformed chicken embryo cells, making use of the known alkali stability of phosphotyrosine. 32P-labeled phosphoproteins were separated by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gels were then incubated in alkali. Using this procedure with normal cells, we detected a total of about 190 alkali-resistant phosphoproteins. In Rous sarcoma virus-transformed cells, five phosphoproteins were found which were not detectable in normal cells. Two of these are probably structural proteins of the virus. The other three transformation-dependent phosphoproteins, and four other phosphoproteins which were elevated by transformation, all contained phosphotyrosine. Increased phosphorylation of these proteins did not occur with cells infected with a mutant Rous sarcoma virus, temperature sensitive for transformation, grown at the restrictive temperature. We conclude that these seven proteins are probably substrates of p60src, although they may be substrates for other tyrosine-specific protein kinases activated by p60src.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号