首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ratios of 15N to 14N and 13C to 12C tend to be higher in marine than in terrestrial organisms. The concentrations of these isotopes in human bone collagen consequently can be used to make inferences about the contribution of marine and terrestrial resources to prehistoric diets. The utility of studying 15N/14N and 13C/12C ratios in conjunction with each other is illustrated by our analysis of 40 human burials from archaeological sites in the Santa Barbara Channel area of southern California. The mean delta 13C and delta 15N values (in per mil) of collagen from these skeletons decrease progressively from the Channel Islands (delta 13C = -14.0, delta 15N = +16.3) to the mainland coast (delta 13C = -14.5, delta 15N = +14.9) to the interior (delta 13C = -17.2, delta 15N = +10.9). These data suggest that Indians living on the Channel Islands during the late prehistoric period were heavily dependent on marine resources. The inhabitants of the mainland interior, in contrast, had a diet composed largely of terrestrial foods. From their isotope ratios, it appears that the Indians who lived on the mainland coast consumed a mixed diet containing substantial quantities of both marine and terrestrial resources. Differences in 15N/14N and 13C/12C ratios of individuals from mainland sites dating from the early and late prehistoric periods show that the marine component of the diet increased substantially through time. These isotopic data are consistent with pathological, faunal, and artifactual evidence of increased marine resource exploitation during the late prehistoric period.  相似文献   

3.
We investigated the stable nitrogen- and carbon-isotope compositions of blood, liver, muscle and hair of income breeding deer mice (Peromyscus maniculatus) to determine the extent to which stable isotope compositions of mothers and offspring differed. We found small differences between the δ15N and δ13C values of dependent offspring and adult tissues (by a magnitude of −0.8‰ to 1.1‰ for 15N and 0.3–0.9‰ for 13C), and limited 15N discrimination between juvenile tissues and milk, which explains the small mother-offspring trophic effects in isotopic composition. Discrimination of 15N between offspring and adults was greater than expected but smaller than known for capital breeding mammals, suggesting that different biochemical pathways for milk production and processing may affect the discrimination of 15N in these systems.  相似文献   

4.
R. Sukumar  R. Ramesh 《Oecologia》1992,91(4):536-539
Summary Stable carbon isotope ratios in bone collagen have been used in a variety of dietary studies in modern and fossil animals, including humans. Inherent in the stable isotope technique is the assumption that the isotopic signature is a reflection of the diet and is persistent in collagen because this is a relatively inert protein. Carbon isotope analyses of bones from a southern Indian population of Asian elephant (Elephas maximus), a long-lived mammal that alternates seasonally between a predominantly C3 (browse) and C4 (grass) plant diet, showed two patterns that have important implications for dietary interpretation based on isotopic studies. Relative to the quantity of the two plant types consumed on average, the δ13C signal in collagen indicated that more carbon was incorporated from C3 plants, possibly due to their higher protein contribution. There was a much greater variance in δ13C values of collagen in sub-adult (range -10.5‰ to-22.7‰, variance=14.51) compared to adult animals (range -16.0‰ to -20.3‰, variance=1.85) pointing to high collagen turnover rates and non-persistent isotopic signatures in younger, growing animals. It thus seems important to correct for any significant relative differences in nutritive value of food types and also consider the age of an animal before drawing definite conclusions about its diet from isotope ratios.  相似文献   

5.
Summary The hypothesis that relative water motion and boundary layer diffusion processes affect carbon isotope ratios of aquatic plants was tested in tidal pool and surge zone comparisons of the surfgrass Phyllospadix spp. No evidence was found that submerged plants growing in still upper tidal pools were isotopically different from those growing submerged in lower tidal surge zones. Significant decreases in 13C/12C ratios for plants growing emersed in the intertidal may have been caused by uptake of atmospheric carbon dioxide. Marine algae (Egregia menziesii and Halosaccion americanum) growing at the same location and tidal elevations as the seagrasses showed somewhat different isotopic fractionation patterns, suggesting that causes of isotopic variability in the seagrasses were not necessarily the same as those in the two marine algae.  相似文献   

6.
Facultative hyperparasitism is likely to be the most common form of intraguild predation among parasitoids. However, difficulties associated with studying facultative hyperparasitoids in the field have hampered a thorough understanding of their trophic ecology. In this study, we used a combination of stable isotope analysis and published natural history information to infer trophic interactions in a guild of field-collected primary parasitoids and facultative hyperparasitoids that attack a gall-making midge on Baccharis pilularis. Our three a priori hypotheses were: (1) stable isotope values should increase incrementally from the host plant to higher trophic levels; (2) the two species of ectoparasitoids should exhibit higher stable isotope signatures than the two endoparasitoids, and; (3) the two facultative hyperparasitoids should exhibit stable isotope signatures that fall between zero and one trophic level steps above that observed for the primary parasitoids. Food webs inferred from stable isotope data generally agreed with previously published accounts of community structure. As expected, both δ13C and δ15N were progressively enriched in the heavy isotope from the host plant to the herbivorous midge to the parasitic wasps. Multivariate analysis of stable isotope data revealed that the two primary ectoparasitoids occupied a similar trophic niche, but were significantly different from the primary endoparasitoids. We attribute this result to “coincidental intraguild predation” by ectoparasitoids that develop on already-parasitized midge larvae. One of the facultative hyperparasitoids, Zatropis capitis, exhibited a stable isotope signature approximately one trophic step above the primary parasitoids. Unexpectedly, the second facultative hyperparasitoid, Mesopolobus sp., appeared to be developing as a primary parasitoid at all sites. Coupled with independent assessments of community structure, stable isotope analysis validated trophic links constructed by previous researchers and identified potential taxon-specific differences in trophic interactions for two facultative hyperparasitoids in the B. pilularis gall community.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

7.
Ants are prominent components of most terrestrial arthropod food webs, yet due to their highly variable diet, the role ants play in arthropod communities can be difficult to resolve. Stable isotope analysis is a promising method for determining the dietary history of an organism, and has the potential to advance our understanding of the food web ecology of social insects. However, some unique characteristics of eusocial organisms can complicate the application of this technique to the study of their trophic ecology. Using stable isotopes of N and C, we investigated levels of intraspecific variation both within and among colonies. We also examined the effect of a common preservation technique on δ15N and δ13C values. We discuss the implications of our results on experimental design and sampling methods for studies using stable isotopes to investigate the trophic ecology of social insects. Received 4 February 2005; revised 23 June 2005; accepted 4 July 2005.  相似文献   

8.
Three species of nectar-feeding bats migrate from tropical and subtropical Mexico into the Sonoran and Chihuahuan deserts during the spring and summer months. We examined geographic and seasonal changes in the diet of one migrant species, Leptonycteris curasoae, using carbon stable isotope techniques to determine the relative importance of C3 and CAM (Cactaceae, Agavaceae) plants in its diet. We also examined the diet of a non-migratory nectar-feeding bat, Glossophaga soricina, from southern Mexico using the same techniques. We found that L. curasoae feeds extensively or exclusively on CAM plants during migration and in the northern part of its range and feeds mostly on C3 plants in southern Mexico. This bat is a year-round resident on Baja California where it is a CAM specialist. The non-migrant G. soricina feeds mostly on C3 plants year-round. Phenological data suggest that certain species of columnar cacti and at least one group of paniculate Agaves on the Mexican mainland provide a spatio-temporally predictable nectar corridor along which nectarivorous bats may migrate in the spring and fall, respectively. Different flowering schedules of Agaves in Baja California appear to promote year-round dietary specialization and perhaps non-migratory behavior in nectar-feeding bats living there.  相似文献   

9.
The natural abundance variations in carbon and nitrogen stable isotope ratios in a population of the earthworm Aporrectodea longa, a species known to feed on both soil and plant litter, is reported in this paper. Worms were collected from a small land area of an old white clover field and body tissue and mucus were analyzed separately. The range of isotopic values was small, but patterns of variation were not random. Tissue carbon and nitrogen isotope ratios were significantly higher in adult than in juvenile A. longa and tissue nitrogen isotope ratios tended to increase with increasing biomass of individuals. Further, carbon and nitrogen isotope ratios were positively correlated in both tissue and mucus. Possible causes of the observed patterns, including physiological effects, body composition and assimilation of C and N from different plant, soil and microbial sources are discussed. It is concluded that the causes of natural variability in isotopic composition must be understood and validated experimentally before natural abundance stable isotope methods can be used for the analysis of trophic relations among detritivorous soil invertebrates.  相似文献   

10.
Analysis of stable isotope ratios is increasingly used to reconstruct diets in passerine birds, but studies of diet–tissue isotopic discrimination for this avian group are scarce. We determined 15N and 13C diet–tissue discrimination factors on whole blood in the red-throated ant tanager (Habia fuscicauda), an insectivorous–frugivorous passerine. Birds were fed an isotopically uniform, semi-synthetic diet of dog puppy dry food, soy protein isolate, wheat germ, and other ingredients, during 92 days. Average (± SD) diet–tissue discrimination was 2.6 ± 0.2‰ for N and 2.2 ± 0.1‰ for C. Nitrogen diet-tissue discrimination was similar to the values found previously in other passerines fed animal protein and it can probably be used to accurately reconstruct protein dietary origin in passerines feeding on animal protein (e.g., insects). In the case of C, diet reconstruction might be affected by metabolic routing of dietary nutrients.  相似文献   

11.
The trophic ecology of marine vertebrates has been increasingly studied via stable isotope analysis of body tissues. However, the theoretical basis for using stable isotopes to elucidate consumer–prey relationships remains poorly validated for most taxa despite numerous studies using this technique in natural systems. In this study, we measured stable carbon and stable nitrogen diet-tissue discrimination (Δdt) in whole blood, red blood cells, blood plasma solutes, and skin of leatherback sea turtles (Dermochelys coriacea; N = 7) maintained in captivity for up to 424 days and fed an isotopically consistent control diet with a mean C:N ratio of 2.94:1.00 and an energetic content of 20.16 ± 0.39 kJ g− 1 Dry Mass. We used a random-effect repeated measure model to evaluate isotopic consistency among tissue samples collected on days 276, 348, and 424. Both δ13C and δ15N remained consistent among sampling events in all tissues (all 95% posterior intervals for the slopes of a linear model included zero), indicating that all tissues had fully integrated diet-derived stable isotope compositions. Mean tissue-specific δ13C ranged from − 18.30 ± 0.16‰ (plasma solutes) to − 15.54 ± 0.14‰ (skin), whereas mean δ15N was from 10.06 ± 0.22‰ (whole blood) to 11.46 ± 0.10‰ (plasma solutes). The computed Δdt factors for carbon ranged from − 0.58‰ (plasma solutes) to + 2.25‰ (skin), whereas Δdt for nitrogen was from + 1.49 (red blood cells) to + 2.85 (plasma solutes). As the only discrimination factors available for leatherback turtles, our data will be useful for future interpretations of field-derived stable isotope data for this species. The inherent variability in Δdt values among individuals was low, which supports the value of these data for dietary reconstructions. However, it is important to note that tissue-specific discrimination factors for leatherbacks contrast with the widely accepted values for endothermic species (0–1‰ for C, 3–5‰ for N), and are also different from values established for hard-shelled turtles. This underscores the need for species- and tissue-specific discrimination factors before interpreting trophic studies of wild animals, including marine turtles.  相似文献   

12.
13.
14.
Effects of carbon concentration and carbon to nitrogen (C:N) ratio on six biocontrol fungal strains are reported in this paper. All fungal strains had extensive growth on the media supplemented with 6–12 g l−1 carbon and C:N ratios from 10:1 to 80:1, and differed in nutrient requirements for sporulation. Except for the two strains of Paecilomyces lilacinus, all selected fungi attained the highest spore yields at a C:N ratio of 160:1 when the carbon concentration was 12 g l−1 for Metarhizium anisopliae SQZ-1-21, 6 g l−1 for M. anisopliae RS-4-1 and Trichoderma viride TV-1, and 8 g l−1 for Lecanicillium lecanii CA-1-G. The optimal conditions for P. lilacinus sporulation were 8 g l−1 carbon with a C:N ratio of 10:1 for M-14 and 12 g l−1 carbon with a C:N ratio of 20:1 for IPC-P, respectively. The results indicated that the influence of carbon concentration and C:N ratio on fungal growth and sporulation is strain dependent; therefore, consideration for the complexity of nutrient requirements is essential for improving yields of fungal biocontrol agents.  相似文献   

15.
Behringer DC  Butler MJ 《Oecologia》2006,148(2):334-341
Seagrasses produce much of the organic carbon in the shallow waters of the Caribbean and it has long been assumed that a substantial portion of this carbon is exported to nearby habitats, contributing substantially to their food webs. In the shallow coastal waters of the Florida Keys (USA), seagrass intersperses with hard-bottom habitat where bushy, red macroalgae are the most prominent primary producers. However, the relative importance of seagrass-derived carbon versus autochthonous algal production or phytoplankton in supporting higher trophic levels within hard-bottom communities has never been investigated. We compared the carbon and nitrogen isotopic values of potential primary producers and representative higher trophic level taxa from hard-bottom sites on the bay-side and ocean-side of the Florida Keys. We also included in our study a set of bay-side sites that experienced significant ecological disturbances over the past decade (e.g., cyanobacteria blooms, seagrass die-off, and sponge die-offs) that may have altered trophic relationships in those regions. We did not detect any differences among regions in the trophic status of hard-bottom taxa that might be associated with ecosystem disturbance. However, our results suggest that autochthonous production of algal detritus is an important source of secondary production in these hard-bottom communities, with seagrass and phytoplankton contributing smaller fractions.  相似文献   

16.
Stable isotope composition of water in desert plants   总被引:1,自引:0,他引:1  
A survey of the stable isotope content of tissue waters of plants from the Negev desert was conducted. Large differences were observed in the extent of enrichment of the heavy isotopes in leaf water relative to local precipitation among different plants. This is apparently caused by the species-dependent stratagems adopted by the plants to cope with water stress, primarily by differences in the depth of water uptake in the soil and through the timing of stomatal openings during the daily cycle. Salt stressed plants showed extreme variability in the isotopic composition of leaf–water. The results show that plants with adaptation to arid conditions can avoid the transpiration regime, which would lead to the strong isotopic enrichment in their leaf water expected under arid conditions. This has implications for the use of stable isotopes in plants as indicators of either plant ecophysiology or paleoclimate. Responsible Editor: Hans Lambers. G. Goodfriend is deceased.  相似文献   

17.
Significant faunal changes reported from recent, coastal environments, which are not directly influenced by urban and industrial impact, are rarely seen. In Gullmar Fjord on the Swedish west coast, a significant foraminiferal fauna change occurred in connection with severe low-oxygen conditions that evolved in the winter of 1979/1980. A foraminiferal fauna marked by common Skagerrak–Kattegat species, which had previously characterised the deep fjord basin, was replaced by the opportunistic, low-oxygen tolerant species Stainforthia fusiformis (Williamsson).To study this phenomenon further we performed stable oxygen and carbon isotope analyses on the indicator species itself, S. fusiformis, both on specimens from sediment cores representing approximately the last 85 years and on living (stained) individuals taken from a transect across the deep fjord basin. Our purpose was to detail how and why S. fusiformis, came to dominate the fauna.The oxygen isotope results suggest that salinities and temperatures in the deep basin have been relatively constant over the last c. 85 years, while the carbon isotopes show a significant change towards more negative values in association with the faunal shift of 1979/1980. The combined results from both the cores and the surface sediments suggest that S. fusiformis did not inhabit the deep basin until 1980. Before then, almost all specimens of S. fusiformis were small sized and their carbon isotope values suggest they were re-deposited shallow-water specimens that had been transported down to the central, deep basin as part of a suspension load. After a major faunal extinction in 1979–1980, S. fusiformis of all sizes suddenly appeared in large numbers and their carbon isotopic values were similar to the signal from registered in the recent, living fauna within the deep basin. This suggests that the opportunistic S. fusiformis established itself in the deep basin as a consequence of the severe low-oxygen event and the faunal crash of the previously dominating Skagerrak–Kattegat fauna.  相似文献   

18.
19.
Fishing is the most widespread human exploitation of marine resources, which has an annual cyclical influence on aquatic species in Chinese offshore waters. This study used carbon and nitrogen isotopic ratios as tracers to reveal the changes in trophic level and dietary composition of offshore organisms during four cruises in March, June, August and November 2014. The results indicated that the trophic levels of fishes declined during two fishing periods, from March (average trophic level = 3.36) to June (3.01), and from August (2.99) to November (2.57), while most invertebrates did not show this trend. The self-restoring ability of this ecosystem was reflected in the trophic level changes after the closed fishing season (from June 1 to September 1). The trophic levels of fishes remained stable, and some species even recovered such as Enchelyopus elongates (trophic level increased from 2.84 in June to 2.86 in August), Cryptocentrus filifer (from 3.10 to 3.12), and Ernogrammus hexagrammus (from 2.91 to 2.96). According to the trophic results, we selected the invertebrates Octopus minor and Asterias amurensis from the top trophic levels for dietary composition analysis. The composition of their diets changed significantly after fishing periods, and the proportions of some smaller and “non-commercial” species increased, such as Notoacmea schrenckii and Chlorostoma rustica. After the closed fishing season, the larger and “commercial” species contributed a greater proportion to their diet composition. These results indicated that the closed fishing season should be prolonged to give the ecosystem enough time to restore itself and further halt the trend of this fishery towards environment deterioration.  相似文献   

20.
Collection of minimally invasive biopsy samples has become an important method to establish normal stable isotopes reference ranges in various wildlife species. Baseline data enhance the understanding of feeding ecology, habitat use, and potential food limitation in apparently healthy, free‐ranging cetaceans. Epidermis and muscle were collected from subsistence‐hunted northern Alaskan bowhead (n= 133 epidermis/134 muscle) and beluga whales (n= 42/49) and subsistence‐hunted Russian gray whales (n= 25/17). Additional samples were obtained from gray whales stranded in California (n= 18/11) during mortality events (1999, 2000). Both δ15N and δ13C are trophic position and benthic/pelagic feeding indicators, respectively, in muscle and epidermis. Epidermis is generally enriched in 15N over muscle, while epidermal 13C is more depleted. Lipid extraction does not alter δ15N in either tissue, but affects epidermal δ13C. Nitrogen‐15 is enriched in muscle, but not epidermis of stranded compared to subsistence‐hunted gray whales, indicating probable protein catabolism and nutritional stress in stranded whales. Similarly, epidermal δ13C of harvested whales is lower than in stranded whales, suggesting depleted lipid stores and/or food limitation in stranded animals. Epidermal isotope signatures are similar in both present‐day bowheads and in an ancient sample from the Northern Bering Sea region. Although only one specimen, this suggests trophic level of the ancient whale compares to modern bowheads after a millennium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号