首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Particulate cyclic nucleotide phosphodiesterases of rat kidney display some distinct kinetic and regulatory properties. Only a small portion (5–10%) of the total homogenate low Km cyclic AMP phosphodiesterase activity (measured with concentrations of cyclic AMP less than l μm) is tightly associated with kidney membranes. Cyclic GMP phosphodiesterase activity (measured with 0.25–200 μm cyclic GMP) is readily detectable in these fractionated and washed membranes. Low concentrations of cyclic GMP stimulated the hydrolysis of cyclic AMP (Ka ~- 0.5 μM), an effect not noted in most other membrane systems. High concentrations of cyclic GMP (Ki ~- 450 μM) and cyclic AMP (Ki ~- 150 μM) inhibited the hydrolysis of each other noncompetitively. Solubilization of membrane bound activities by sonication or Sarkosyl L markedly alters enzyme kinetic properties and the responses to cyclic nucleotides and sulfhydryl reagents. Incubation of membrane fractions with dithiothreitol (5 mm) or storage of the membranes at 4 °C results in a change in extrapolated kinetic constants for cyclic AMP hydrolysis and an increase in the rate of denaturation at 45 °C. Our findings raise the possibility that regulation of membrane-bound cyclic nucleotide phosphodiesterase activity involves interactions with cyclic nucleotides themselves, as well as oxidation and reduction of disulfide bonds and membrane-enzyme interactions.  相似文献   

2.
3.
4.
Summary DEAE-Sephadex chromatography reveals the presence in extracts of human bronchial tissue of at least three separate cyclic nucleotide phosphodiesterases: a cyclic GMP-specific high affinity enzyme, a non-specific low affinity enzyme, and a high affinity cyclic AMP-specific enzyme. The activity of each fraction was partially characterized with respect to kinetic parameters, thermal stability, and the influence of a number of inhibitors. Each activity was found to resemble the activity of the previously characterized corresponding enzyme from whole lung tissue extracts. A high affinity non-specific phospho-diesterase previously isolated from lung tissue is missing in extracts of bronchial tissue.  相似文献   

5.
A cGMP-stimulated cyclic nucleotide phosphodiesterase present in cytosol of Xenopus laevis ovary has been purified and characterized. A cAMP-specific phosphodiesterase which is not activated by either cGMP or calmodulin, has also been characterized. Brief exposure of intact oocytes to 10 micro M progesterone results in an increase in activity of the cAMP-specific enzyme. The cGMP-stimulated and the calmodulin-activated phosphodiesterases are not altered. Changes in cyclic nucleotide levels during progesterone-induced maturation of oocytes may be modulated by these isoenzymes.  相似文献   

6.
Two soluble cyclic nucleotide phosphodiesterase activities, designated Peak I (Mr = 216,000) and Peak II (Mr = 230,000), have been isolated from bovine adrenal medulla by DEAE-cellulose chromatography. Peak I has Ca2+-independent, cGMP-specific phosphodiesterase activity and Peak II has cGMP-stimulated cyclic nucleotide phosphodiesterase activity. Peak I hydrolyzes cGMP with hyperbolic kinetics and demonstrates a Km of 23 microM. Peak II hydrolyzes cGMP with hyperbolic kinetics but hydrolyzes cAMP with slightly sigmoidal kinetics and demonstrates Km values of 54 +/- 0.7 microM cGMP and 38 +/- 6 microM cAMP. Cyclic AMP and cGMP are competitive inhibitors of each other's hydrolysis, suggesting that these nucleotides may be hydrolyzed at the same catalytic site. Micromolar concentrations of cGMP cause a 5-fold stimulation of the hydrolysis of subsaturating concentrations of cAMP by the Peak II phosphodiesterase. Half-maximal activation occurs at 0.5 microM cGMP and the result of activation is a decrease in the apparent Km for cAMP. Stimulation of the hydrolysis of subsaturating concentrations of cGMP by cAMP was also detected; however, cAMP is a less potent activator of the enzyme than cGMP. Cyclic AMP causes a 1.5-fold stimulation of cGMP hydrolysis and half-maximal activation occurs at 2.5 microM cAMP.  相似文献   

7.
1. Three phosphodiesterases that are capable of hydrolysing 3':5'-cyclic nucleotides were purified from potato tubers. 2. The phosphodiesterases were fractionated by (NH4)2SO4 precipitation and CM-cellulose chromatography. The phosphodiesterases were resolved from each other and further purified by gel filtration in high- and low-ionic-strength conditions. 3. All three enzymes lacked significant nucleotidase activity. 4. Enzymes I and II had mol. wts. 240,000 and 80,000 respectively, determined by gel filtration, whereas enzyme III showed anomalous behaviour on gel filtration, behaving as a high- or low-molecular-weight protein in high- or low-ionic-strength buffers respectively. 5. All enzymes hydrolysed 2':3'-cyclic nucleotides as well as 3':5'-cyclic nucleotides. The enzymes also had nucleotide pyrophosphatase activity, hydrolysing NAD+ and UDP-glucose to various extents. Enzymes I and II hydrolyse cyclic nucleotides at a greater rate than NAD+, whereas enzyme III hydrolyses NAD+ at a much greater rate than cyclic nucleotides. All three enzymes hydrolysed the artificial substrate bis-(p-nitro-phenyl) phosphate. 6. The enzymes do not require the addition of bivalent cations for activity. 7. Both enzymes I and II have optimum activity at pH6 with 3':5'-cyclic AMP and bis-(p-nitrophenyl) phosphate as substrates. The products of 3':5'-cyclic AMP hydrolysis were 3'-AMP and 5'-AMP, the ratio of the two products being different for each enzyme and varying with pH. 8. Theophylline inhibits enzymes I and II slightly, but other methyl xanthines have little effect. Enzymes I and II were competitively inhibited by many nucleotides containing phosphomonoester and phosphodiester bonds, as well as by Pi. 9. The possible significance of these phosphodiesterases in cyclic nucleotide metabolism in higher plants is discussed.  相似文献   

8.
Studies of various conditions and techniques used to separate cyclic nucleotide phosphodiesterases of rat kidney have demonstrated that the cationic cofactor requirements, apparent kinetic constants, number, size, and net charge of separated enzyme forms can be altered by a variety of factors. Dithiothreitol affects the number and kinetic properties of enzyme forms fractionated by isoelectric focusing and the degree of cooperativity of a low Km cyclic AMP-specific enzyme separated on Sephadex G-150. In contrast to results obtained by sucrose gradient analyses, isoelectric focusing in glycerol gradients resolved cyclic nucleotide phosphodiesterase into a single peak of activity. Inclusion of ethylene glycol in the buffers used for DEAE-cellulose chromatography greatly enhanced the yields of eluted enzymes, and the pH of the salt gradients markedly affected cyclic nucleotide phosphodiesterase elution profiles. Our results suggest (a) that in addition to protein sulfhydryl reactions, hydrophobic interactions of enzyme subunits may play an important role in the regulation of this enzyme system, (b) that cautious interpretation of results obtained from a single separation technique is required since relatively slight modifications in any one isolation procedure can result in markedly different data, and (c) that the oligomeric nature of cyclic nucleotide phosphodiesterase requires physical analysis by a variety of techniques to avoid biochemical anomalies.  相似文献   

9.
DEAE-cellulose chromatography demonstrated the presence of three peaks of cyclic nucleotide phosphodiesterase activity in the hearts of cattle during the summer and only two peaks during exposure to freezing temperatures. The hydrolysis of 10?6M cyclic AMP by peak II, the variable activity, was stimulated 160% by 10?6M cyclic GMP and was inhibited by chelation of Ca2+. Peak II activity was not a distinct enzyme but rather a mixture of activator-dependent phosphodiesterase, phosphodiesterase activator and type II cyclic AMP-dependent protein kinase.  相似文献   

10.
11.
Cyclic nucleotide phosphodiesterase in the plasma membranes of bovine epididymal spermatozoa was stimulated by added Ca2+ and calmodulin. The rate of hydrolysis and responsiveness toward calmodulin was greater for cAMP than for cGMP. The kinetic analysis of the activity revealed two forms of phosphodiesterase with apparent Km values of 7.5 and 95 microM for cAMP. Calmodulin stimulated both of the activities by increasing the Vmax without affecting the Km's. The activity response with respect to Ca2+ concentration appears to be biphasic in both the absence and presence of added calmodulin. Trifluoperazine inhibited the Ca2+- and calmodulin-sensitive enzyme activity in a dose-dependent manner. The calmodulin-stimulated phosphodiesterase activity in the sperm plasma membranes can be solubilized and absorbed to a Calmodulin-Sepharose affinity column in the presence of Ca2+.  相似文献   

12.
cGMP-stimulated phosphodiesterase (PDE) has been directly photolabeled with [32P]cGMP using UV light. Sequence analysis of peptide fragments obtained from partial proteolysis or cyanogen bromide cleavage indicate that two different domains are labeled. One site, on a Mr = 36,000 chymotryptic fragment located near the COOH terminus, has characteristics consistent with it being close to or part of the catalytic site of the enzyme. This peptide contains a region of sequence that is highly conserved in all mammalian cyclic nucleotide PDEs and has been postulated to contain the catalytic domain of the enzyme. The other site, on a Mr = 28,000 cyanogen bromide cleavage fragment located near the middle of the molecule, probably makes up part of the allosteric site of the molecule. Labeling of the enzyme is concentration dependent and Scatchard analysis of labeling yields a biphasic plot with apparent half labeling concentrations of about 1 and 30 microM consistent with two types of sites being labeled. Limited proteolysis of the PDE by chymotrypsin yields five prominent fragments that separate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at Mr = 60,000, 57,000, 36,000, 21,000, and 17,000. Both the Mr = 60,000 and 57,000 apparently have blocked NH2 termini suggesting that the Mr = 57,000 fragment is a subfragment of the Mr = 60,000 fragment. Primary sequence analysis indicates that both the Mr = 21,000 and 17,000 fragments are subfragments of the Mr = 36,000 fragment. Autoradiographs of photolabeled then partially proteolyzed enzyme show labeled bands at Mr = 60,000, 57,000, and 36,000. Addition of 5 microM cAMP prior to photolabeling eliminates photolabeling of the Mr = 36,000 fragment but not the Mr = 60,000 or 57,000 fragments. The labeled site not blocked by cAMP is also contained in a Mr = 28,000 cyanogen bromide fragment of the enzyme that does not overlap with the Mr = 36,000 proteolytic fragment. Limited chymotryptic proteolysis also increases basal activity and eliminates cGMP stimulation of cAMP hydrolysis. The chymotryptic fragments can be separated by either ion exchange high performance liquid chromatography (HPLC) or solid-phase monoclonal antibody treatment. A solid-phase monoclonal antibody against the cGMP-stimulated PDE removes the Mr = 60,000 and 57,000 labeled fragments and any intact, unproteolyzed protein but does not remove the Mr = 36,000 fragment or the majority of activity. Ion exchange HPLC separates the fragments into three peaks (I, II, and III). Peaks I and II contain activity of approximately 40 and 100 units/mg, respectively. Peak II is the undigested or slightly nicked native enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
We have compared selected biophysical properties of three phosphodiesterases, from Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli. All of them belong to a recently identified family of cyclic nucleotide phosphodiesterases. Experiments elucidating folding stability, protein fluorescence, oligomerization behavior, and the effects of substrates were conducted, revealing differences between the plant and the yeast protein. According to CD spectroscopy, the latter protein exhibits an (alpha + beta) fold rather than an (alpha/beta) fold as found with CPDase (A. thaliana). The redox-dependent structural reorganization recently found for the plant protein by X-ray crystallography could not be detected by CD spectroscopy due to its only marginal effect on the total percentage of helical content. However, in the present study a redox-dependent effect was also observed for the yeast CPDase. The enzymatic activity of wild type CPDase (A. thaliana) as well as of four mutants were characterized by isothermal titration calorimetry and the results prove the requirement of all four residues of the previously identified tandem signature motif for the catalytic function. Within the comparison of the three proteins in this study, the PDase Homolog/RNA ligase (E. coli) shares more similarities with the plant than with the yeast protein.  相似文献   

14.
15.
Effects of fatty acids, prostaglandins, and phospholipids on the activity of purified cGMP-stimulated cyclic nucleotide phosphodiesterase from calf liver were investigated. Prostaglandins A2, E1, E2, F1 alpha, and F2 alpha, thromboxane B2, and most phospholipids were without effect; lysophosphatidylcholine was a potent inhibitor. Several saturated fatty acids (carbon chain length 14-24), at concentrations up to 1 mM, had little or no effect on hydrolysis of 0.5 microM [3H]cGMP or 0.5 microM [3H]cAMP with or without 1 microM cGMP. In general, unsaturated fatty acids were inhibitory, except for myristoleic and palmitoleic acids which increased hydrolysis of 0.5 microM [3H]cAMP. The extent of inhibition by cis-isomers correlated with the number of double bonds. Increasing concentrations of palmitoleic acid from 10 to 100 microM increased hydrolysis of [3H]cAMP with maximal activation (60%) at 100 microM; higher concentrations were inhibitory. Palmitoleic acid inhibited cGMP hydrolysis and cGMP-stimulated cAMP hydrolysis with IC50 values of 110 and 75 microM, respectively. Inhibitory effects of palmitoleic acid were completely or partially prevented by equimolar alpha-tocopherol. Palmitelaidic acid, the trans isomer, had only slightly inhibitory effects. The effects of palmitoleic acid (100 microM) were dependent on substrate concentration. Activation was maximal with 1 microM [3H]cAMP and was reduced with increasing substrate; with greater than 10 microM cAMP, palmitoleic had no effect. Inhibition of cGMP hydrolysis was maximal at 2.5 microM cGMP and was reduced with increasing cGMP; at greater than 100 microM cGMP palmitoleic acid increased hydrolysis slightly. Palmitoleic acid did not affect apparent Km or Vmax for cAMP hydrolysis, but increased the apparent Km (from 17 to 60 microM) and Vmax for cGMP hydrolysis with little or no effect on the Hill coefficient for either substrate. These results suggest that certain hydrophobic domains play an important role in modifying the catalytic specificity of the cGMP-stimulated phosphodiesterase for cAMP and cGMP.  相似文献   

16.
Divalent metals used to support phosphodiesterase (EC 3.1.4.-) activity have been found to influence the substrate and enzyme specificity of many phosphodiesterase inhibitors in studies of the hydrolysis of cyclic AMP and cyclic GMP by the calmodulin-dependent and cyclic AMP-specific phosphodiesterases from bovine heart. Many compounds displayed marked differences in substrate specificity and inhibitory potency in the presence of Mg2+, as compared with Mn2+, when studied with the unactivated form of calmodulin-dependent phosphodiesterase, while few compounds displayed differences in the presence of calmodulin. With a single divalent metal, marked differences in inhibitory potency and substrate specificity were also observed in the absence or presence of calmodulin suggesting that alterations in calmodulin and/or Ca2+ levels may greatly affect the response to phosphodiesterase inhibitors. Divalent metals did not alter the effects of inhibitors on the hydrolysis of cyclic AMP by the cyclic AMP-specific phosphodiesterase, however divalent metals would probably indirectly influence the relative cellular level of cyclic AMP hydrolyzed by this enzyme, and therefore the effects of inhibitors, through metal effects on the calmodulin-dependent phosphodiesterase. No correlation was found between the inhibitory activity of the compounds, many of which were cyclic nucleotide analogs, and their ability to activate cyclic AMP-dependent or cyclic GMP-dependent protein kinases or to affect cyclic AMP-dependent protein kinase activity by displacing bound cyclic AMP.  相似文献   

17.
The soluble high Km form of cyclic nucleotide phosphodiesterase (EC 3.4.1.17) was purified over 2000-fold from bovine brain homogenates principally using blue dextran-Sepharose chromatography. The purified protein has a specific enzymic activity of 167 units/mg and appears homogeneous when examined by polyacrylamide gel electrophoresis. The enzyme has a molecular weight of 1.26 +/- 0.05 x 10(5) consisting of two apparently identical polypeptide chains. Kinetic measurements indicate that the substrates cyclic GMP and cyclic AMP each have a single Km value, 9 +/- 1 micron and 150 +/- 50 micron, respectively, that the two cyclic nucleotides compete for the same catalytic site, that the blue dye of blue dextran-Sepharose is a competitive inhibitor for the cyclic nucleotides, and that the Vmax with cyclic AMP as substrate is about an order of magnitude larger than that for cyclic GMP. Bovine brain calmodulin stimulates the catalytic rate of the purified enzyme in the presence of Ca2+ by increasing the Vmax associated with each cyclic nucleotide substrate.  相似文献   

18.
19.
1. A heat-stable modulator protein was partially purified from mouse epidermis. The protein stimulated modulator-depleted cyclic AMP phosphodiesterase from bovine brain in the presence of Ca2+. 2. DEAE-cellulose chromatography of epidermal extracts demonstrated the presence of two main phosphodiesterase activities that hydrolysed both cyclic AMP and cyclic GMP. A minor peak was eluted between 0.1 and 0.3 M-sodium acetate and a major peak was eluted between 0.3 and 0.45 M-sodium acetate. 3. Cyclic AMP phosphodiesterase activity eluted at low salt concentrations was markedly activated by the epidermal modulator protein in the presence of Ca2+. Storage of the enzyme led to a decrease in its sensitivity to the protein modulator. 4. Treatment of mouse skin with the tumour promoter 12-O-tetradecanoylphorbol 13-acetate, which leads to an increase in epidermal cyclic nucleotide phosphodiesterase activity, did not alter the amount of modulator present in soluble epidermal extracts. The tumour promoter decreased the amount of modulator extractable from particulate epidermal preparations with Triton X-100.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号